xref: /XiangShan/src/main/scala/xiangshan/backend/rob/Rob.scala (revision deb6421e9ab9b7980dc6c429456fc7bd2161357b)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.rob
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3._
21import chisel3.util._
22import difftest._
23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp}
24import utils._
25import xiangshan._
26import xiangshan.backend.exu.ExuConfig
27import xiangshan.frontend.FtqPtr
28
29class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr](
30  p => p(XSCoreParamsKey).RobSize
31) with HasCircularQueuePtrHelper {
32
33  def needFlush(redirect: Valid[Redirect]): Bool = {
34    val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx
35    redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx))
36  }
37
38  def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR
39}
40
41object RobPtr {
42  def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = {
43    val ptr = Wire(new RobPtr)
44    ptr.flag := f
45    ptr.value := v
46    ptr
47  }
48}
49
50class RobCSRIO(implicit p: Parameters) extends XSBundle {
51  val intrBitSet = Input(Bool())
52  val trapTarget = Input(UInt(VAddrBits.W))
53  val isXRet     = Input(Bool())
54  val wfiEvent   = Input(Bool())
55
56  val fflags     = Output(Valid(UInt(5.W)))
57  val dirty_fs   = Output(Bool())
58  val perfinfo   = new Bundle {
59    val retiredInstr = Output(UInt(3.W))
60  }
61}
62
63class RobLsqIO(implicit p: Parameters) extends XSBundle {
64  val lcommit = Output(UInt(log2Up(CommitWidth + 1).W))
65  val scommit = Output(UInt(log2Up(CommitWidth + 1).W))
66  val pendingld = Output(Bool())
67  val pendingst = Output(Bool())
68  val commit = Output(Bool())
69}
70
71class RobEnqIO(implicit p: Parameters) extends XSBundle {
72  val canAccept = Output(Bool())
73  val isEmpty = Output(Bool())
74  // valid vector, for robIdx gen and walk
75  val needAlloc = Vec(RenameWidth, Input(Bool()))
76  val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp)))
77  val resp = Vec(RenameWidth, Output(new RobPtr))
78}
79
80class RobDispatchData(implicit p: Parameters) extends RobCommitInfo
81
82class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
83  val io = IO(new Bundle {
84    // for commits/flush
85    val state = Input(UInt(2.W))
86    val deq_v = Vec(CommitWidth, Input(Bool()))
87    val deq_w = Vec(CommitWidth, Input(Bool()))
88    val exception_state = Flipped(ValidIO(new RobExceptionInfo))
89    // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth)
90    val intrBitSetReg = Input(Bool())
91    val hasNoSpecExec = Input(Bool())
92    val interrupt_safe = Input(Bool())
93    val blockCommit = Input(Bool())
94    // output: the CommitWidth deqPtr
95    val out = Vec(CommitWidth, Output(new RobPtr))
96    val next_out = Vec(CommitWidth, Output(new RobPtr))
97  })
98
99  val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr))))
100
101  // for exceptions (flushPipe included) and interrupts:
102  // only consider the first instruction
103  val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe
104  val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0)
105  val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable)
106
107  // for normal commits: only to consider when there're no exceptions
108  // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions.
109  val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last)
110  val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i)))
111  val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B)
112  // when io.intrBitSetReg or there're possible exceptions in these instructions,
113  // only one instruction is allowed to commit
114  val allowOnlyOne = commit_exception || io.intrBitSetReg
115  val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt)
116
117  val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt))
118  val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec)
119
120  deqPtrVec := deqPtrVec_next
121
122  io.next_out := deqPtrVec_next
123  io.out      := deqPtrVec
124
125  when (io.state === 0.U) {
126    XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt)
127  }
128
129}
130
131class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
132  val io = IO(new Bundle {
133    // for input redirect
134    val redirect = Input(Valid(new Redirect))
135    // for enqueue
136    val allowEnqueue = Input(Bool())
137    val hasBlockBackward = Input(Bool())
138    val enq = Vec(RenameWidth, Input(Bool()))
139    val out = Output(Vec(RenameWidth, new RobPtr))
140  })
141
142  val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr)))
143
144  // enqueue
145  val canAccept = io.allowEnqueue && !io.hasBlockBackward
146  val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U)
147
148  for ((ptr, i) <- enqPtrVec.zipWithIndex) {
149    when(io.redirect.valid) {
150      ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
151    }.otherwise {
152      ptr := ptr + dispatchNum
153    }
154  }
155
156  io.out := enqPtrVec
157
158}
159
160class RobExceptionInfo(implicit p: Parameters) extends XSBundle {
161  // val valid = Bool()
162  val robIdx = new RobPtr
163  val exceptionVec = ExceptionVec()
164  val flushPipe = Bool()
165  val replayInst = Bool() // redirect to that inst itself
166  val singleStep = Bool() // TODO add frontend hit beneath
167  val crossPageIPFFix = Bool()
168  val trigger = new TriggerCf
169
170//  def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend
171//  def trigger_after = trigger.getTimingBackend && trigger.getHitBackend
172  def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit
173  def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit
174  // only exceptions are allowed to writeback when enqueue
175  def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit
176}
177
178class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
179  val io = IO(new Bundle {
180    val redirect = Input(Valid(new Redirect))
181    val flush = Input(Bool())
182    val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo)))
183    val wb = Vec(1 + LoadPipelineWidth + StorePipelineWidth, Flipped(ValidIO(new RobExceptionInfo)))
184    val out = ValidIO(new RobExceptionInfo)
185    val state = ValidIO(new RobExceptionInfo)
186  })
187
188  def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = {
189    assert(valid.length == bits.length)
190    assert(isPow2(valid.length))
191    if (valid.length == 1) {
192      (valid, bits)
193    } else if (valid.length == 2) {
194      val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0)))))
195      for (i <- res.indices) {
196        res(i).valid := valid(i)
