xref: /XiangShan/src/main/scala/xiangshan/backend/rob/Rob.scala (revision c51eab430425a5c4edfb3bde5c774cef5070d2f8)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.rob
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3._
21import chisel3.util._
22import difftest._
23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp}
24import utils._
25import xiangshan._
26import xiangshan.backend.exu.ExuConfig
27import xiangshan.frontend.FtqPtr
28
29class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr](
30  p => p(XSCoreParamsKey).RobSize
31) with HasCircularQueuePtrHelper {
32
33  def needFlush(redirect: Valid[Redirect]): Bool = {
34    val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx
35    redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx))
36  }
37
38}
39
40object RobPtr {
41  def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = {
42    val ptr = Wire(new RobPtr)
43    ptr.flag := f
44    ptr.value := v
45    ptr
46  }
47}
48
49class RobCSRIO(implicit p: Parameters) extends XSBundle {
50  val intrBitSet = Input(Bool())
51  val trapTarget = Input(UInt(VAddrBits.W))
52  val isXRet     = Input(Bool())
53  val wfiEvent   = Input(Bool())
54
55  val fflags     = Output(Valid(UInt(5.W)))
56  val dirty_fs   = Output(Bool())
57  val perfinfo   = new Bundle {
58    val retiredInstr = Output(UInt(3.W))
59  }
60}
61
62class RobLsqIO(implicit p: Parameters) extends XSBundle {
63  val lcommit = Output(UInt(log2Up(CommitWidth + 1).W))
64  val scommit = Output(UInt(log2Up(CommitWidth + 1).W))
65  val pendingld = Output(Bool())
66  val pendingst = Output(Bool())
67  val commit = Output(Bool())
68}
69
70class RobEnqIO(implicit p: Parameters) extends XSBundle {
71  val canAccept = Output(Bool())
72  val isEmpty = Output(Bool())
73  // valid vector, for robIdx gen and walk
74  val needAlloc = Vec(RenameWidth, Input(Bool()))
75  val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp)))
76  val resp = Vec(RenameWidth, Output(new RobPtr))
77}
78
79class RobDispatchData(implicit p: Parameters) extends RobCommitInfo
80
81class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
82  val io = IO(new Bundle {
83    // for commits/flush
84    val state = Input(UInt(2.W))
85    val deq_v = Vec(CommitWidth, Input(Bool()))
86    val deq_w = Vec(CommitWidth, Input(Bool()))
87    val exception_state = Flipped(ValidIO(new RobExceptionInfo))
88    // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth)
89    val intrBitSetReg = Input(Bool())
90    val hasNoSpecExec = Input(Bool())
91    val interrupt_safe = Input(Bool())
92    val misPredBlock = Input(Bool())
93    val isReplaying = Input(Bool())
94    val hasWFI = Input(Bool())
95    // output: the CommitWidth deqPtr
96    val out = Vec(CommitWidth, Output(new RobPtr))
97    val next_out = Vec(CommitWidth, Output(new RobPtr))
98  })
99
100  val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr))))
101
102  // for exceptions (flushPipe included) and interrupts:
103  // only consider the first instruction
104  val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe
105  val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0)
106  val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable)
107
108  // for normal commits: only to consider when there're no exceptions
109  // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions.
110  val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last)
111  val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i) && !io.misPredBlock && !io.isReplaying && !io.hasWFI))
112  val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B)
113  // when io.intrBitSetReg or there're possible exceptions in these instructions,
114  // only one instruction is allowed to commit
115  val allowOnlyOne = commit_exception || io.intrBitSetReg
116  val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt)
117
118  val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt))
119  val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid, commitDeqPtrVec, deqPtrVec)
120
121  deqPtrVec := deqPtrVec_next
122
123  io.next_out := deqPtrVec_next
124  io.out      := deqPtrVec
125
126  when (io.state === 0.U) {
127    XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt)
128  }
129
130}
131
132class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
133  val io = IO(new Bundle {
134    // for input redirect
135    val redirect = Input(Valid(new Redirect))
136    // for enqueue
137    val allowEnqueue = Input(Bool())
138    val hasBlockBackward = Input(Bool())
139    val enq = Vec(RenameWidth, Input(Bool()))
140    val out = Output(new RobPtr)
141  })
142
143  val enqPtr = RegInit(0.U.asTypeOf(new RobPtr))
144
145  // enqueue
146  val canAccept = io.allowEnqueue && !io.hasBlockBackward
147  val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U)
148
149  when (io.redirect.valid) {
150    enqPtr := io.redirect.bits.robIdx + Mux(io.redirect.bits.flushItself(), 0.U, 1.U)
151  }.otherwise {
152    enqPtr := enqPtr + dispatchNum
153  }
154
155  io.out := enqPtr
156
157}
158
159class RobExceptionInfo(implicit p: Parameters) extends XSBundle {
160  // val valid = Bool()
161  val robIdx = new RobPtr
162  val exceptionVec = ExceptionVec()
163  val flushPipe = Bool()
164  val replayInst = Bool() // redirect to that inst itself
165  val singleStep = Bool() // TODO add frontend hit beneath
166  val crossPageIPFFix = Bool()
167  val trigger = new TriggerCf
168
169//  def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend
170//  def trigger_after = trigger.getTimingBackend && trigger.getHitBackend
171  def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit
172  def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit
173  // only exceptions are allowed to writeback when enqueue
174  def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit
175}
176
177class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
178  val io = IO(new Bundle {
179    val redirect = Input(Valid(new Redirect))
180    val flush = Input(Bool())
181    val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo)))
182    val wb = Vec(1 + LoadPipelineWidth + StorePipelineWidth, Flipped(ValidIO(new RobExceptionInfo)))
183    val out = ValidIO(new RobExceptionInfo)
184    val state = ValidIO(new RobExceptionInfo)
185  })
186
187  def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = {
188    assert(valid.length == bits.length)
189    assert(isPow2(valid.length))
190    if (valid.length == 1) {
191      (valid, bits)
192    } else if (valid.length == 2) {
193      val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0)))))
194      for (i <- res.indices) {
