1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.cache.mmu 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import chisel3.internal.naming.chiselName 23import xiangshan._ 24import xiangshan.cache.{HasDCacheParameters, MemoryOpConstants} 25import utils._ 26import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 27import freechips.rocketchip.tilelink._ 28import xiangshan.backend.fu.{PMPReqBundle, PMPRespBundle} 29 30/** Page Table Walk is divided into two parts 31 * One, PTW: page walk for pde, except for leaf entries, one by one 32 * Two, LLPTW: page walk for pte, only the leaf entries(4KB), in parallel 33 */ 34 35 36/** PTW : page table walker 37 * a finite state machine 38 * only take 1GB and 2MB page walks 39 * or in other words, except the last level(leaf) 40 **/ 41class PTWIO()(implicit p: Parameters) extends MMUIOBaseBundle with HasPtwConst { 42 val req = Flipped(DecoupledIO(new Bundle { 43 val req_info = new L2TlbInnerBundle() 44 val l1Hit = Bool() 45 val ppn = UInt(ppnLen.W) 46 })) 47 val resp = DecoupledIO(new Bundle { 48 val source = UInt(bSourceWidth.W) 49 val resp = new PtwResp 50 }) 51 52 val llptw = DecoupledIO(new LLPTWInBundle()) 53 // NOTE: llptw change from "connect to llptw" to "connect to page cache" 54 // to avoid corner case that caused duplicate entries 55 56 val mem = new Bundle { 57 val req = DecoupledIO(new L2TlbMemReqBundle()) 58 val resp = Flipped(ValidIO(UInt(XLEN.W))) 59 val mask = Input(Bool()) 60 } 61 val pmp = new Bundle { 62 val req = ValidIO(new PMPReqBundle()) 63 val resp = Flipped(new PMPRespBundle()) 64 } 65 66 val refill = Output(new Bundle { 67 val req_info = new L2TlbInnerBundle() 68 val level = UInt(log2Up(Level).W) 69 }) 70} 71 72@chiselName 73class PTW()(implicit p: Parameters) extends XSModule with HasPtwConst with HasPerfEvents { 74 val io = IO(new PTWIO) 75 76 val sfence = io.sfence 77 val mem = io.mem 78 val satp = io.csr.satp 79 val flush = io.sfence.valid || io.csr.satp.changed 80 81 val s_idle :: s_addr_check :: s_mem_req :: s_mem_resp :: s_check_pte :: Nil = Enum(5) 82 val state = RegInit(s_idle) 83 val level = RegInit(0.U(log2Up(Level).W)) 84 val af_level = RegInit(0.U(log2Up(Level).W)) // access fault return this level 85 val ppn = Reg(UInt(ppnLen.W)) 86 val vpn = Reg(UInt(vpnLen.W)) 87 val levelNext = level + 1.U 88 val l1Hit = Reg(Bool()) 89 val memPte = mem.resp.bits.asTypeOf(new PteBundle().cloneType) 90 io.req.ready := state === s_idle 91 92 val finish = WireInit(false.B) 93 val sent_to_pmp = state === s_addr_check || (state === s_check_pte && !finish) 94 val accessFault = RegEnable(io.pmp.resp.ld || io.pmp.resp.mmio, sent_to_pmp) 95 val pageFault = memPte.isPf(level) 96 switch (state) { 97 is (s_idle) { 98 when (io.req.fire()) { 99 val req = io.req.bits 100 state := s_addr_check 101 level := Mux(req.l1Hit, 1.U, 0.U) 102 af_level := Mux(req.l1Hit, 1.U, 0.U) 103 ppn := Mux(req.l1Hit, io.req.bits.ppn, satp.ppn) 104 vpn := io.req.bits.req_info.vpn 