197        res(i).bits := bits(i)
198      }
199      val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1))
200      (Seq(oldest.valid), Seq(oldest.bits))
201    } else {
202      val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2))
203      val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2))
204      getOldest(left._1 ++ right._1, left._2 ++ right._2)
205    }
206  }
207
208  val current = Reg(Valid(new RobExceptionInfo))
209
210  // orR the exceptionVec
211  val lastCycleFlush = RegNext(io.flush)
212  val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush))
213  val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)
214
215  // s0: compare wb(1)~wb(LoadPipelineWidth) and wb(1 + LoadPipelineWidth)~wb(LoadPipelineWidth + StorePipelineWidth)
216  val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }
217  val csr_wb_bits = io.wb(0).bits
218  val load_wb_bits = getOldest(in_wb_valid.slice(1, 1 + LoadPipelineWidth), io.wb.map(_.bits).slice(1, 1 + LoadPipelineWidth))._2(0)
219  val store_wb_bits = getOldest(in_wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth), io.wb.map(_.bits).slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth))._2(0)
220  val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid.slice(1, 1 + LoadPipelineWidth).reduce(_ || _), wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth).reduce(_ || _))))
221  val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits)))
222
223  // s1: compare last four and current flush
224  val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) })
225  val compare_01_valid = s0_out_valid(0) || s0_out_valid(1)
226  val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0))
227  val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2))
228  val s1_out_bits = RegNext(compare_bits)
229  val s1_out_valid = RegNext(s1_valid.asUInt.orR)
230
231  val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
232  val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)))
233
234  // s2: compare the input exception with the current one
235  // priorities:
236  // (1) system reset
237  // (2) current is valid: flush, remain, merge, update
238  // (3) current is not valid: s1 or enq
239  val current_flush = current.bits.robIdx.needFlush(io.redirect) || io.flush
240  val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush
241  when (reset.asBool) {
242    current.valid := false.B
243  }.elsewhen (current.valid) {
244    when (current_flush) {
245      current.valid := Mux(s1_flush, false.B, s1_out_valid)
246    }
247    when (s1_out_valid && !s1_flush) {
248      when (isAfter(current.bits.robIdx, s1_out_bits.robIdx)) {
249        current.bits := s1_out_bits
250      }.elsewhen (current.bits.robIdx === s1_out_bits.robIdx) {
251        current.bits.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.bits.exceptionVec.asUInt).asTypeOf(ExceptionVec())
252        current.bits.flushPipe := s1_out_bits.flushPipe || current.bits.flushPipe
253        current.bits.replayInst := s1_out_bits.replayInst || current.bits.replayInst
254        current.bits.singleStep := s1_out_bits.singleStep || current.bits.singleStep
255        current.bits.trigger := (s1_out_bits.trigger.asUInt | current.bits.trigger.asUInt).asTypeOf(new TriggerCf)
256      }
257    }
258  }.elsewhen (s1_out_valid && !s1_flush) {
259    current.valid := true.B
260    current.bits := s1_out_bits
261  }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) {
262    current.valid := true.B
263    current.bits := enq_bits
264  }
265
266  io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback
267  io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits)
268  io.state := current
269
270}
271
272class RobFlushInfo(implicit p: Parameters) extends XSBundle {
273  val ftqIdx = new FtqPtr
274  val robIdx = new RobPtr
275  val ftqOffset = UInt(log2Up(PredictWidth).W)
276  val replayInst = Bool()
277}
278
279class Rob(implicit p: Parameters) extends LazyModule with HasWritebackSink with HasXSParameter {
280
281  lazy val module = new RobImp(this)
282
283  override def generateWritebackIO(
284    thisMod: Option[HasWritebackSource] = None,
285    thisModImp: Option[HasWritebackSourceImp] = None
286  ): Unit = {
287    val sources = writebackSinksImp(thisMod, thisModImp)
288    module.io.writeback.zip(sources).foreach(x => x._1 := x._2)
289  }
290}
291
292class RobImp(outer: Rob)(implicit p: Parameters) extends LazyModuleImp(outer)
293  with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents {
294  val wbExuConfigs = outer.writebackSinksParams.map(_.exuConfigs)
295  val numWbPorts = wbExuConfigs.map(_.length)
296
297  val io = IO(new Bundle() {
298    val hartId = Input(UInt(8.W))
299    val redirect = Input(Valid(new Redirect))
300    val enq = new RobEnqIO
301    val flushOut = ValidIO(new Redirect)
302    val exception = ValidIO(new ExceptionInfo)
303    // exu + brq
304    val writeback = MixedVec(numWbPorts.map(num => Vec(num, Flipped(ValidIO(new ExuOutput)))))
305    val commits = Output(new RobCommitIO)
306    val lsq = new RobLsqIO
307    val robDeqPtr = Output(new RobPtr)
308    val csr = new RobCSRIO
309    val robFull = Output(Bool())
310    val cpu_halt = Output(Bool())
311    val wfi_enable = Input(Bool())
312  })
313
314  def selectWb(index: Int, func: Seq[ExuConfig] => Boolean): Seq[(Seq[ExuConfig], ValidIO[ExuOutput])] = {
315    wbExuConfigs(index).zip(io.writeback(index)).filter(x => func(x._1))
316  }
317  val exeWbSel = outer.selWritebackSinks(_.exuConfigs.length)
318  val fflagsWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.writeFflags)))
319  val fflagsPorts = selectWb(fflagsWbSel, _.exists(_.writeFflags))
320  val exceptionWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.needExceptionGen)))
321  val exceptionPorts = selectWb(fflagsWbSel, _.exists(_.needExceptionGen))
322  val exuWbPorts = selectWb(exeWbSel, _.forall(_ != StdExeUnitCfg))
323  val stdWbPorts = selectWb(exeWbSel, _.contains(StdExeUnitCfg))
324  println(s"Rob: size $RobSize, numWbPorts: $numWbPorts, commitwidth: $CommitWidth")
325  println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}")
326  println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}")
327  println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}")
328
329
330  val exuWriteback = exuWbPorts.map(_._2)
331  val stdWriteback = stdWbPorts.map(_._2)
332
333  // instvalid field
334  val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
335  // writeback status
336  val writebacked = Mem(RobSize, Bool())
337  val store_data_writebacked = Mem(RobSize, Bool())
338  // data for redirect, exception, etc.