195        res(i).valid := valid(i)
196        res(i).bits := bits(i)
197      }
198      val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1))
199      (Seq(oldest.valid), Seq(oldest.bits))
200    } else {
201      val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2))
202      val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2))
203      getOldest(left._1 ++ right._1, left._2 ++ right._2)
204    }
205  }
206
207  val current = Reg(Valid(new RobExceptionInfo))
208
209  // orR the exceptionVec
210  val lastCycleFlush = RegNext(io.flush)
211  val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush))
212  val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)
213
214  // s0: compare wb(1)~wb(LoadPipelineWidth) and wb(1 + LoadPipelineWidth)~wb(LoadPipelineWidth + StorePipelineWidth)
215  val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }
216  val csr_wb_bits = io.wb(0).bits
217  val load_wb_bits = getOldest(in_wb_valid.slice(1, 1 + LoadPipelineWidth), io.wb.map(_.bits).slice(1, 1 + LoadPipelineWidth))._2(0)
218  val store_wb_bits = getOldest(in_wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth), io.wb.map(_.bits).slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth))._2(0)
219  val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid.slice(1, 1 + LoadPipelineWidth).reduce(_ || _), wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth).reduce(_ || _))))
220  val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits)))
221
222  // s1: compare last four and current flush
223  val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) })
224  val compare_01_valid = s0_out_valid(0) || s0_out_valid(1)
225  val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0))
226  val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2))
227  val s1_out_bits = RegNext(compare_bits)
228  val s1_out_valid = RegNext(s1_valid.asUInt.orR)
229
230  val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
231  val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)))
232
233  // s2: compare the input exception with the current one
234  // priorities:
235  // (1) system reset
236  // (2) current is valid: flush, remain, merge, update
237  // (3) current is not valid: s1 or enq
238  val current_flush = current.bits.robIdx.needFlush(io.redirect) || io.flush
239  val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush
240  when (reset.asBool) {
241    current.valid := false.B
242  }.elsewhen (current.valid) {
243    when (current_flush) {
244      current.valid := Mux(s1_flush, false.B, s1_out_valid)
245    }
246    when (s1_out_valid && !s1_flush) {
247      when (isAfter(current.bits.robIdx, s1_out_bits.robIdx)) {
248        current.bits := s1_out_bits
249      }.elsewhen (current.bits.robIdx === s1_out_bits.robIdx) {
250        current.bits.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.bits.exceptionVec.asUInt).asTypeOf(ExceptionVec())
251        current.bits.flushPipe := s1_out_bits.flushPipe || current.bits.flushPipe
252        current.bits.replayInst := s1_out_bits.replayInst || current.bits.replayInst
253        current.bits.singleStep := s1_out_bits.singleStep || current.bits.singleStep
254        current.bits.trigger := (s1_out_bits.trigger.asUInt | current.bits.trigger.asUInt).asTypeOf(new TriggerCf)
255      }
256    }
257  }.elsewhen (s1_out_valid && !s1_flush) {
258    current.valid := true.B
259    current.bits := s1_out_bits
260  }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) {
261    current.valid := true.B
262    current.bits := enq_bits
263  }
264
265  io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback
266  io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits)
267  io.state := current
268
269}
270
271class RobFlushInfo(implicit p: Parameters) extends XSBundle {
272  val ftqIdx = new FtqPtr
273  val robIdx = new RobPtr
274  val ftqOffset = UInt(log2Up(PredictWidth).W)
275  val replayInst = Bool()
276}
277
278class Rob(implicit p: Parameters) extends LazyModule with HasWritebackSink with HasXSParameter {
279
280  lazy val module = new RobImp(this)
281
282  override def generateWritebackIO(
283    thisMod: Option[HasWritebackSource] = None,
284    thisModImp: Option[HasWritebackSourceImp] = None
285  ): Unit = {
286    val sources = writebackSinksImp(thisMod, thisModImp)
287    module.io.writeback.zip(sources).foreach(x => x._1 := x._2)
288  }
289}
290
291class RobImp(outer: Rob)(implicit p: Parameters) extends LazyModuleImp(outer)
292  with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents {
293  val wbExuConfigs = outer.writebackSinksParams.map(_.exuConfigs)
294  val numWbPorts = wbExuConfigs.map(_.length)
295
296  val io = IO(new Bundle() {
297    val hartId = Input(UInt(8.W))
298    val redirect = Input(Valid(new Redirect))
299    val enq = new RobEnqIO
300    val flushOut = ValidIO(new Redirect)
301    val exception = ValidIO(new ExceptionInfo)
302    // exu + brq
303    val writeback = MixedVec(numWbPorts.map(num => Vec(num, Flipped(ValidIO(new ExuOutput)))))
304    val commits = new RobCommitIO
305    val lsq = new RobLsqIO
306    val robDeqPtr = Output(new RobPtr)
307    val csr = new RobCSRIO
308    val robFull = Output(Bool())
309    val cpu_halt = Output(Bool())
310  })
311
312  def selectWb(index: Int, func: Seq[ExuConfig] => Boolean): Seq[(Seq[ExuConfig], ValidIO[ExuOutput])] = {
313    wbExuConfigs(index).zip(io.writeback(index)).filter(x => func(x._1))
314  }
315  val exeWbSel = outer.selWritebackSinks(_.exuConfigs.length)
316  val fflagsWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.writeFflags)))
317  val fflagsPorts = selectWb(fflagsWbSel, _.exists(_.writeFflags))
318  val exceptionWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.needExceptionGen)))
319  val exceptionPorts = selectWb(fflagsWbSel, _.exists(_.needExceptionGen))
320  val exuWbPorts = selectWb(exeWbSel, _.forall(_ != StdExeUnitCfg))
321  val stdWbPorts = selectWb(exeWbSel, _.contains(StdExeUnitCfg))
322  println(s"Rob: size $RobSize, numWbPorts: $numWbPorts, commitwidth: $CommitWidth")
323  println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}")
324  println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}")
325  println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}")
326
327
328  val exuWriteback = exuWbPorts.map(_._2)
329  val stdWriteback = stdWbPorts.map(_._2)
330
331  // instvalid field
332  val valid = Mem(RobSize, Bool())
333  // writeback status
334  val writebacked = Mem(RobSize, Bool())
335  val store_data_writebacked = Mem(RobSize, Bool())
336  // data for redirect, exception, etc.