105 l1Hit := req.l1Hit 106 accessFault := false.B 107 } 108 } 109 110 is (s_addr_check) { 111 state := s_mem_req 112 } 113 114 is (s_mem_req) { 115 when (mem.req.fire()) { 116 state := s_mem_resp 117 } 118 when (accessFault) { 119 state := s_check_pte 120 } 121 } 122 123 is (s_mem_resp) { 124 when(mem.resp.fire()) { 125 state := s_check_pte 126 af_level := af_level + 1.U 127 } 128 } 129 130 is (s_check_pte) { 131 when (io.resp.valid) { // find pte already or accessFault (mentioned below) 132 when (io.resp.fire()) { 133 state := s_idle 134 } 135 finish := true.B 136 }.elsewhen(io.llptw.valid) { // the next level is pte, go to miss queue 137 when (io.llptw.fire()) { 138 state := s_idle 139 } 140 finish := true.B 141 } otherwise { // go to next level, access the memory, need pmp check first 142 when (io.pmp.resp.ld) { // pmp check failed, raise access-fault 143 // do nothing, RegNext the pmp check result and do it later (mentioned above) 144 }.otherwise { // go to next level. 145 assert(level === 0.U) 146 level := levelNext 147 state := s_mem_req 148 } 149 } 150 } 151 } 152 153 when (sfence.valid) { 154 state := s_idle 155 accessFault := false.B 156 } 157 158 // memPte is valid when at s_check_pte. when mem.resp.fire, it's not ready. 159 val is_pte = memPte.isLeaf() || memPte.isPf(level) 160 val find_pte = is_pte 161 val to_find_pte = level === 1.U && !is_pte 162 val source = RegEnable(io.req.bits.req_info.source, io.req.fire()) 163 io.resp.valid := state === s_check_pte && (find_pte || accessFault) 164 io.resp.bits.source := source 165 io.resp.bits.resp.apply(pageFault && !accessFault, accessFault, Mux(accessFault, af_level, level), memPte, vpn, satp.asid) 166 167 io.llptw.valid := state === s_check_pte && to_find_pte && !accessFault 168 io.llptw.bits.req_info.source := source 169 io.llptw.bits.req_info.vpn := vpn 170 io.llptw.bits.ppn := memPte.ppn 171 172 assert(level =/= 2.U || level =/= 3.U) 173 174 val l1addr = MakeAddr(satp.ppn, getVpnn(vpn, 2)) 175 val l2addr = MakeAddr(Mux(l1Hit, ppn, memPte.ppn), getVpnn(vpn, 1)) 176 val mem_addr = Mux(af_level === 0.U, l1addr, l2addr) 177 io.pmp.req.valid := DontCare // samecycle, do not use valid 178 io.pmp.req.bits.addr := mem_addr 179 io.pmp.req.bits.size := 3.U // TODO: fix it 180 io.pmp.req.bits.cmd := TlbCmd.read 181 182 mem.req.valid := state === s_mem_req && !io.mem.mask && !accessFault 183 mem.req.bits.addr := mem_addr 184 mem.req.bits.id := FsmReqID.U(bMemID.W) 185 186 io.refill.req_info.vpn := vpn 187 io.refill.level := level 188 io.refill.req_info.source := source 189 190 XSDebug(p"[ptw] state:${state} level:${level} notFound:${pageFault}\n") 191 192 // perf 193 XSPerfAccumulate("fsm_count", io.req.fire()) 194 for (i <- 0 until PtwWidth) { 195 XSPerfAccumulate(s"fsm_count_source${i}", io.req.fire() && io.req.bits.req_info.source === i.U) 196 } 197 XSPerfAccumulate("fsm_busy", state =/= s_idle) 198 XSPerfAccumulate("fsm_idle", state === s_idle) 199 