339  val flagBkup = Mem(RobSize, Bool())
340  // some instructions are not allowed to trigger interrupts
341  // They have side effects on the states of the processor before they write back
342  val interrupt_safe = Mem(RobSize, Bool())
343
344  // data for debug
345  // Warn: debug_* prefix should not exist in generated verilog.
346  val debug_microOp = Mem(RobSize, new MicroOp)
347  val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug
348  val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug
349
350  // pointers
351  // For enqueue ptr, we don't duplicate it since only enqueue needs it.
352  val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr))
353  val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr))
354
355  val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr))
356  val allowEnqueue = RegInit(true.B)
357
358  val enqPtr = enqPtrVec.head
359  val deqPtr = deqPtrVec(0)
360  val walkPtr = walkPtrVec(0)
361
362  val isEmpty = enqPtr === deqPtr
363  val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level)
364
365  /**
366    * states of Rob
367    */
368  val s_idle :: s_walk :: Nil = Enum(2)
369  val state = RegInit(s_idle)
370
371  /**
372    * Data Modules
373    *
374    * CommitDataModule: data from dispatch
375    * (1) read: commits/walk/exception
376    * (2) write: enqueue
377    *
378    * WritebackData: data from writeback
379    * (1) read: commits/walk/exception
380    * (2) write: write back from exe units
381    */
382  val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth))
383  val dispatchDataRead = dispatchData.io.rdata
384
385  val exceptionGen = Module(new ExceptionGen)
386  val exceptionDataRead = exceptionGen.io.state
387  val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W)))
388
389  io.robDeqPtr := deqPtr
390
391  /**
392    * Enqueue (from dispatch)
393    */
394  // special cases
395  val hasBlockBackward = RegInit(false.B)
396  val hasNoSpecExec = RegInit(false.B)
397  val doingSvinval = RegInit(false.B)
398  // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B
399  // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty.
400  when (isEmpty) { hasBlockBackward:= false.B }
401  // When any instruction commits, hasNoSpecExec should be set to false.B
402  when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasNoSpecExec:= false.B }
403
404  // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing.
405  // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle.
406  // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts.
407  val hasWFI = RegInit(false.B)
408  io.cpu_halt := hasWFI
409  // WFI Timeout: 2^20 = 1M cycles
410  val wfi_cycles = RegInit(0.U(20.W))
411  when (hasWFI) {
412    wfi_cycles := wfi_cycles + 1.U
413  }.elsewhen (!hasWFI && RegNext(hasWFI)) {
414    wfi_cycles := 0.U
415  }
416  val wfi_timeout = wfi_cycles.andR
417  when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) {
418    hasWFI := false.B
419  }
420
421  val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.needAlloc.take(i)))))
422  io.enq.canAccept := allowEnqueue && !hasBlockBackward
423  io.enq.resp      := allocatePtrVec
424  val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept))
425  val timer = GTimer()
426  for (i <- 0 until RenameWidth) {
427    // we don't check whether io.redirect is valid here since redirect has higher priority
428    when (canEnqueue(i)) {
429      val enqUop = io.enq.req(i).bits
430      val enqIndex = allocatePtrVec(i).value
431      // store uop in data module and debug_microOp Vec
432      debug_microOp(enqIndex) := enqUop
433      debug_microOp(enqIndex).debugInfo.dispatchTime := timer
434      debug_microOp(enqIndex).debugInfo.enqRsTime := timer
435      debug_microOp(enqIndex).debugInfo.selectTime := timer
436      debug_microOp(enqIndex).debugInfo.issueTime := timer
437      debug_microOp(enqIndex).debugInfo.writebackTime := timer
438      when (enqUop.ctrl.blockBackward) {
439        hasBlockBackward := true.B
440      }
441      when (enqUop.ctrl.noSpecExec) {
442        hasNoSpecExec := true.B
443      }
444      val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend
445      val enqHasException = ExceptionNO.selectFrontend(enqUop.cf.exceptionVec).asUInt.orR
446      // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process
447      when(!enqHasTriggerHit && !enqHasException && FuType.isSvinvalBegin(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))
448      {
449        doingSvinval := true.B
450      }
451      // the end instruction of Svinval enqs so clear doingSvinval
452      when(!enqHasTriggerHit && !enqHasException && FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))
453      {
454        doingSvinval := false.B
455      }
456      // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear
457      assert(!doingSvinval || (FuType.isSvinval(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe) ||
458        FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)))
459      when (enqUop.ctrl.isWFI && !enqHasException && !enqHasTriggerHit) {
460        hasWFI := true.B
461      }
462    }
463  }
464  val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(_.valid)), 0.U)
465  io.enq.isEmpty   := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR)
466
467  when (!io.wfi_enable) {
468    hasWFI := false.B
469  }
470
471  /**
472    * Writeback (from execution units)
473    */
474  for (wb <- exuWriteback) {
475    when (wb.valid) {
476      val wbIdx = wb.bits.uop.robIdx.value
477      debug_exuData(wbIdx) := wb.bits.data
478      debug_exuDebug(wbIdx) := wb.bits.debug
479      debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.uop.debugInfo.enqRsTime
480      debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.uop.debugInfo.selectTime
481      debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.uop.debugInfo.issueTime
482      debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.uop.debugInfo.writebackTime
483
484      // debug for lqidx and sqidx
485      debug_microOp(wbIdx).lqIdx := wb.bits.uop.lqIdx
486      debug_microOp(wbIdx).sqIdx := wb.bits.uop.sqIdx
487
488      val debug_Uop = debug_microOp(wbIdx)
489      XSInfo(true.B,
490        p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " +
491        p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " +
492        p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.uop.robIdx}\n"
493      )
494    }
495  }
496  val writebackNum = PopCount(exuWriteback.map(_.valid))
497  XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum)
498
499
500  /**
501    * RedirectOut: Interrupt and Exceptions
502    */
503  val deqDispatchData = dispatchDataRead(0)
504  val debug_deqUop = debug_microOp(deqPtr.value)
505
506  val intrBitSetReg = RegNext(io.csr.intrBitSet)
507  val intrEnable = intrBitSetReg && !hasNoSpecExec && interrupt_safe(deqPtr.value)
508  val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr
509  val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR ||
510    exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit)
511  val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe
512  val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst
513  val exceptionEnable = writebacked(deqPtr.value) && deqHasException
514
515  XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n")
516  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n")
517  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n")
518
519  val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst)
520
521  // io.flushOut will trigger redirect at the next cycle.