337  val flagBkup = Mem(RobSize, Bool())
338  // some instructions are not allowed to trigger interrupts
339  // They have side effects on the states of the processor before they write back
340  val interrupt_safe = Mem(RobSize, Bool())
341
342  // data for debug
343  // Warn: debug_* prefix should not exist in generated verilog.
344  val debug_microOp = Mem(RobSize, new MicroOp)
345  val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug
346  val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug
347
348  // pointers
349  // For enqueue ptr, we don't duplicate it since only enqueue needs it.
350  val enqPtr = Wire(new RobPtr)
351  val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr))
352
353  val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr))
354  val validCounter = RegInit(0.U(log2Ceil(RobSize + 1).W))
355  val allowEnqueue = RegInit(true.B)
356
357  val enqPtrVec = VecInit((0 until RenameWidth).map(i => enqPtr + PopCount(io.enq.needAlloc.take(i))))
358  val deqPtr = deqPtrVec(0)
359  val walkPtr = walkPtrVec(0)
360
361  val isEmpty = enqPtr === deqPtr
362  val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level)
363
364  /**
365    * states of Rob
366    */
367  val s_idle :: s_walk :: s_extrawalk :: Nil = Enum(3)
368  val state = RegInit(s_idle)
369
370  /**
371    * Data Modules
372    *
373    * CommitDataModule: data from dispatch
374    * (1) read: commits/walk/exception
375    * (2) write: enqueue
376    *
377    * WritebackData: data from writeback
378    * (1) read: commits/walk/exception
379    * (2) write: write back from exe units
380    */
381  val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth))
382  val dispatchDataRead = dispatchData.io.rdata
383
384  val exceptionGen = Module(new ExceptionGen)
385  val exceptionDataRead = exceptionGen.io.state
386  val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W)))
387
388  io.robDeqPtr := deqPtr
389
390  /**
391    * Enqueue (from dispatch)
392    */
393  // special cases
394  val hasBlockBackward = RegInit(false.B)
395  val hasNoSpecExec = RegInit(false.B)
396  val doingSvinval = RegInit(false.B)
397  // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B
398  // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty.
399  when (isEmpty) { hasBlockBackward:= false.B }
400  // When any instruction commits, hasNoSpecExec should be set to false.B
401  when (io.commits.valid.asUInt.orR  && state =/= s_extrawalk) { hasNoSpecExec:= false.B }
402
403  // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing.
404  // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle.
405  // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts.
406  val hasWFI = RegInit(false.B)
407  io.cpu_halt := hasWFI
408  when (RegNext(RegNext(io.csr.wfiEvent))) {
409    hasWFI := false.B
410  }
411
412  io.enq.canAccept := allowEnqueue && !hasBlockBackward
413  io.enq.resp      := enqPtrVec
414  val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept))
415  val timer = GTimer()
416  for (i <- 0 until RenameWidth) {
417    // we don't check whether io.redirect is valid here since redirect has higher priority
418    when (canEnqueue(i)) {
419      val enqUop = io.enq.req(i).bits
420      // store uop in data module and debug_microOp Vec
421      debug_microOp(enqPtrVec(i).value) := enqUop
422      debug_microOp(enqPtrVec(i).value).debugInfo.dispatchTime := timer
423      debug_microOp(enqPtrVec(i).value).debugInfo.enqRsTime := timer
424      debug_microOp(enqPtrVec(i).value).debugInfo.selectTime := timer
425      debug_microOp(enqPtrVec(i).value).debugInfo.issueTime := timer
426      debug_microOp(enqPtrVec(i).value).debugInfo.writebackTime := timer
427      when (enqUop.ctrl.blockBackward) {
428        hasBlockBackward := true.B
429      }
430      when (enqUop.ctrl.noSpecExec) {
431        hasNoSpecExec := true.B
432      }
433      val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend
434      val enqHasException = ExceptionNO.selectFrontend(enqUop.cf.exceptionVec).asUInt.orR
435      // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process
436      when(!enqHasTriggerHit && !enqHasException && FuType.isSvinvalBegin(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))
437      {
438        doingSvinval := true.B
439      }
440      // the end instruction of Svinval enqs so clear doingSvinval
441      when(!enqHasTriggerHit && !enqHasException && FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))
442      {
443        doingSvinval := false.B
444      }
445      // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear
446      assert(!doingSvinval || (FuType.isSvinval(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe) ||
447        FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)))
448      when (enqUop.ctrl.isWFI && !enqHasException && !enqHasTriggerHit) {
449        hasWFI := true.B
450      }
451    }
452  }
453  val dispatchNum = Mux(io.enq.canAccept, PopCount(Cat(io.enq.req.map(_.valid))), 0.U)
454  io.enq.isEmpty   := RegNext(isEmpty && dispatchNum === 0.U)
455
456  // debug info for enqueue (dispatch)
457  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
458  XSInfo(dispatchNum =/= 0.U, p"dispatched $dispatchNum insts\n")
459
460
461  /**
462    * Writeback (from execution units)
463    */
464  for (wb <- exuWriteback) {
465    when (wb.valid) {
466      val wbIdx = wb.bits.uop.robIdx.value
467      debug_exuData(wbIdx) := wb.bits.data
468      debug_exuDebug(wbIdx) := wb.bits.debug
469      debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.uop.debugInfo.enqRsTime
470      debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.uop.debugInfo.selectTime
471      debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.uop.debugInfo.issueTime
472      debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.uop.debugInfo.writebackTime
473
474      val debug_Uop = debug_microOp(wbIdx)
475      XSInfo(true.B,
476        p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " +
477        p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " +
478        p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.uop.robIdx}\n"
479      )
480    }
481  }
482  val writebackNum = PopCount(exuWriteback.map(_.valid))
483  XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum)
484
485
486  /**
487    * RedirectOut: Interrupt and Exceptions
488    */
489  val deqDispatchData = dispatchDataRead(0)
490  val debug_deqUop = debug_microOp(deqPtr.value)
491
492  val intrBitSetReg = RegNext(io.csr.intrBitSet)
493  val intrEnable = intrBitSetReg && !hasNoSpecExec && interrupt_safe(deqPtr.value)
494  val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr
495  val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR ||
496    exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit)
497  val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe
498  val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst
499  val exceptionEnable = writebacked(deqPtr.value) && deqHasException
500
501  XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n")
502  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n")
503  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n")
504
505  val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst)
506
507  // io.flushOut will trigger redirect at the next cycle.
