xref: /XiangShan/src/main/scala/xiangshan/cache/mmu/PageTableWalker.scala (revision 3a2e64c4cc8eb6361b77f8cc81e35f391922dd99)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.cache.mmu
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3._
21import chisel3.util._
22import chisel3.internal.naming.chiselName
23import xiangshan._
24import xiangshan.cache.{HasDCacheParameters, MemoryOpConstants}
25import utils._
26import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp}
27import freechips.rocketchip.tilelink._
28import xiangshan.backend.fu.{PMPReqBundle, PMPRespBundle}
29
30/** Page Table Walk is divided into two parts
31  * One,   PTW: page walk for pde, except for leaf entries, one by one
32  * Two, LLPTW: page walk for pte, only the leaf entries(4KB), in parallel
33  */
34
35
36/** PTW : page table walker
37  * a finite state machine
38  * only take 1GB and 2MB page walks
39  * or in other words, except the last level(leaf)
40  **/
41class PTWIO()(implicit p: Parameters) extends MMUIOBaseBundle with HasPtwConst {
42  val req = Flipped(DecoupledIO(new Bundle {
43    val req_info = new L2TlbInnerBundle()
44    val l1Hit = Bool()
45    val ppn = UInt(ppnLen.W)
46  }))
47  val resp = DecoupledIO(new Bundle {
48    val source = UInt(bSourceWidth.W)
49    val resp = new PtwResp
50  })
51
52  val llptw = DecoupledIO(new LLPTWInBundle())
53  // NOTE: llptw change from "connect to llptw" to "connect to page cache"
54  // to avoid corner case that caused duplicate entries
55
56  val mem = new Bundle {
57    val req = DecoupledIO(new L2TlbMemReqBundle())
58    val resp = Flipped(ValidIO(UInt(XLEN.W)))
59    val mask = Input(Bool())
60  }
61  val pmp = new Bundle {
62    val req = ValidIO(new PMPReqBundle())
63    val resp = Flipped(new PMPRespBundle())
64  }
65
66  val refill = Output(new Bundle {
67    val req_info = new L2TlbInnerBundle()
68    val level = UInt(log2Up(Level).W)
69  })
70}
71
72@chiselName
73class PTW()(implicit p: Parameters) extends XSModule with HasPtwConst with HasPerfEvents {
74  val io = IO(new PTWIO)
75  val sfence = io.sfence
76  val mem = io.mem
77  val satp = io.csr.satp
78  val flush = io.sfence.valid || io.csr.satp.changed
79
80  val level = RegInit(0.U(log2Up(Level).W))
81  val af_level = RegInit(0.U(log2Up(Level).W)) // access fault return this level
82  val ppn = Reg(UInt(ppnLen.W))
83  val vpn = Reg(UInt(vpnLen.W))
84  val levelNext = level + 1.U
85  val l1Hit = Reg(Bool())
86  val memPte = mem.resp.bits.asTypeOf(new PteBundle().cloneType)
87
88  // s/w register
89  val s_pmp_check = RegInit(true.B)
90  val s_mem_req = RegInit(true.B)
91  val s_llptw_req = RegInit(true.B)
92  val w_mem_resp = RegInit(true.B)
93  // for updating "level"
94  val mem_addr_update = RegInit(false.B)
95
96  val idle = RegInit(true.B)
97  val sent_to_pmp = idle === false.B && (s_pmp_check === false.B || mem_addr_update)
98
99  val pageFault = memPte.isPf(level)
100  val accessFault = RegEnable(io.pmp.resp.ld || io.pmp.resp.mmio, sent_to_pmp)
101
102  val find_pte = memPte.isLeaf() || pageFault
103  val to_find_pte = level === 1.U && find_pte === false.B
104  val source = RegEnable(io.req.bits.req_info.source, io.req.fire())
105
106  val l1addr = MakeAddr(satp.ppn, getVpnn(vpn, 2))
107  val l2addr = MakeAddr(Mux(l1Hit, ppn, memPte.ppn), getVpnn(vpn, 1))
108  val mem_addr = Mux(af_level === 0.U, l1addr, l2addr)
109
110  io.req.ready := idle
111
112  io.resp.valid := idle === false.B && mem_addr_update && ((w_mem_resp && find_pte) || (s_pmp_check && accessFault))
113  io.resp.bits.source := source
114  io.resp.bits.resp.apply(pageFault && !accessFault, accessFault, Mux(accessFault, af_level,level), memPte, vpn, satp.asid)
115
116  io.llptw.valid := s_llptw_req === false.B && to_find_pte && !accessFault
117  io.llptw.bits.req_info.source := source