522  // Block any redirect or commit at the next cycle.
523  val lastCycleFlush = RegNext(io.flushOut.valid)
524
525  io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush
526  io.flushOut.bits := DontCare
527  io.flushOut.bits.robIdx := deqPtr
528  io.flushOut.bits.ftqIdx := deqDispatchData.ftqIdx
529  io.flushOut.bits.ftqOffset := deqDispatchData.ftqOffset
530  io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next"
531  io.flushOut.bits.interrupt := true.B
532  XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable)
533  XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable)
534  XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe)
535  XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst)
536
537  val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush
538  io.exception.valid := RegNext(exceptionHappen)
539  io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen)
540  io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen)
541  io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen)
542  io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen)
543  io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen)
544  io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen)
545  io.exception.bits.uop.cf.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen)
546
547  XSDebug(io.flushOut.valid,
548    p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " +
549    p"excp $exceptionEnable flushPipe $isFlushPipe " +
550    p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n")
551
552
553  /**
554    * Commits (and walk)
555    * They share the same width.
556    */
557  val walkCounter = Reg(UInt(log2Up(RobSize + 1).W))
558  val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter))
559  val walkFinished = walkCounter <= CommitWidth.U
560
561  require(RenameWidth <= CommitWidth)
562
563  // wiring to csr
564  val (wflags, fpWen) = (0 until CommitWidth).map(i => {
565    val v = io.commits.commitValid(i)
566    val info = io.commits.info(i)
567    (v & info.wflags, v & info.fpWen)
568  }).unzip
569  val fflags = Wire(Valid(UInt(5.W)))
570  fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR
571  fflags.bits := wflags.zip(fflagsDataRead).map({
572    case (w, f) => Mux(w, f, 0.U)
573  }).reduce(_|_)
574  val dirty_fs = io.commits.isCommit && VecInit(fpWen).asUInt.orR
575
576  // when mispredict branches writeback, stop commit in the next 2 cycles
577  // TODO: don't check all exu write back
578  val misPredWb = Cat(VecInit(exuWriteback.map(wb =>
579    wb.bits.redirect.cfiUpdate.isMisPred && wb.bits.redirectValid
580  ))).orR
581  val misPredBlockCounter = Reg(UInt(3.W))
582  misPredBlockCounter := Mux(misPredWb,
583    "b111".U,
584    misPredBlockCounter >> 1.U
585  )
586  val misPredBlock = misPredBlockCounter(0)
587  val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI
588
589  io.commits.isWalk := state === s_walk
590  io.commits.isCommit := state === s_idle && !blockCommit
591  val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value)))
592  val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value)))
593  // store will be commited iff both sta & std have been writebacked
594  val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value)))
595  val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last)
596  val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i)))
597  val allowOnlyOneCommit = commit_exception || intrBitSetReg
598  // for instructions that may block others, we don't allow them to commit
599  for (i <- 0 until CommitWidth) {
600    // defaults: state === s_idle and instructions commit
601    // when intrBitSetReg, allow only one instruction to commit at each clock cycle
602    val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst
603    io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked
604    io.commits.info(i)  := dispatchDataRead(i)
605
606    when (state === s_walk) {
607      io.commits.walkValid(i) := shouldWalkVec(i)
608      when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) {
609        XSError(!walk_v(i), s"why not $i???\n")
610      }
611    }
612
613    XSInfo(io.commits.isCommit && io.commits.commitValid(i),
614      "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n",
615      debug_microOp(deqPtrVec(i).value).cf.pc,
616      io.commits.info(i).rfWen,
617      io.commits.info(i).ldest,
618      io.commits.info(i).pdest,
619      io.commits.info(i).old_pdest,
620      debug_exuData(deqPtrVec(i).value),
621      fflagsDataRead(i)
622    )
623    XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n",
624      debug_microOp(walkPtrVec(i).value).cf.pc,
625      io.commits.info(i).rfWen,
626      io.commits.info(i).ldest,
627      debug_exuData(walkPtrVec(i).value)
628    )
629  }
630  if (env.EnableDifftest) {
631    io.commits.info.map(info => dontTouch(info.pc))
632  }
633
634  // sync fflags/dirty_fs to csr
635  io.csr.fflags := RegNext(fflags)
636  io.csr.dirty_fs := RegNext(dirty_fs)
637
638  // commit load/store to lsq
639  val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD))
640  val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE))
641  io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U))
642  io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U))
643  // indicate a pending load or store
644  io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value))
645  io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value))
646  io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0))
647
648  /**
649    * state changes
650    * (1) redirect: switch to s_walk
651    * (2) walk: when walking comes to the end, switch to s_idle
652    */
653  val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished, s_idle, state))
654  XSPerfAccumulate("s_idle_to_idle",            state === s_idle && state_next === s_idle)
655  XSPerfAccumulate("s_idle_to_walk",            state === s_idle && state_next === s_walk)
656  XSPerfAccumulate("s_walk_to_idle",            state === s_walk && state_next === s_idle)
657  XSPerfAccumulate("s_walk_to_walk",            state === s_walk && state_next === s_walk)
658  state := state_next
659
660  /**
661    * pointers and counters
662    */
663  val deqPtrGenModule = Module(new RobDeqPtrWrapper)
664  deqPtrGenModule.io.state := state
665  deqPtrGenModule.io.deq_v := commit_v
666  deqPtrGenModule.io.deq_w := commit_w
667  deqPtrGenModule.io.exception_state := exceptionDataRead