508  // Block any redirect or commit at the next cycle.
509  val lastCycleFlush = RegNext(io.flushOut.valid)
510
511  io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush
512  io.flushOut.bits := DontCare
513  io.flushOut.bits.robIdx := deqPtr
514  io.flushOut.bits.ftqIdx := deqDispatchData.ftqIdx
515  io.flushOut.bits.ftqOffset := deqDispatchData.ftqOffset
516  io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next"
517  io.flushOut.bits.interrupt := true.B
518  XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable)
519  XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable)
520  XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe)
521  XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst)
522
523  val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush
524  io.exception.valid := RegNext(exceptionHappen)
525  io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen)
526  io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen)
527  io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen)
528  io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen)
529  io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen)
530  io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen)
531  io.exception.bits.uop.cf.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen)
532
533  XSDebug(io.flushOut.valid,
534    p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " +
535    p"excp $exceptionEnable flushPipe $isFlushPipe " +
536    p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n")
537
538
539  /**
540    * Commits (and walk)
541    * They share the same width.
542    */
543  val walkCounter = Reg(UInt(log2Up(RobSize + 1).W))
544  val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter))
545  val walkFinished = walkCounter <= CommitWidth.U
546
547  // extra space is used when rob has no enough space, but mispredict recovery needs such info to walk regmap
548  require(RenameWidth <= CommitWidth)
549  val extraSpaceForMPR = Reg(Vec(RenameWidth, new RobDispatchData))
550  val usedSpaceForMPR = Reg(Vec(RenameWidth, Bool()))
551  when (io.enq.needAlloc.asUInt.orR && io.redirect.valid) {
552    usedSpaceForMPR := io.enq.needAlloc
553    extraSpaceForMPR := dispatchData.io.wdata
554    XSDebug("rob full, switched to s_extrawalk. needExtraSpaceForMPR: %b\n", io.enq.needAlloc.asUInt)
555  }
556
557  // wiring to csr
558  val (wflags, fpWen) = (0 until CommitWidth).map(i => {
559    val v = io.commits.valid(i)
560    val info = io.commits.info(i)
561    (v & info.wflags, v & info.fpWen)
562  }).unzip
563  val fflags = Wire(Valid(UInt(5.W)))
564  fflags.valid := Mux(io.commits.isWalk, false.B, Cat(wflags).orR)
565  fflags.bits := wflags.zip(fflagsDataRead).map({
566    case (w, f) => Mux(w, f, 0.U)
567  }).reduce(_|_)
568  val dirty_fs = Mux(io.commits.isWalk, false.B, Cat(fpWen).orR)
569
570  // when mispredict branches writeback, stop commit in the next 2 cycles
571  // TODO: don't check all exu write back
572  val misPredWb = Cat(VecInit(exuWriteback.map(wb =>
573    wb.bits.redirect.cfiUpdate.isMisPred && wb.bits.redirectValid
574  ))).orR
575  val misPredBlockCounter = Reg(UInt(3.W))
576  misPredBlockCounter := Mux(misPredWb,
577    "b111".U,
578    misPredBlockCounter >> 1.U
579  )
580  val misPredBlock = misPredBlockCounter(0)
581
582  io.commits.isWalk := state =/= s_idle
583  val commit_v = Mux(state === s_idle, VecInit(deqPtrVec.map(ptr => valid(ptr.value))), VecInit(walkPtrVec.map(ptr => valid(ptr.value))))
584  // store will be commited iff both sta & std have been writebacked
585  val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value)))
586  val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last)
587  val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i)))
588  val allowOnlyOneCommit = commit_exception || intrBitSetReg
589  // for instructions that may block others, we don't allow them to commit
590  for (i <- 0 until CommitWidth) {
591    // defaults: state === s_idle and instructions commit
592    // when intrBitSetReg, allow only one instruction to commit at each clock cycle
593    val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst
594    io.commits.valid(i) := commit_v(i) && commit_w(i) && !isBlocked && !misPredBlock && !isReplaying && !lastCycleFlush && !hasWFI
595    io.commits.walkValid(i) := DontCare
596    io.commits.info(i)  := dispatchDataRead(i)
597
598    when (state === s_walk) {
599      io.commits.valid(i) := commit_v(i) && shouldWalkVec(i)
600      io.commits.walkValid(i) := commit_v(i) && shouldWalkVec(i)
601    }.elsewhen(state === s_extrawalk) {
602      io.commits.valid(i) := (if (i < RenameWidth) usedSpaceForMPR(RenameWidth-i-1) else false.B)
603      io.commits.walkValid(i) := (if (i < RenameWidth) usedSpaceForMPR(RenameWidth-i-1) else false.B)
604      io.commits.info(i)  := (if (i < RenameWidth) extraSpaceForMPR(RenameWidth-i-1) else DontCare)
605    }
606
607    XSInfo(state === s_idle && io.commits.valid(i),
608      "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n",
609      debug_microOp(deqPtrVec(i).value).cf.pc,
610      io.commits.info(i).rfWen,
611      io.commits.info(i).ldest,
612      io.commits.info(i).pdest,
613      io.commits.info(i).old_pdest,
614      debug_exuData(deqPtrVec(i).value),
615      fflagsDataRead(i)
616    )
617    XSInfo(state === s_walk && io.commits.valid(i), "walked pc %x wen %d ldst %d data %x\n",
618      debug_microOp(walkPtrVec(i).value).cf.pc,
619      io.commits.info(i).rfWen,
620      io.commits.info(i).ldest,
621      debug_exuData(walkPtrVec(i).value)
622    )
623    XSInfo(state === s_extrawalk && io.commits.valid(i), "use extra space walked wen %d ldst %d\n",
624      io.commits.info(i).rfWen,
625      io.commits.info(i).ldest
626    )
627  }
628  if (env.EnableDifftest) {
629    io.commits.info.map(info => dontTouch(info.pc))
630  }
631
632  // sync fflags/dirty_fs to csr
633  io.csr.fflags := RegNext(fflags)
634  io.csr.dirty_fs := RegNext(dirty_fs)
635
636  // commit load/store to lsq
637  val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.LOAD))
638  val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.STORE))
639  io.lsq.lcommit := RegNext(Mux(io.commits.isWalk, 0.U, PopCount(ldCommitVec)))
640  io.lsq.scommit := RegNext(Mux(io.commits.isWalk, 0.U, PopCount(stCommitVec)))
641  io.lsq.pendingld := RegNext(!io.commits.isWalk && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value))
642  io.lsq.pendingst := RegNext(!io.commits.isWalk && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value))
643  io.lsq.commit := RegNext(!io.commits.isWalk && io.commits.valid(0))
644
645  /**
646    * state changes