XSPerfAccumulate("resp_blocked", io.resp.valid && !io.resp.ready) 200 XSPerfAccumulate("mem_count", mem.req.fire()) 201 XSPerfAccumulate("mem_cycle", BoolStopWatch(mem.req.fire, mem.resp.fire(), true)) 202 XSPerfAccumulate("mem_blocked", mem.req.valid && !mem.req.ready) 203 204 TimeOutAssert(state =/= s_idle, timeOutThreshold, "page table walker time out") 205 206 val perfEvents = Seq( 207 ("fsm_count ", io.req.fire() ), 208 ("fsm_busy ", state =/= s_idle ), 209 ("fsm_idle ", state === s_idle ), 210 ("resp_blocked ", io.resp.valid && !io.resp.ready ), 211 ("mem_count ", mem.req.fire() ), 212 ("mem_cycle ", BoolStopWatch(mem.req.fire, mem.resp.fire(), true)), 213 ("mem_blocked ", mem.req.valid && !mem.req.ready ), 214 ) 215 generatePerfEvent() 216} 217 218/*========================= LLPTW ==============================*/ 219 220/** LLPTW : Last Level Page Table Walker 221 * the page walker that only takes 4KB(last level) page walk. 222 **/ 223 224class LLPTWInBundle(implicit p: Parameters) extends XSBundle with HasPtwConst { 225 val req_info = Output(new L2TlbInnerBundle()) 226 val ppn = Output(UInt(PAddrBits.W)) 227} 228 229class LLPTWIO(implicit p: Parameters) extends MMUIOBaseBundle with HasPtwConst { 230 val in = Flipped(DecoupledIO(new LLPTWInBundle())) 231 val out = DecoupledIO(new Bundle { 232 val req_info = Output(new L2TlbInnerBundle()) 233 val id = Output(UInt(bMemID.W)) 234 val af = Output(Bool()) 235 }) 236 val mem = new Bundle { 237 val req = DecoupledIO(new L2TlbMemReqBundle()) 238 val resp = Flipped(Valid(new Bundle { 239 val id = Output(UInt(log2Up(l2tlbParams.llptwsize).W)) 240 })) 241 val enq_ptr = Output(UInt(log2Ceil(l2tlbParams.llptwsize).W)) 242 val buffer_it = Output(Vec(l2tlbParams.llptwsize, Bool())) 243 val refill = Output(new L2TlbInnerBundle()) 244 val req_mask = Input(Vec(l2tlbParams.llptwsize, Bool())) 245 } 246 val pmp = new Bundle { 247 val req = Valid(new PMPReqBundle()) 248 val resp = Flipped(new PMPRespBundle()) 249 } 250} 251 252class LLPTWEntry(implicit p: Parameters) extends XSBundle with HasPtwConst { 253 val req_info = new L2TlbInnerBundle() 254 val ppn = UInt(ppnLen.W) 255 val wait_id = UInt(log2Up(l2tlbParams.llptwsize).W) 256 val af = Bool() 257} 258 259 260@chiselName 261class LLPTW(implicit p: Parameters) extends XSModule with HasPtwConst with HasPerfEvents { 262 val io = IO(new LLPTWIO()) 263 264 val entries = Reg(Vec(l2tlbParams.llptwsize, new LLPTWEntry())) 265 val state_idle :: state_addr_check :: state_mem_req :: state_mem_waiting :: state_mem_out :: Nil = Enum(5) 266 val state = RegInit(VecInit(Seq.fill(l2tlbParams.llptwsize)(state_idle))) 267 val is_emptys = state.map(_ === state_idle) 268 val is_mems = state.map(_ === state_mem_req) 269 val is_waiting = state.map(_ === state_mem_waiting) 270 val is_having = state.map(_ === state_mem_out) 271 272 val full = !ParallelOR(is_emptys).asBool() 273 val enq_ptr = ParallelPriorityEncoder(is_emptys) 274 275 val mem_ptr = ParallelPriorityEncoder(is_having) 