668  deqPtrGenModule.io.intrBitSetReg := intrBitSetReg
669  deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec
670  deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value)
671  deqPtrGenModule.io.blockCommit := blockCommit
672  deqPtrVec := deqPtrGenModule.io.out
673  val deqPtrVec_next = deqPtrGenModule.io.next_out
674
675  val enqPtrGenModule = Module(new RobEnqPtrWrapper)
676  enqPtrGenModule.io.redirect := io.redirect
677  enqPtrGenModule.io.allowEnqueue := allowEnqueue
678  enqPtrGenModule.io.hasBlockBackward := hasBlockBackward
679  enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid))
680  enqPtrVec := enqPtrGenModule.io.out
681
682  val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U)
683  // next walkPtrVec:
684  // (1) redirect occurs: update according to state
685  // (2) walk: move forwards
686  val walkPtrVec_next = Mux(io.redirect.valid,
687    deqPtrVec_next,
688    Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec)
689  )
690  walkPtrVec := walkPtrVec_next
691
692  val numValidEntries = distanceBetween(enqPtr, deqPtr)
693  val commitCnt = PopCount(io.commits.commitValid)
694
695  allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U
696
697  val currentWalkPtr = Mux(state === s_walk, walkPtr, deqPtrVec_next(0))
698  val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0))
699  when (io.redirect.valid) {
700    // full condition:
701    // +& is used here because:
702    // When rob is full and the tail instruction causes a misprediction,
703    // the redirect robIdx is the deqPtr - 1. In this case, redirectWalkDistance
704    // is RobSize - 1.
705    // Since misprediction does not flush the instruction itself, flushItSelf is false.B.
706    // Previously we use `+` to count the walk distance and it causes overflows
707    // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize.
708    // The width of walkCounter also needs to be changed.
709    // empty condition:
710    // When the last instruction in ROB commits and causes a flush, a redirect
711    // will be raised later. In such circumstances, the redirect robIdx is before
712    // the deqPtrVec_next(0) and will cause underflow.
713    walkCounter := Mux(isBefore(io.redirect.bits.robIdx, deqPtrVec_next(0)), 0.U,
714                       redirectWalkDistance +& !io.redirect.bits.flushItself())
715  }.elsewhen (state === s_walk) {
716    walkCounter := walkCounter - thisCycleWalkCount
717    XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n")
718  }
719
720
721  /**
722    * States
723    * We put all the stage bits changes here.
724
725    * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit);
726    * All states: (1) valid; (2) writebacked; (3) flagBkup
727    */
728  val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value)))
729
730  // redirect logic writes 6 valid
731  val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr))
732  val redirectTail = Reg(new RobPtr)
733  val redirectIdle :: redirectBusy :: Nil = Enum(2)
734  val redirectState = RegInit(redirectIdle)
735  val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail))
736  when(redirectState === redirectBusy) {
737    redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U)
738    redirectHeadVec zip invMask foreach {
739      case (redirectHead, inv) => when(inv) {
740        valid(redirectHead.value) := false.B
741      }
742    }
743    when(!invMask.last) {
744      redirectState := redirectIdle
745    }
746  }
747  when(io.redirect.valid) {
748    redirectState := redirectBusy
749    when(redirectState === redirectIdle) {
750      redirectTail := enqPtr
751    }
752    redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) =>
753      redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
754    }
755  }
756  // enqueue logic writes 6 valid
757  for (i <- 0 until RenameWidth) {
758    when (canEnqueue(i) && !io.redirect.valid) {
759      valid(allocatePtrVec(i).value) := true.B
760    }
761  }
762  // dequeue logic writes 6 valid
763  for (i <- 0 until CommitWidth) {
764    val commitValid = io.commits.isCommit && io.commits.commitValid(i)
765    when (commitValid) {
766      valid(commitReadAddr(i)) := false.B
767    }
768  }
769  // reset: when exception, reset all valid to false
770  when (reset.asBool) {
771    for (i <- 0 until RobSize) {
772      valid(i) := false.B
773    }
774  }
775
776  // status field: writebacked
777  // enqueue logic set 6 writebacked to false
778  for (i <- 0 until RenameWidth) {
779    when (canEnqueue(i)) {
780      val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec).asUInt.orR
781      val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend
782      val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove
783      writebacked(allocatePtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerHit
784      val isStu = io.enq.req(i).bits.ctrl.fuType === FuType.stu
785      store_data_writebacked(allocatePtrVec(i).value) := !isStu
786    }
787  }
788  when (exceptionGen.io.out.valid) {
789    val wbIdx = exceptionGen.io.out.bits.robIdx.value
790    writebacked(wbIdx) := true.B
791    store_data_writebacked(wbIdx) := true.B
792  }
793  // writeback logic set numWbPorts writebacked to true
794  for ((wb, cfgs) <- exuWriteback.zip(wbExuConfigs(exeWbSel))) {
795    when (wb.valid) {
796      val wbIdx = wb.bits.uop.robIdx.value
797      val wbHasException = ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, cfgs).asUInt.orR
798      val wbHasTriggerHit = wb.bits.uop.cf.trigger.getHitBackend
799      val wbHasFlushPipe = cfgs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe
800      val wbHasReplayInst = cfgs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst
801      val block_wb = wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit
802      writebacked(wbIdx) := !block_wb
803    }
804  }
805  // store data writeback logic mark store as data_writebacked
806  for (wb <- stdWriteback) {
807    when(RegNext(wb.valid)) {
808      store_data_writebacked(RegNext(wb.bits.uop.robIdx.value)) := true.B
809    }
810  }
811
812  // flagBkup
813  // enqueue logic set 6 flagBkup at most
814  for (i <- 0 until RenameWidth) {
815    when (canEnqueue(i)) {
816      flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag
817    }
818  }
819
820  // interrupt_safe
821  for (i <- 0 until RenameWidth) {
822    // We RegNext the updates for better timing.