647    * (1) exceptions: when exception occurs, cancels all and switch to s_idle
648    * (2) redirect: switch to s_walk or s_extrawalk (depends on whether there're pending instructions in dispatch1)
649    * (3) walk: when walking comes to the end, switch to s_walk
650    * (4) s_extrawalk to s_walk
651    */
652  val state_next = Mux(io.redirect.valid,
653    Mux(io.enq.needAlloc.asUInt.orR, s_extrawalk, s_walk),
654    Mux(state === s_walk && walkFinished,
655      s_idle,
656      Mux(state === s_extrawalk, s_walk, state)
657    )
658  )
659  state := state_next
660
661  /**
662    * pointers and counters
663    */
664  val deqPtrGenModule = Module(new RobDeqPtrWrapper)
665  deqPtrGenModule.io.state := state
666  deqPtrGenModule.io.deq_v := commit_v
667  deqPtrGenModule.io.deq_w := commit_w
668  deqPtrGenModule.io.exception_state := exceptionDataRead
669  deqPtrGenModule.io.intrBitSetReg := intrBitSetReg
670  deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec
671  deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value)
672  deqPtrGenModule.io.misPredBlock := misPredBlock
673  deqPtrGenModule.io.isReplaying := isReplaying
674  deqPtrGenModule.io.hasWFI := hasWFI
675  deqPtrVec := deqPtrGenModule.io.out
676  val deqPtrVec_next = deqPtrGenModule.io.next_out
677
678  val enqPtrGenModule = Module(new RobEnqPtrWrapper)
679  enqPtrGenModule.io.redirect := io.redirect
680  enqPtrGenModule.io.allowEnqueue := allowEnqueue
681  enqPtrGenModule.io.hasBlockBackward := hasBlockBackward
682  enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid))
683  enqPtr := enqPtrGenModule.io.out
684
685  val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U)
686  // next walkPtrVec:
687  // (1) redirect occurs: update according to state
688  // (2) walk: move backwards
689  val walkPtrVec_next = Mux(io.redirect.valid && state =/= s_extrawalk,
690    Mux(state === s_walk,
691      VecInit(walkPtrVec.map(_ - thisCycleWalkCount)),
692      VecInit((0 until CommitWidth).map(i => enqPtr - (i+1).U))
693    ),
694    Mux(state === s_walk, VecInit(walkPtrVec.map(_ - CommitWidth.U)), walkPtrVec)
695  )
696  walkPtrVec := walkPtrVec_next
697
698  val lastCycleRedirect = RegNext(io.redirect.valid)
699  val trueValidCounter = Mux(lastCycleRedirect, distanceBetween(enqPtr, deqPtr), validCounter)
700  val commitCnt = PopCount(io.commits.valid)
701  validCounter := Mux(state === s_idle,
702    (validCounter - commitCnt) + dispatchNum,
703    trueValidCounter
704  )
705
706  allowEnqueue := Mux(state === s_idle,
707    validCounter + dispatchNum <= (RobSize - RenameWidth).U,
708    trueValidCounter <= (RobSize - RenameWidth).U
709  )
710
711  val currentWalkPtr = Mux(state === s_walk || state === s_extrawalk, walkPtr, enqPtr - 1.U)
712  val redirectWalkDistance = distanceBetween(currentWalkPtr, io.redirect.bits.robIdx)
713  when (io.redirect.valid) {
714    walkCounter := Mux(state === s_walk,
715      // NOTE: +& is used here because:
716      // When rob is full and the head instruction causes an exception,
717      // the redirect robIdx is the deqPtr. In this case, currentWalkPtr is
718      // enqPtr - 1.U and redirectWalkDistance is RobSize - 1.
719      // Since exceptions flush the instruction itself, flushItSelf is true.B.
720      // Previously we use `+` to count the walk distance and it causes overflows
721      // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize.
722      // The width of walkCounter also needs to be changed.
723      redirectWalkDistance +& io.redirect.bits.flushItself() - commitCnt,
724      redirectWalkDistance +& io.redirect.bits.flushItself()
725    )
726  }.elsewhen (state === s_walk) {
727    walkCounter := walkCounter - commitCnt
728    XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n")
729  }
730
731
732  /**
733    * States
734    * We put all the stage bits changes here.
735
736    * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit);
737    * All states: (1) valid; (2) writebacked; (3) flagBkup
738    */
739  val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value)))
740
741  // enqueue logic writes 6 valid
742  for (i <- 0 until RenameWidth) {
743    when (canEnqueue(i) && !io.redirect.valid) {
744      valid(enqPtrVec(i).value) := true.B
745    }
746  }
747  // dequeue/walk logic writes 6 valid, dequeue and walk will not happen at the same time
748  for (i <- 0 until CommitWidth) {
749    when (io.commits.valid(i) && state =/= s_extrawalk) {
750      valid(commitReadAddr(i)) := false.B
751    }
752  }
753  // reset: when exception, reset all valid to false
754  when (reset.asBool) {
755    for (i <- 0 until RobSize) {
756      valid(i) := false.B
757    }
758  }
759
760  // status field: writebacked
761  // enqueue logic set 6 writebacked to false
762  for (i <- 0 until RenameWidth) {
763    when (canEnqueue(i)) {
764      val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec).asUInt.orR
765      val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend
766      val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove
767      writebacked(enqPtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerHit
768      val isStu = io.enq.req(i).bits.ctrl.fuType === FuType.stu
769      store_data_writebacked(enqPtrVec(i).value) := !isStu
770    }
771  }
772  when (exceptionGen.io.out.valid) {
773    val wbIdx = exceptionGen.io.out.bits.robIdx.value
774    writebacked(wbIdx) := true.B
775    store_data_writebacked(wbIdx) := true.B
776  }
777  // writeback logic set numWbPorts writebacked to true
778  for ((wb, cfgs) <- exuWriteback.zip(wbExuConfigs(exeWbSel))) {
779    when (wb.valid) {
780      val wbIdx = wb.bits.uop.robIdx.value
781      val wbHasException = ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, cfgs).asUInt.orR
782      val wbHasTriggerHit = wb.bits.uop.cf.trigger.getHitBackend
783      val wbHasFlushPipe = cfgs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe
784      val wbHasReplayInst = cfgs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst
785      val block_wb = wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit
786      writebacked(wbIdx) := !block_wb
787    }
788  }
789  // store data writeback logic mark store as data_writebacked
790  for (wb <- stdWriteback) {
791    when(RegNext(wb.valid)) {
792      store_data_writebacked(RegNext(wb.bits.uop.robIdx.value)) := true.B
793    }
794  }
795
796  // flagBkup
797  // enqueue logic set 6 flagBkup at most
798  for (i <- 0 until RenameWidth) {
799    when (canEnqueue(i)) {
800      flagBkup(enqPtrVec(i).value) := enqPtrVec(i).flag
801    }
802  }
803
804  // interrupt_safe
805  for (i <- 0 until RenameWidth) {
806    // We RegNext the updates for better timing.