118  io.llptw.bits.req_info.vpn := vpn
119  io.llptw.bits.ppn := memPte.ppn
120
121  io.pmp.req.valid := DontCare // samecycle, do not use valid
122  io.pmp.req.bits.addr := mem_addr
123  io.pmp.req.bits.size := 3.U // TODO: fix it
124  io.pmp.req.bits.cmd := TlbCmd.read
125
126  mem.req.valid := s_mem_req === false.B && !mem.mask && !accessFault && s_pmp_check
127  mem.req.bits.addr := mem_addr
128  mem.req.bits.id := FsmReqID.U(bMemID.W)
129
130  io.refill.req_info.vpn := vpn
131  io.refill.level := level
132  io.refill.req_info.source := source
133
134  when (io.req.fire()){
135    val req = io.req.bits
136    level := Mux(req.l1Hit, 1.U, 0.U)
137    af_level := Mux(req.l1Hit, 1.U, 0.U)
138    ppn := Mux(req.l1Hit, io.req.bits.ppn, satp.ppn)
139    vpn := io.req.bits.req_info.vpn
140    l1Hit := req.l1Hit
141    accessFault := false.B
142    s_pmp_check := false.B
143    idle := false.B
144  }
145
146  when(sent_to_pmp && mem_addr_update === false.B){
147    s_mem_req := false.B
148    s_pmp_check := true.B
149  }
150
151  when(accessFault && idle === false.B){
152    s_pmp_check := true.B
153    s_mem_req := true.B
154    w_mem_resp := true.B
155    s_llptw_req := true.B
156    mem_addr_update := true.B
157  }
158
159  when (mem.req.fire()){
160    s_mem_req := true.B
161    w_mem_resp := false.B
162  }
163
164  when(mem.resp.fire() &&  w_mem_resp === false.B){
165    w_mem_resp := true.B
166    af_level := af_level + 1.U
167    s_llptw_req := false.B
168    mem_addr_update := true.B
169  }
170
171  when(mem_addr_update){
172    when(level === 0.U && !(find_pte||accessFault)){
173      level := levelNext
174      s_mem_req := false.B
175      s_llptw_req := true.B
176      mem_addr_update := false.B
177    }.elsewhen(io.llptw.fire()){
178      idle := true.B
179      s_llptw_req := true.B
180      mem_addr_update := false.B
181    }.elsewhen(io.resp.fire()){
182      idle := true.B
183      s_llptw_req := true.B
184      mem_addr_update := false.B
185      accessFault := false.B
186    }
187  }
188
189
190  when (sfence.valid) {
191    idle := true.B
192    s_pmp_check := true.B
193    s_mem_req := true.B
194    s_llptw_req := true.B
195    w_mem_resp := true.B
196    accessFault := false.B
197  }
198
199
200  XSDebug(p"[ptw] level:${level} notFound:${pageFault}\n")
201
202  // perf
203  XSPerfAccumulate("fsm_count", io.req.fire())
204  for (i <- 0 until PtwWidth) {
205    XSPerfAccumulate(s"fsm_count_source${i}", io.req.fire() && io.req.bits.req_info.source === i.U)
206  }
207  XSPerfAccumulate("fsm_busy", !idle)
208  XSPerfAccumulate("fsm_idle", idle)
209  XSPerfAccumulate("resp_blocked", io.resp.valid && !io.resp.ready)
210  XSPerfAccumulate("mem_count", mem.req.fire())
211  XSPerfAccumulate("mem_cycle", BoolStopWatch(mem.req.fire, mem.resp.fire(), true))
212  XSPerfAccumulate("mem_blocked", mem.req.valid && !mem.req.ready)
213
214  TimeOutAssert(!idle, timeOutThreshold, "page table walker time out")
215
216  val perfEvents = Seq(
217    ("fsm_count         ", io.req.fire()                                     ),
218    ("fsm_busy          ", !idle                                             ),
219    ("fsm_idle          ", idle                                              ),
220    ("resp_blocked      ", io.resp.valid && !io.resp.ready                   ),
221    ("mem_count         ", mem.req.fire()                                    ),
222    ("mem_cycle         ", BoolStopWatch(mem.req.fire, mem.resp.fire(), true)),
223    ("mem_blocked       ", mem.req.valid && !mem.req.ready                   ),
224  )
225  generatePerfEvent()
226}
227
228/*========================= LLPTW ==============================*/
229
230/** LLPTW : Last Level Page Table Walker
231  * the page walker that only takes 4KB(last level) page walk.