823    // Note that instructions won't change the system's states in this cycle.
824    when (RegNext(canEnqueue(i))) {
825      // For now, we allow non-load-store instructions to trigger interrupts
826      // For MMIO instructions, they should not trigger interrupts since they may
827      // be sent to lower level before it writes back.
828      // However, we cannot determine whether a load/store instruction is MMIO.
829      // Thus, we don't allow load/store instructions to trigger an interrupt.
830      // TODO: support non-MMIO load-store instructions to trigger interrupts
831      val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.ctrl.commitType)
832      interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts)
833    }
834  }
835
836  /**
837    * read and write of data modules
838    */
839  val commitReadAddr_next = Mux(state_next === s_idle,
840    VecInit(deqPtrVec_next.map(_.value)),
841    VecInit(walkPtrVec_next.map(_.value))
842  )
843  dispatchData.io.wen := canEnqueue
844  dispatchData.io.waddr := allocatePtrVec.map(_.value)
845  dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) =>
846    wdata.ldest := req.ctrl.ldest
847    wdata.rfWen := req.ctrl.rfWen
848    wdata.fpWen := req.ctrl.fpWen
849    wdata.vecWen := req.ctrl.vecWen
850    wdata.wflags := req.ctrl.fpu.wflags
851    wdata.commitType := req.ctrl.commitType
852    wdata.pdest := req.pdest
853    wdata.old_pdest := req.old_pdest
854    wdata.ftqIdx := req.cf.ftqPtr
855    wdata.ftqOffset := req.cf.ftqOffset
856    wdata.isMove := req.eliminatedMove
857    wdata.pc := req.cf.pc
858  }
859  dispatchData.io.raddr := commitReadAddr_next
860
861  exceptionGen.io.redirect <> io.redirect
862  exceptionGen.io.flush := io.flushOut.valid
863  for (i <- 0 until RenameWidth) {
864    exceptionGen.io.enq(i).valid := canEnqueue(i)
865    exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx
866    exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec)
867    exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe
868    exceptionGen.io.enq(i).bits.replayInst := false.B
869    XSError(canEnqueue(i) && io.enq.req(i).bits.ctrl.replayInst, "enq should not set replayInst")
870    exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep
871    exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.cf.crossPageIPFFix
872    exceptionGen.io.enq(i).bits.trigger.clear()
873    exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.cf.trigger.frontendHit
874  }
875
876  println(s"ExceptionGen:")
877  val exceptionCases = exceptionPorts.map(_._1.flatMap(_.exceptionOut).distinct.sorted)
878  require(exceptionCases.length == exceptionGen.io.wb.length)
879  for ((((configs, wb), exc_wb), i) <- exceptionPorts.zip(exceptionGen.io.wb).zipWithIndex) {
880    exc_wb.valid                := wb.valid
881    exc_wb.bits.robIdx          := wb.bits.uop.robIdx
882    exc_wb.bits.exceptionVec    := ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, configs)
883    exc_wb.bits.flushPipe       := configs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe
884    exc_wb.bits.replayInst      := configs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst
885    exc_wb.bits.singleStep      := false.B
886    exc_wb.bits.crossPageIPFFix := false.B
887    // TODO: make trigger configurable
888    exc_wb.bits.trigger.clear()
889    exc_wb.bits.trigger.backendHit := wb.bits.uop.cf.trigger.backendHit
890    println(s"  [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " +
891      s"flushPipe ${configs.exists(_.flushPipe)}, " +
892      s"replayInst ${configs.exists(_.replayInst)}")
893  }
894
895  val fflags_wb = fflagsPorts.map(_._2)
896  val fflagsDataModule = Module(new SyncDataModuleTemplate(
897    UInt(5.W), RobSize, CommitWidth, fflags_wb.size)
898  )
899  for(i <- fflags_wb.indices){
900    fflagsDataModule.io.wen  (i) := fflags_wb(i).valid
901    fflagsDataModule.io.waddr(i) := fflags_wb(i).bits.uop.robIdx.value
902    fflagsDataModule.io.wdata(i) := fflags_wb(i).bits.fflags
903  }
904  fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value))
905  fflagsDataRead := fflagsDataModule.io.rdata
906
907
908  val instrCntReg = RegInit(0.U(64.W))
909  val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) })
910  val trueCommitCnt = RegNext(commitCnt) +& fuseCommitCnt
911  val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U)
912  val instrCnt = instrCntReg + retireCounter
913  instrCntReg := instrCnt
914  io.csr.perfinfo.retiredInstr := retireCounter
915  io.robFull := !allowEnqueue
916
917  /**
918    * debug info
919    */
920  XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n")
921  XSDebug("")
922  for(i <- 0 until RobSize){
923    XSDebug(false, !valid(i), "-")
924    XSDebug(false, valid(i) && writebacked(i), "w")
925    XSDebug(false, valid(i) && !writebacked(i), "v")
926  }
927  XSDebug(false, true.B, "\n")
928
929  for(i <- 0 until RobSize) {
930    if(i % 4 == 0) XSDebug("")
931    XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc)
932    XSDebug(false, !valid(i), "- ")
933    XSDebug(false, valid(i) && writebacked(i), "w ")
934    XSDebug(false, valid(i) && !writebacked(i), "v ")
935    if(i % 4 == 3) XSDebug(false, true.B, "\n")
936  }
937
938  def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U)
939  def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U)
940
941  val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_))
942  XSPerfAccumulate("clock_cycle", 1.U)
943  QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue)
944  XSPerfAccumulate("commitUop", ifCommit(commitCnt))
945  XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt))
946  val commitIsMove = commitDebugUop.map(_.ctrl.isMove)
947  XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })))
948  val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove)
949  XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e })))
950  XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt))
951  val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD)
952  val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t }
953  XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid)))
954  val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH)
955  val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t }
956  XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid)))