807    // Note that instructions won't change the system's states in this cycle.
808    when (RegNext(canEnqueue(i))) {
809      // For now, we allow non-load-store instructions to trigger interrupts
810      // For MMIO instructions, they should not trigger interrupts since they may
811      // be sent to lower level before it writes back.
812      // However, we cannot determine whether a load/store instruction is MMIO.
813      // Thus, we don't allow load/store instructions to trigger an interrupt.
814      // TODO: support non-MMIO load-store instructions to trigger interrupts
815      val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.ctrl.commitType)
816      interrupt_safe(RegNext(enqPtrVec(i).value)) := RegNext(allow_interrupts)
817    }
818  }
819
820  /**
821    * read and write of data modules
822    */
823  val commitReadAddr_next = Mux(state_next === s_idle,
824    VecInit(deqPtrVec_next.map(_.value)),
825    VecInit(walkPtrVec_next.map(_.value))
826  )
827  dispatchData.io.wen := canEnqueue
828  dispatchData.io.waddr := enqPtrVec.map(_.value)
829  dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) =>
830    wdata.ldest := req.ctrl.ldest
831    wdata.rfWen := req.ctrl.rfWen
832    wdata.fpWen := req.ctrl.fpWen
833    wdata.wflags := req.ctrl.fpu.wflags
834    wdata.commitType := req.ctrl.commitType
835    wdata.pdest := req.pdest
836    wdata.old_pdest := req.old_pdest
837    wdata.ftqIdx := req.cf.ftqPtr
838    wdata.ftqOffset := req.cf.ftqOffset
839    wdata.pc := req.cf.pc
840  }
841  dispatchData.io.raddr := commitReadAddr_next
842
843  exceptionGen.io.redirect <> io.redirect
844  exceptionGen.io.flush := io.flushOut.valid
845  for (i <- 0 until RenameWidth) {
846    exceptionGen.io.enq(i).valid := canEnqueue(i)
847    exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx
848    exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec)
849    exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe
850    exceptionGen.io.enq(i).bits.replayInst := false.B
851    XSError(canEnqueue(i) && io.enq.req(i).bits.ctrl.replayInst, "enq should not set replayInst")
852    exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep
853    exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.cf.crossPageIPFFix
854    exceptionGen.io.enq(i).bits.trigger.clear()
855    exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.cf.trigger.frontendHit
856  }
857
858  println(s"ExceptionGen:")
859  val exceptionCases = exceptionPorts.map(_._1.flatMap(_.exceptionOut).distinct.sorted)
860  require(exceptionCases.length == exceptionGen.io.wb.length)
861  for ((((configs, wb), exc_wb), i) <- exceptionPorts.zip(exceptionGen.io.wb).zipWithIndex) {
862    exc_wb.valid                := wb.valid
863    exc_wb.bits.robIdx          := wb.bits.uop.robIdx
864    exc_wb.bits.exceptionVec    := ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, configs)
865    exc_wb.bits.flushPipe       := configs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe
866    exc_wb.bits.replayInst      := configs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst
867    exc_wb.bits.singleStep      := false.B
868    exc_wb.bits.crossPageIPFFix := false.B
869    // TODO: make trigger configurable
870    exc_wb.bits.trigger.clear()
871    exc_wb.bits.trigger.backendHit := wb.bits.uop.cf.trigger.backendHit
872    println(s"  [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " +
873      s"flushPipe ${configs.exists(_.flushPipe)}, " +
874      s"replayInst ${configs.exists(_.replayInst)}")
875  }
876
877  val fflags_wb = fflagsPorts.map(_._2)
878  val fflagsDataModule = Module(new SyncDataModuleTemplate(
879    UInt(5.W), RobSize, CommitWidth, fflags_wb.size)
880  )
881  for(i <- fflags_wb.indices){
882    fflagsDataModule.io.wen  (i) := fflags_wb(i).valid
883    fflagsDataModule.io.waddr(i) := fflags_wb(i).bits.uop.robIdx.value
884    fflagsDataModule.io.wdata(i) := fflags_wb(i).bits.fflags
885  }
886  fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value))
887  fflagsDataRead := fflagsDataModule.io.rdata
888
889
890  val instrCnt = RegInit(0.U(64.W))
891  val fuseCommitCnt = PopCount(io.commits.valid.zip(io.commits.info).map{ case (v, i) => v && CommitType.isFused(i.commitType) })
892  val trueCommitCnt = commitCnt +& fuseCommitCnt
893  val retireCounter = Mux(state === s_idle, trueCommitCnt, 0.U)
894  instrCnt := instrCnt + retireCounter
895  io.csr.perfinfo.retiredInstr := RegNext(retireCounter)
896  io.robFull := !allowEnqueue
897
898  /**
899    * debug info
900    */
901  XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n")
902  XSDebug("")
903  for(i <- 0 until RobSize){
904    XSDebug(false, !valid(i), "-")
905    XSDebug(false, valid(i) && writebacked(i), "w")
906    XSDebug(false, valid(i) && !writebacked(i), "v")
907  }
908  XSDebug(false, true.B, "\n")
909
910  for(i <- 0 until RobSize) {
911    if(i % 4 == 0) XSDebug("")
912    XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc)
913    XSDebug(false, !valid(i), "- ")
914    XSDebug(false, valid(i) && writebacked(i), "w ")
915    XSDebug(false, valid(i) && !writebacked(i), "v ")
916    if(i % 4 == 3) XSDebug(false, true.B, "\n")
917  }
918
919  def ifCommit(counter: UInt): UInt = Mux(io.commits.isWalk, 0.U, counter)
920
921  val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_))
922  XSPerfAccumulate("clock_cycle", 1.U)
923  QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue)
924  XSPerfAccumulate("commitUop", ifCommit(commitCnt))
925  XSPerfAccumulate("commitInstr", ifCommit(trueCommitCnt))
926  val commitIsMove = commitDebugUop.map(_.ctrl.isMove)
927  XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m })))
928  val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove)
929  XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.valid zip commitMoveElim map { case (v, e) => v && e })))
930  XSPerfAccumulate("commitInstrFused", ifCommit(fuseCommitCnt))
931  val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD)
932  val commitLoadValid = io.commits.valid.zip(commitIsLoad).map{ case (v, t) => v && t }
933  XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid)))
934  val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH)
935  val commitBranchValid = io.commits.valid.zip(commitIsBranch).map{ case (v, t) => v && t }