232  **/
233
234class LLPTWInBundle(implicit p: Parameters) extends XSBundle with HasPtwConst {
235  val req_info = Output(new L2TlbInnerBundle())
236  val ppn = Output(UInt(PAddrBits.W))
237}
238
239class LLPTWIO(implicit p: Parameters) extends MMUIOBaseBundle with HasPtwConst {
240  val in = Flipped(DecoupledIO(new LLPTWInBundle()))
241  val out = DecoupledIO(new Bundle {
242    val req_info = Output(new L2TlbInnerBundle())
243    val id = Output(UInt(bMemID.W))
244    val af = Output(Bool())
245  })
246  val mem = new Bundle {
247    val req = DecoupledIO(new L2TlbMemReqBundle())
248    val resp = Flipped(Valid(new Bundle {
249      val id = Output(UInt(log2Up(l2tlbParams.llptwsize).W))
250    }))
251    val enq_ptr = Output(UInt(log2Ceil(l2tlbParams.llptwsize).W))
252    val buffer_it = Output(Vec(l2tlbParams.llptwsize, Bool()))
253    val refill = Output(new L2TlbInnerBundle())
254    val req_mask = Input(Vec(l2tlbParams.llptwsize, Bool()))
255  }
256  val cache = DecoupledIO(new L2TlbInnerBundle())
257  val pmp = new Bundle {
258    val req = Valid(new PMPReqBundle())
259    val resp = Flipped(new PMPRespBundle())
260  }
261}
262
263class LLPTWEntry(implicit p: Parameters) extends XSBundle with HasPtwConst {
264  val req_info = new L2TlbInnerBundle()
265  val ppn = UInt(ppnLen.W)
266  val wait_id = UInt(log2Up(l2tlbParams.llptwsize).W)
267  val af = Bool()
268}
269
270
271@chiselName
272class LLPTW(implicit p: Parameters) extends XSModule with HasPtwConst with HasPerfEvents {
273  val io = IO(new LLPTWIO())
274
275  val flush = io.sfence.valid || io.csr.satp.changed
276  val entries = Reg(Vec(l2tlbParams.llptwsize, new LLPTWEntry()))
277  val state_idle :: state_addr_check :: state_mem_req :: state_mem_waiting :: state_mem_out :: state_cache :: Nil = Enum(6)
278  val state = RegInit(VecInit(Seq.fill(l2tlbParams.llptwsize)(state_idle)))
279
280  val is_emptys = state.map(_ === state_idle)
281  val is_mems = state.map(_ === state_mem_req)
282  val is_waiting = state.map(_ === state_mem_waiting)
283  val is_having = state.map(_ === state_mem_out)
284  val is_cache = state.map(_ === state_cache)
285
286  val full = !ParallelOR(is_emptys).asBool()
287  val enq_ptr = ParallelPriorityEncoder(is_emptys)
288
289  val mem_ptr = ParallelPriorityEncoder(is_having) // TODO: optimize timing, bad: entries -> ptr -> entry
290  val mem_arb = Module(new RRArbiter(new LLPTWEntry(), l2tlbParams.llptwsize))
291  for (i <- 0 until l2tlbParams.llptwsize) {
292    mem_arb.io.in(i).bits := entries(i)
293    mem_arb.io.in(i).valid := is_mems(i) && !io.mem.req_mask(i)
294  }
295
296  val cache_ptr = ParallelMux(is_cache, (0 until l2tlbParams.llptwsize).map(_.U(log2Up(l2tlbParams.llptwsize).W)))
297
298  // duplicate req
299  // to_wait: wait for the last to access mem, set to mem_resp
300  // to_cache: the last is back just right now, set to mem_cache
301  val dup_vec = state.indices.map(i =>
302    dup(io.in.bits.req_info.vpn, entries(i).req_info.vpn)
303  )