957  val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit)
958  XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })))
959  val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE)
960  XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })))
961  XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i))))
962  // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire)))
963  // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready)))
964  XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U))
965  XSPerfAccumulate("walkCycle", state === s_walk)
966  val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value)
967  val deqUopCommitType = io.commits.info(0).commitType
968  XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL)
969  XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH)
970  XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD)
971  XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE)
972  XSPerfAccumulate("robHeadPC", io.commits.info(0).pc)
973  val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime)
974  val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime)
975  val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime)
976  val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime)
977  val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
978  val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime)
979  val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime)
980  def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = {
981    cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _)
982  }
983  for (fuType <- FuType.functionNameMap.keys) {
984    val fuName = FuType.functionNameMap(fuType)
985    val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U )
986    XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType)))
987    XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency)))
988    XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency)))
989    XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency)))
990    XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency)))
991    XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency)))
992    XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency)))
993    XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency)))
994    if (fuType == FuType.fmac.litValue) {
995      val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 )
996      XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma)))
997      XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency)))
998      XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency)))
999    }
1000  }
1001
1002  //difftest signals
1003  val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value
1004
1005  val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1006  val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1007
1008  for(i <- 0 until CommitWidth) {
1009    val idx = deqPtrVec(i).value
1010    wdata(i) := debug_exuData(idx)
1011    wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN)
1012  }
1013
1014  if (env.EnableDifftest) {
1015    for (i <- 0 until CommitWidth) {
1016      val difftest = Module(new DifftestInstrCommit)
1017      // assgin default value
1018      difftest.io := DontCare
1019
1020      difftest.io.clock    := clock
1021      difftest.io.coreid   := io.hartId
1022      difftest.io.index    := i.U
1023
1024      val ptr = deqPtrVec(i).value
1025      val uop = commitDebugUop(i)
1026      val exuOut = debug_exuDebug(ptr)
1027      val exuData = debug_exuData(ptr)
1028      difftest.io.valid    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1029      difftest.io.pc       := RegNext(RegNext(RegNext(SignExt(uop.cf.pc, XLEN))))
1030      difftest.io.instr    := RegNext(RegNext(RegNext(uop.cf.instr)))
1031      difftest.io.robIdx   := RegNext(RegNext(RegNext(ZeroExt(ptr, 10))))
1032      difftest.io.lqIdx    := RegNext(RegNext(RegNext(ZeroExt(uop.lqIdx.value, 7))))
1033      difftest.io.sqIdx    := RegNext(RegNext(RegNext(ZeroExt(uop.sqIdx.value, 7))))
1034      difftest.io.isLoad   := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.LOAD)))
1035      difftest.io.isStore  := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.STORE)))
1036      difftest.io.special  := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType))))
1037      // when committing an eliminated move instruction,
1038      // we must make sure that skip is properly set to false (output from EXU is random value)
1039      difftest.io.skip     := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1040      difftest.io.isRVC    := RegNext(RegNext(RegNext(uop.cf.pd.isRVC)))
1041      difftest.io.rfwen    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U)))
1042      difftest.io.fpwen    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).fpWen)))
1043      difftest.io.wpdest   := RegNext(RegNext(RegNext(io.commits.info(i).pdest)))
1044      difftest.io.wdest    := RegNext(RegNext(RegNext(io.commits.info(i).ldest)))
1045
1046      // // runahead commit hint
1047      // val runahead_commit = Module(new DifftestRunaheadCommitEvent)
1048      // runahead_commit.io.clock := clock
1049      // runahead_commit.io.coreid := io.hartId
1050      // runahead_commit.io.index := i.U
1051      // runahead_commit.io.valid := difftest.io.valid &&
1052      //   (commitBranchValid(i) || commitIsStore(i))
1053      // // TODO: is branch or store
1054      // runahead_commit.io.pc    := difftest.io.pc
1055    }
1056  }
1057  else if (env.AlwaysBasicDiff) {
1058    // These are the structures used by difftest only and should be optimized after synthesis.
1059    val dt_eliminatedMove = Mem(RobSize, Bool())
1060    val dt_isRVC = Mem(RobSize, Bool())
1061    val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle))
1062    for (i <- 0 until RenameWidth) {
1063      when (canEnqueue(i)) {
1064        dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove
1065        dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.cf.pd.isRVC
1066      }
1067    }
1068    for (wb <- exuWriteback) {
1069      when (wb.valid) {
1070        val wbIdx = wb.bits.uop.robIdx.value
1071        dt_exuDebug(wbIdx) := wb.bits.debug
1072      }
1073    }
1074    // Always instantiate basic difftest modules.