936  XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid)))
937  val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit)
938  XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })))
939  val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE)
940  XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t })))
941  XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i))))
942  // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire)))
943  // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready)))
944  XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U))
945  XSPerfAccumulate("walkCycle", state === s_walk || state === s_extrawalk)
946  val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value)
947  val deqUopCommitType = io.commits.info(0).commitType
948  XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL)
949  XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH)
950  XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD)
951  XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE)
952  XSPerfAccumulate("robHeadPC", io.commits.info(0).pc)
953  val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime)
954  val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime)
955  val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime)
956  val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime)
957  val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
958  val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime)
959  val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime)
960  def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = {
961    cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _)
962  }
963  for (fuType <- FuType.functionNameMap.keys) {
964    val fuName = FuType.functionNameMap(fuType)
965    val commitIsFuType = io.commits.valid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U )
966    XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType)))
967    XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency)))
968    XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency)))
969    XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency)))
970    XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency)))
971    XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency)))
972    XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency)))
973    XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency)))
974    if (fuType == FuType.fmac.litValue) {
975      val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 )
976      XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma)))
977      XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency)))
978      XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency)))
979    }
980  }
981
982  //difftest signals
983  val firstValidCommit = (deqPtr + PriorityMux(io.commits.valid, VecInit(List.tabulate(CommitWidth)(_.U)))).value
984
985  val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W)))
986  val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W)))
987
988  for(i <- 0 until CommitWidth) {
989    val idx = deqPtrVec(i).value
990    wdata(i) := debug_exuData(idx)
991    wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN)
992  }
993  val retireCounterFix = Mux(io.exception.valid, 1.U, retireCounter)
994  val retirePCFix = SignExt(Mux(io.exception.valid, io.exception.bits.uop.cf.pc, debug_microOp(firstValidCommit).cf.pc), XLEN)
995  val retireInstFix = Mux(io.exception.valid, io.exception.bits.uop.cf.instr, debug_microOp(firstValidCommit).cf.instr)
996
997  if (env.EnableDifftest) {
998    for (i <- 0 until CommitWidth) {
999      val difftest = Module(new DifftestInstrCommit)
1000      difftest.io.clock    := clock
1001      difftest.io.coreid   := io.hartId
1002      difftest.io.index    := i.U
1003
1004      val ptr = deqPtrVec(i).value
1005      val uop = commitDebugUop(i)
1006      val exuOut = debug_exuDebug(ptr)
1007      val exuData = debug_exuData(ptr)
1008      difftest.io.valid    := RegNext(RegNext(RegNext(io.commits.valid(i) && !io.commits.isWalk)))
1009      difftest.io.pc       := RegNext(RegNext(RegNext(SignExt(uop.cf.pc, XLEN))))
1010      difftest.io.instr    := RegNext(RegNext(RegNext(uop.cf.instr)))
1011      difftest.io.special  := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType))))
1012      // when committing an eliminated move instruction,
1013      // we must make sure that skip is properly set to false (output from EXU is random value)
1014      difftest.io.skip     := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1015      difftest.io.isRVC    := RegNext(RegNext(RegNext(uop.cf.pd.isRVC)))
1016      difftest.io.rfwen    := RegNext(RegNext(RegNext(io.commits.valid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U)))
1017      difftest.io.fpwen    := RegNext(RegNext(RegNext(io.commits.valid(i) && io.commits.info(i).fpWen)))
1018      difftest.io.wpdest   := RegNext(RegNext(RegNext(io.commits.info(i).pdest)))
1019      difftest.io.wdest    := RegNext(RegNext(RegNext(io.commits.info(i).ldest)))
1020
1021      // // runahead commit hint
1022      // val runahead_commit = Module(new DifftestRunaheadCommitEvent)
1023      // runahead_commit.io.clock := clock
1024      // runahead_commit.io.coreid := io.hartId
1025      // runahead_commit.io.index := i.U
1026      // runahead_commit.io.valid := difftest.io.valid &&
1027      //   (commitBranchValid(i) || commitIsStore(i))
1028      // // TODO: is branch or store
1029      // runahead_commit.io.pc    := difftest.io.pc
1030    }
1031  }
1032  else if (env.AlwaysBasicDiff) {
1033    // These are the structures used by difftest only and should be optimized after synthesis.
1034    val dt_eliminatedMove = Mem(RobSize, Bool())
1035    val dt_isRVC = Mem(RobSize, Bool())
1036    val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle))
1037    for (i <- 0 until RenameWidth) {
1038      when (canEnqueue(i)) {
1039        dt_eliminatedMove(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove
1040        dt_isRVC(enqPtrVec(i).value) := io.enq.req(i).bits.cf.pd.isRVC
1041      }
1042    }
1043    for (wb <- exuWriteback) {
1044      when (wb.valid) {
1045        val wbIdx = wb.bits.uop.robIdx.value
1046        dt_exuDebug(wbIdx) := wb.bits.debug
1047      }
1048    }
1049    // Always instantiate basic difftest modules.