276 val mem_arb = Module(new RRArbiter(new LLPTWEntry(), l2tlbParams.llptwsize)) 277 for (i <- 0 until l2tlbParams.llptwsize) { 278 mem_arb.io.in(i).bits := entries(i) 279 mem_arb.io.in(i).valid := is_mems(i) && !io.mem.req_mask(i) 280 } 281 282 // duplicate req 283 // to_wait: wait for the last to access mem, set to mem_resp 284 // to_cache: the last is back just right now, set to mem_cache 285 def dup(vpn1: UInt, vpn2: UInt): Bool = { 286 dropL3SectorBits(vpn1) === dropL3SectorBits(vpn2) 287 } 288 val dup_vec = state.indices.map(i => 289 dup(io.in.bits.req_info.vpn, entries(i).req_info.vpn) 290 ) 291 val dup_req_fire = mem_arb.io.out.fire() && dup(io.in.bits.req_info.vpn, mem_arb.io.out.bits.req_info.vpn) // dup with the req fire entry 292 val dup_vec_wait = dup_vec.zip(is_waiting).map{case (d, w) => d && w} // dup with "mem_waiting" entres, sending mem req already 293 val dup_vec_having = dup_vec.zipWithIndex.map{case (d, i) => d && is_having(i)} // dup with the "mem_out" entry recv the data just now 294 val wait_id = Mux(dup_req_fire, mem_arb.io.chosen, ParallelMux(dup_vec_wait zip entries.map(_.wait_id))) 295 val dup_wait_resp = io.mem.resp.fire() && VecInit(dup_vec_wait)(io.mem.resp.bits.id) // dup with the entry that data coming next cycle 296 val to_wait = Cat(dup_vec_wait).orR || dup_req_fire 297 val to_mem_out = dup_wait_resp 298 val to_cache_low = Cat(dup_vec_having).orR 299 assert(RegNext(!(dup_req_fire && Cat(dup_vec_wait).orR), init = true.B), "mem req but some entries already waiting, should not happed") 300 301 val mem_resp_hit = RegInit(VecInit(Seq.fill(l2tlbParams.llptwsize)(false.B))) 302 val enq_state = Mux(to_mem_out, state_mem_out, // same to the blew, but the mem resp now 303 Mux(to_wait, state_mem_waiting, state_addr_check)) 304 when (io.in.fire()) { 305 // if prefetch req does not need mem access, just give it up. 306 // so there will be at most 1 + FilterSize entries that needs re-access page cache 307 // so 2 + FilterSize is enough to avoid dead-lock 308 state(enq_ptr) := Mux(from_pre(io.in.bits.req_info.source) && enq_state =/= state_addr_check, state_idle, enq_state) 309 entries(enq_ptr).req_info := io.in.bits.req_info 310 entries(enq_ptr).ppn := io.in.bits.ppn 311 entries(enq_ptr).wait_id := Mux(to_wait, wait_id, enq_ptr) 312 entries(enq_ptr).af := false.B 313 mem_resp_hit(enq_ptr) := to_mem_out 314 } 315 when (mem_arb.io.out.fire()) { 316 for (i <- state.indices) { 317 when (state(i) =/= state_idle && dup(entries(i).req_info.vpn, mem_arb.io.out.bits.req_info.vpn)) { 318 // NOTE: "dup enq set state to mem_wait" -> "sending req set other dup entries to mem_wait" 319 state(i) := state_mem_waiting 320 entries(i).wait_id := mem_arb.io.chosen 321 } 322 } 323 } 324 when (io.mem.resp.fire()) { 325 state.indices.map{i => 326 when (state(i) === state_mem_waiting && io.mem.resp.bits.id === entries(i).wait_id) { 327 state(i) := state_mem_out 328 mem_resp_hit(i) := true.B 329 } 330 } 331 } 332 when (io.out.fire()) { 333 assert(state(mem_ptr) === state_mem_out) 334 state(mem_ptr) := state_idle 335 } 336 mem_resp_hit.map(a => when (a) { a := false.B } ) 337 338 val enq_ptr_reg = RegNext(enq_ptr) 339 340 io.pmp.req.valid := RegNext(enq_state === state_addr_check) 341 io.pmp.req.bits.addr := MakeAddr(entries(enq_ptr_reg).ppn, getVpnn(entries(enq_ptr_reg).req_info.vpn, 0)) 342 io.pmp.req.bits.cmd := TlbCmd.read 343 io.pmp.req.bits.size := 3.U // TODO: fix it 344 val pmp_resp_valid = io.pmp.req.valid // same cycle 345 when (pmp_resp_valid && (state(enq_ptr_reg) === state_addr_check) && 346 !(mem_arb.io.out.fire && dup(entries(enq_ptr_reg).req_info.vpn, mem_arb.io.out.bits.req_info.vpn))) { 347 // NOTE: when pmp resp but state is not addr check, then the entry is dup with other entry, the state was changed before 348 // when dup with the req-ing entry, set to mem_waiting (above codes), and the ld must be false, so dontcare 349 val accessFault = io.pmp.resp.ld || io.pmp.resp.mmio 350 entries(enq_ptr_reg).af := accessFault 351 state(enq_ptr_reg) := Mux(accessFault, state_mem_out, state_mem_req) 352 } 353 354 val flush = io.sfence.valid || io.csr.satp.changed 355 when (flush) { 356 state.map(_ := state_idle) 357 } 358 359 io.in.ready := !full 360 361 io.out.valid := ParallelOR(is_having).asBool() 362 io.out.bits.req_info := entries(mem_ptr).req_info 363 io.out.bits.id := mem_ptr 364 io.out.bits.af := entries(mem_ptr).af 365 366 io.mem.req.valid := mem_arb.io.out.valid && !flush 367 io.mem.req.bits.addr := MakeAddr(mem_arb.io.out.bits.ppn, getVpnn(mem_arb.io.out.bits.req_info.vpn, 0)) 368 io.mem.req.bits.id := mem_arb.io.chosen 369 mem_arb.io.out.ready := io.mem.req.ready 370 io.mem.refill := entries(RegNext(io.mem.resp.bits.id(log2Up(l2tlbParams.llptwsize)-1, 0))).req_info 371 io.mem.buffer_it := mem_resp_hit 372 io.mem.enq_ptr := enq_ptr 373 374 XSPerfAccumulate("llptw_in_count", io.in.fire()) 375 XSPerfAccumulate("llptw_in_block", io.in.valid && !io.in.ready) 376 for (i <- 0 until 7) { 377 XSPerfAccumulate(s"enq_state${i}", io.in.fire() && enq_state === i.U) 378 } 379 for (i <- 0 until (l2tlbParams.llptwsize + 1)) { 380 XSPerfAccumulate(s"util${i}", PopCount(is_emptys.map(!_)) === i.U) 381 XSPerfAccumulate(s"mem_util${i}", PopCount(is_mems) === i.U) 382 XSPerfAccumulate(s"waiting_util${i}", PopCount(is_waiting) === i.U) 383 } 384 XSPerfAccumulate("mem_count", io.mem.req.fire()) 385 XSPerfAccumulate("mem_cycle", PopCount(is_waiting) =/= 0.U) 386 XSPerfAccumulate("blocked_in", io.in.valid && !io.in.ready) 387 388 for (i <- 0 until l2tlbParams.llptwsize) { 389 TimeOutAssert(state(i) =/= state_idle, timeOutThreshold, s"missqueue time out no out ${i}") 390 } 391 392 val perfEvents = Seq( 393 ("tlbllptw_incount ", io.in.fire() ), 394 ("tlbllptw_inblock ", io.in.valid && !io.in.ready), 395 ("tlbllptw_memcount ", io.mem.req.fire() ), 396 ("tlbllptw_memcycle ", PopCount(is_waiting) ), 397 ) 398 generatePerfEvent() 399}