304  val dup_req_fire = mem_arb.io.out.fire() && dup(io.in.bits.req_info.vpn, mem_arb.io.out.bits.req_info.vpn) // dup with the req fire entry
305  val dup_vec_wait = dup_vec.zip(is_waiting).map{case (d, w) => d && w} // dup with "mem_waiting" entres, sending mem req already
306  val dup_vec_having = dup_vec.zipWithIndex.map{case (d, i) => d && is_having(i)} // dup with the "mem_out" entry recv the data just now
307  val wait_id = Mux(dup_req_fire, mem_arb.io.chosen, ParallelMux(dup_vec_wait zip entries.map(_.wait_id)))
308  val dup_wait_resp = io.mem.resp.fire() && VecInit(dup_vec_wait)(io.mem.resp.bits.id) // dup with the entry that data coming next cycle
309  val to_wait = Cat(dup_vec_wait).orR || dup_req_fire
310  val to_mem_out = dup_wait_resp
311  val to_cache = Cat(dup_vec_having).orR
312  XSError(RegNext(dup_req_fire && Cat(dup_vec_wait).orR, init = false.B), "mem req but some entries already waiting, should not happed")
313
314  XSError(io.in.fire() && ((to_mem_out && to_cache) || (to_wait && to_cache)), "llptw enq, to cache conflict with to mem")
315  val mem_resp_hit = RegInit(VecInit(Seq.fill(l2tlbParams.llptwsize)(false.B)))
316  val enq_state_normal = Mux(to_mem_out, state_mem_out, // same to the blew, but the mem resp now
317    Mux(to_wait, state_mem_waiting,
318    Mux(to_cache, state_cache, state_addr_check)))
319  val enq_state = Mux(from_pre(io.in.bits.req_info.source) && enq_state_normal =/= state_addr_check, state_idle, enq_state_normal)
320  when (io.in.fire()) {
321    // if prefetch req does not need mem access, just give it up.
322    // so there will be at most 1 + FilterSize entries that needs re-access page cache
323    // so 2 + FilterSize is enough to avoid dead-lock
324    state(enq_ptr) := enq_state
325    entries(enq_ptr).req_info := io.in.bits.req_info
326    entries(enq_ptr).ppn := io.in.bits.ppn
327    entries(enq_ptr).wait_id := Mux(to_wait, wait_id, enq_ptr)
328    entries(enq_ptr).af := false.B
329    mem_resp_hit(enq_ptr) := to_mem_out
330  }
331
332  val enq_ptr_reg = RegNext(enq_ptr)
333  val need_addr_check = RegNext(enq_state === state_addr_check && io.in.fire() && !flush)
334  val last_enq_vpn = RegEnable(io.in.bits.req_info.vpn, io.in.fire())
335
336  io.pmp.req.valid := need_addr_check
337  io.pmp.req.bits.addr := RegEnable(MakeAddr(io.in.bits.ppn, getVpnn(io.in.bits.req_info.vpn, 0)), io.in.fire())
338  io.pmp.req.bits.cmd := TlbCmd.read
339  io.pmp.req.bits.size := 3.U // TODO: fix it
340  val pmp_resp_valid = io.pmp.req.valid // same cycle
341  when (pmp_resp_valid) {
342    // NOTE: when pmp resp but state is not addr check, then the entry is dup with other entry, the state was changed before
343    //       when dup with the req-ing entry, set to mem_waiting (above codes), and the ld must be false, so dontcare
344    val accessFault = io.pmp.resp.ld || io.pmp.resp.mmio
345    entries(enq_ptr_reg).af := accessFault
346    state(enq_ptr_reg) := Mux(accessFault, state_mem_out, state_mem_req)
347  }
348
349  when (mem_arb.io.out.fire()) {