1050    for (i <- 0 until CommitWidth) {
1051      val commitInfo = io.commits.info(i)
1052      val ptr = deqPtrVec(i).value
1053      val exuOut = dt_exuDebug(ptr)
1054      val eliminatedMove = dt_eliminatedMove(ptr)
1055      val isRVC = dt_isRVC(ptr)
1056
1057      val difftest = Module(new DifftestBasicInstrCommit)
1058      difftest.io.clock   := clock
1059      difftest.io.coreid  := io.hartId
1060      difftest.io.index   := i.U
1061      difftest.io.valid   := RegNext(RegNext(RegNext(io.commits.valid(i) && !io.commits.isWalk)))
1062      difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType))))
1063      difftest.io.skip    := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1064      difftest.io.isRVC   := RegNext(RegNext(RegNext(isRVC)))
1065      difftest.io.rfwen   := RegNext(RegNext(RegNext(io.commits.valid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U)))
1066      difftest.io.fpwen   := RegNext(RegNext(RegNext(io.commits.valid(i) && commitInfo.fpWen)))
1067      difftest.io.wpdest  := RegNext(RegNext(RegNext(commitInfo.pdest)))
1068      difftest.io.wdest   := RegNext(RegNext(RegNext(commitInfo.ldest)))
1069    }
1070  }
1071
1072  if (env.EnableDifftest) {
1073    for (i <- 0 until CommitWidth) {
1074      val difftest = Module(new DifftestLoadEvent)
1075      difftest.io.clock  := clock
1076      difftest.io.coreid := io.hartId
1077      difftest.io.index  := i.U
1078
1079      val ptr = deqPtrVec(i).value
1080      val uop = commitDebugUop(i)
1081      val exuOut = debug_exuDebug(ptr)
1082      difftest.io.valid  := RegNext(RegNext(RegNext(io.commits.valid(i) && !io.commits.isWalk)))
1083      difftest.io.paddr  := RegNext(RegNext(RegNext(exuOut.paddr)))
1084      difftest.io.opType := RegNext(RegNext(RegNext(uop.ctrl.fuOpType)))
1085      difftest.io.fuType := RegNext(RegNext(RegNext(uop.ctrl.fuType)))
1086    }
1087  }
1088
1089  // Always instantiate basic difftest modules.
1090  if (env.EnableDifftest) {
1091    val dt_isXSTrap = Mem(RobSize, Bool())
1092    for (i <- 0 until RenameWidth) {
1093      when (canEnqueue(i)) {
1094        dt_isXSTrap(enqPtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap
1095      }
1096    }
1097    val trapVec = io.commits.valid.zip(deqPtrVec).map{ case (v, d) => state === s_idle && v && dt_isXSTrap(d.value) }
1098    val hitTrap = trapVec.reduce(_||_)
1099    val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1))
1100    val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN)
1101    val difftest = Module(new DifftestTrapEvent)
1102    difftest.io.clock    := clock
1103    difftest.io.coreid   := io.hartId
1104    difftest.io.valid    := hitTrap
1105    difftest.io.code     := trapCode
1106    difftest.io.pc       := trapPC
1107    difftest.io.cycleCnt := timer
1108    difftest.io.instrCnt := instrCnt
1109    difftest.io.hasWFI   := hasWFI
1110  }
1111  else if (env.AlwaysBasicDiff) {
1112    val dt_isXSTrap = Mem(RobSize, Bool())
1113    for (i <- 0 until RenameWidth) {
1114      when (canEnqueue(i)) {
1115        dt_isXSTrap(enqPtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap
1116      }
1117    }
1118    val trapVec = io.commits.valid.zip(deqPtrVec).map{ case (v, d) => state === s_idle && v && dt_isXSTrap(d.value) }
1119    val hitTrap = trapVec.reduce(_||_)
1120    val difftest = Module(new DifftestBasicTrapEvent)
1121    difftest.io.clock    := clock
1122    difftest.io.coreid   := io.hartId
1123    difftest.io.valid    := hitTrap
1124    difftest.io.cycleCnt := timer
1125    difftest.io.instrCnt := instrCnt
1126  }
1127
1128  val perfEvents = Seq(
1129    ("rob_interrupt_num       ", io.flushOut.valid && intrEnable                                                                                                   ),
1130    ("rob_exception_num       ", io.flushOut.valid && exceptionEnable                                                                                              ),
1131    ("rob_flush_pipe_num      ", io.flushOut.valid && isFlushPipe                                                                                                  ),
1132    ("rob_replay_inst_num     ", io.flushOut.valid && isFlushPipe && deqHasReplayInst                                                                              ),
1133    ("rob_commitUop           ", ifCommit(commitCnt)                                                                                                               ),
1134    ("rob_commitInstr         ", ifCommit(trueCommitCnt)                                                                                                           ),
1135    ("rob_commitInstrMove     ", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m }))                                               ),
1136    ("rob_commitInstrFused    ", ifCommit(fuseCommitCnt)                                                                                                           ),
1137    ("rob_commitInstrLoad     ", ifCommit(PopCount(commitLoadValid))                                                                                               ),
1138    ("rob_commitInstrLoad     ", ifCommit(PopCount(commitBranchValid))                                                                                               ),
1139    ("rob_commitInstrLoadWait ", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))                                           ),
1140    ("rob_commitInstrStore    ", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t }))                                              ),
1141    ("rob_walkInstr           ", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U)                                                                           ),
1142    ("rob_walkCycle           ", (state === s_walk || state === s_extrawalk)                                                                                       ),
1143    ("rob_1_4_valid           ", (PopCount((0 until RobSize).map(valid(_))) < (RobSize.U/4.U))                                                                     ),
1144    ("rob_2_4_valid           ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/4.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U/2.U))    ),
1145    ("rob_3_4_valid           ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/2.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U*3.U/4.U))),
1146    ("rob_4_4_valid           ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U*3.U/4.U))                                                                 ),
1147  )
1148  generatePerfEvent()
1149}
1150