1075    for (i <- 0 until CommitWidth) {
1076      val commitInfo = io.commits.info(i)
1077      val ptr = deqPtrVec(i).value
1078      val exuOut = dt_exuDebug(ptr)
1079      val eliminatedMove = dt_eliminatedMove(ptr)
1080      val isRVC = dt_isRVC(ptr)
1081
1082      val difftest = Module(new DifftestBasicInstrCommit)
1083      difftest.io.clock   := clock
1084      difftest.io.coreid  := io.hartId
1085      difftest.io.index   := i.U
1086      difftest.io.valid   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1087      difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType))))
1088      difftest.io.skip    := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1089      difftest.io.isRVC   := RegNext(RegNext(RegNext(isRVC)))
1090      difftest.io.rfwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U)))
1091      difftest.io.fpwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.fpWen)))
1092      difftest.io.wpdest  := RegNext(RegNext(RegNext(commitInfo.pdest)))
1093      difftest.io.wdest   := RegNext(RegNext(RegNext(commitInfo.ldest)))
1094    }
1095  }
1096
1097  if (env.EnableDifftest) {
1098    for (i <- 0 until CommitWidth) {
1099      val difftest = Module(new DifftestLoadEvent)
1100      difftest.io.clock  := clock
1101      difftest.io.coreid := io.hartId
1102      difftest.io.index  := i.U
1103
1104      val ptr = deqPtrVec(i).value
1105      val uop = commitDebugUop(i)
1106      val exuOut = debug_exuDebug(ptr)
1107      difftest.io.valid  := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1108      difftest.io.paddr  := RegNext(RegNext(RegNext(exuOut.paddr)))
1109      difftest.io.opType := RegNext(RegNext(RegNext(uop.ctrl.fuOpType)))
1110      difftest.io.fuType := RegNext(RegNext(RegNext(uop.ctrl.fuType)))
1111    }
1112  }
1113
1114  // Always instantiate basic difftest modules.
1115  if (env.EnableDifftest) {
1116    val dt_isXSTrap = Mem(RobSize, Bool())
1117    for (i <- 0 until RenameWidth) {
1118      when (canEnqueue(i)) {
1119        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap
1120      }
1121    }
1122    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) }
1123    val hitTrap = trapVec.reduce(_||_)
1124    val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1))
1125    val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN)
1126    val difftest = Module(new DifftestTrapEvent)
1127    difftest.io.clock    := clock
1128    difftest.io.coreid   := io.hartId
1129    difftest.io.valid    := hitTrap
1130    difftest.io.code     := trapCode
1131    difftest.io.pc       := trapPC
1132    difftest.io.cycleCnt := timer
1133    difftest.io.instrCnt := instrCnt
1134    difftest.io.hasWFI   := hasWFI
1135  }
1136  else if (env.AlwaysBasicDiff) {
1137    val dt_isXSTrap = Mem(RobSize, Bool())
1138    for (i <- 0 until RenameWidth) {
1139      when (canEnqueue(i)) {
1140        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap
1141      }
1142    }
1143    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) }
1144    val hitTrap = trapVec.reduce(_||_)
1145    val difftest = Module(new DifftestBasicTrapEvent)
1146    difftest.io.clock    := clock
1147    difftest.io.coreid   := io.hartId
1148    difftest.io.valid    := hitTrap
1149    difftest.io.cycleCnt := timer
1150    difftest.io.instrCnt := instrCnt
1151  }
1152
1153  val validEntriesBanks = (0 until (RobSize + 63) / 64).map(i => RegNext(PopCount(valid.drop(i * 64).take(64))))
1154  val validEntries = RegNext(ParallelOperation(validEntriesBanks, (a: UInt, b: UInt) => a +& b))
1155  val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })
1156  val commitLoadVec = VecInit(commitLoadValid)
1157  val commitBranchVec = VecInit(commitBranchValid)
1158  val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })
1159  val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })
1160  val perfEvents = Seq(
1161    ("rob_interrupt_num      ", io.flushOut.valid && intrEnable                                       ),
1162    ("rob_exception_num      ", io.flushOut.valid && exceptionEnable                                  ),
1163    ("rob_flush_pipe_num     ", io.flushOut.valid && isFlushPipe                                      ),
1164    ("rob_replay_inst_num    ", io.flushOut.valid && isFlushPipe && deqHasReplayInst                  ),
1165    ("rob_commitUop          ", ifCommit(commitCnt)                                                   ),
1166    ("rob_commitInstr        ", ifCommitReg(trueCommitCnt)                                            ),
1167    ("rob_commitInstrMove    ", ifCommitReg(PopCount(RegNext(commitMoveVec)))                         ),
1168    ("rob_commitInstrFused   ", ifCommitReg(fuseCommitCnt)                                            ),
1169    ("rob_commitInstrLoad    ", ifCommitReg(PopCount(RegNext(commitLoadVec)))                         ),
1170    ("rob_commitInstrBranch  ", ifCommitReg(PopCount(RegNext(commitBranchVec)))                       ),
1171    ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec)))                     ),
1172    ("rob_commitInstrStore   ", ifCommitReg(PopCount(RegNext(commitStoreVec)))                        ),
1173    ("rob_walkInstr          ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)           ),
1174    ("rob_walkCycle          ", (state === s_walk)                                                    ),
1175    ("rob_1_4_valid          ", validEntries <= (RobSize / 4).U                                       ),
1176    ("rob_2_4_valid          ", validEntries >  (RobSize / 4).U && validEntries <= (RobSize / 2).U    ),
1177    ("rob_3_4_valid          ", validEntries >  (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U),
1178    ("rob_4_4_valid          ", validEntries >  (RobSize * 3 / 4).U                                   ),
1179  )
1180  generatePerfEvent()
1181}
1182