350    for (i <- state.indices) {
351      when (state(i) =/= state_idle && dup(entries(i).req_info.vpn, mem_arb.io.out.bits.req_info.vpn)) {
352        // NOTE: "dup enq set state to mem_wait" -> "sending req set other dup entries to mem_wait"
353        state(i) := state_mem_waiting
354        entries(i).wait_id := mem_arb.io.chosen
355      }
356    }
357  }
358  when (io.mem.resp.fire()) {
359    state.indices.map{i =>
360      when (state(i) === state_mem_waiting && io.mem.resp.bits.id === entries(i).wait_id) {
361        state(i) := state_mem_out
362        mem_resp_hit(i) := true.B
363      }
364    }
365  }
366  when (io.out.fire()) {
367    assert(state(mem_ptr) === state_mem_out)
368    state(mem_ptr) := state_idle
369  }
370  mem_resp_hit.map(a => when (a) { a := false.B } )
371
372  when (io.cache.fire) {
373    state(cache_ptr) := state_idle
374  }
375  XSError(io.out.fire && io.cache.fire && (mem_ptr === cache_ptr), "mem resp and cache fire at the same time at same entry")
376
377  when (flush) {
378    state.map(_ := state_idle)
379  }
380
381  io.in.ready := !full
382
383  io.out.valid := ParallelOR(is_having).asBool()
384  io.out.bits.req_info := entries(mem_ptr).req_info
385  io.out.bits.id := mem_ptr
386  io.out.bits.af := entries(mem_ptr).af
387
388  io.mem.req.valid := mem_arb.io.out.valid && !flush
389  io.mem.req.bits.addr := MakeAddr(mem_arb.io.out.bits.ppn, getVpnn(mem_arb.io.out.bits.req_info.vpn, 0))
390  io.mem.req.bits.id := mem_arb.io.chosen
391  mem_arb.io.out.ready := io.mem.req.ready
392  io.mem.refill := entries(RegNext(io.mem.resp.bits.id(log2Up(l2tlbParams.llptwsize)-1, 0))).req_info
393  io.mem.buffer_it := mem_resp_hit
394  io.mem.enq_ptr := enq_ptr
395
396  io.cache.valid := Cat(is_cache).orR
397  io.cache.bits := ParallelMux(is_cache, entries.map(_.req_info))
398
399  XSPerfAccumulate("llptw_in_count", io.in.fire())
400  XSPerfAccumulate("llptw_in_block", io.in.valid && !io.in.ready)
401  for (i <- 0 until 7) {
402    XSPerfAccumulate(s"enq_state${i}", io.in.fire() && enq_state === i.U)
403  }
404  for (i <- 0 until (l2tlbParams.llptwsize + 1)) {
405    XSPerfAccumulate(s"util${i}", PopCount(is_emptys.map(!_)) === i.U)
406    XSPerfAccumulate(s"mem_util${i}", PopCount(is_mems) === i.U)
407    XSPerfAccumulate(s"waiting_util${i}", PopCount(is_waiting) === i.U)
408  }
409  XSPerfAccumulate("mem_count", io.mem.req.fire())
410  XSPerfAccumulate("mem_cycle", PopCount(is_waiting) =/= 0.U)
411  XSPerfAccumulate("blocked_in", io.in.valid && !io.in.ready)
412
413  for (i <- 0 until l2tlbParams.llptwsize) {
414    TimeOutAssert(state(i) =/= state_idle, timeOutThreshold, s"missqueue time out no out ${i}")
415  }
416
417  val perfEvents = Seq(
418    ("tlbllptw_incount           ", io.in.fire()               ),
419    ("tlbllptw_inblock           ", io.in.valid && !io.in.ready),
420    ("tlbllptw_memcount          ", io.mem.req.fire()          ),
421    ("tlbllptw_memcycle          ", PopCount(is_waiting)       ),
422  )
423  generatePerfEvent()
424}
425