1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 24import utils._ 25import xiangshan._ 26import xiangshan.backend.exu.ExuConfig 27import xiangshan.frontend.FtqPtr 28 29class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr]( 30 p => p(XSCoreParamsKey).RobSize 31) with HasCircularQueuePtrHelper { 32 33 def needFlush(redirect: Valid[Redirect]): Bool = { 34 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 35 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 36 } 37 38} 39 40object RobPtr { 41 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 42 val ptr = Wire(new RobPtr) 43 ptr.flag := f 44 ptr.value := v 45 ptr 46 } 47} 48 49class RobCSRIO(implicit p: Parameters) extends XSBundle { 50 val intrBitSet = Input(Bool()) 51 val trapTarget = Input(UInt(VAddrBits.W)) 52 val isXRet = Input(Bool()) 53 val wfiEvent = Input(Bool()) 54 55 val fflags = Output(Valid(UInt(5.W))) 56 val dirty_fs = Output(Bool()) 57 val perfinfo = new Bundle { 58 val retiredInstr = Output(UInt(3.W)) 59 } 60} 61 62class RobLsqIO(implicit p: Parameters) extends XSBundle { 63 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 64 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 65 val pendingld = Output(Bool()) 66 val pendingst = Output(Bool()) 67 val commit = Output(Bool()) 68} 69 70class RobEnqIO(implicit p: Parameters) extends XSBundle { 71 val canAccept = Output(Bool()) 72 val isEmpty = Output(Bool()) 73 // valid vector, for robIdx gen and walk 74 val needAlloc = Vec(RenameWidth, Input(Bool())) 75 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 76 val resp = Vec(RenameWidth, Output(new RobPtr)) 77} 78 79class RobDispatchData(implicit p: Parameters) extends RobCommitInfo 80 81class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 82 val io = IO(new Bundle { 83 // for commits/flush 84 val state = Input(UInt(2.W)) 85 val deq_v = Vec(CommitWidth, Input(Bool())) 86 val deq_w = Vec(CommitWidth, Input(Bool())) 87 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 88 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 89 val intrBitSetReg = Input(Bool()) 90 val hasNoSpecExec = Input(Bool()) 91 val interrupt_safe = Input(Bool()) 92 val misPredBlock = Input(Bool()) 93 val isReplaying = Input(Bool()) 94 val hasWFI = Input(Bool()) 95 // output: the CommitWidth deqPtr 96 val out = Vec(CommitWidth, Output(new RobPtr)) 97 val next_out = Vec(CommitWidth, Output(new RobPtr)) 98 }) 99 100 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 101 102 // for exceptions (flushPipe included) and interrupts: 103 // only consider the first instruction 104 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe 105 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0) 106 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 107 108 // for normal commits: only to consider when there're no exceptions 109 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 110 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 111 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i) && !io.misPredBlock && !io.isReplaying && !io.hasWFI)) 112 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 113 // when io.intrBitSetReg or there're possible exceptions in these instructions, 114 // only one instruction is allowed to commit 115 val allowOnlyOne = commit_exception || io.intrBitSetReg 116 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 117 118 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 119 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid, commitDeqPtrVec, deqPtrVec) 120 121 deqPtrVec := deqPtrVec_next 122 123 io.next_out := deqPtrVec_next 124 io.out := deqPtrVec 125 126 when (io.state === 0.U) { 127 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 128 } 129 130} 131 132class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 133 val io = IO(new Bundle { 134 // for input redirect 135 val redirect = Input(Valid(new Redirect)) 136 // for enqueue 137 val allowEnqueue = Input(Bool()) 138 val hasBlockBackward = Input(Bool()) 139 val enq = Vec(RenameWidth, Input(Bool())) 140 val out = Output(new RobPtr) 141 }) 142 143 val enqPtr = RegInit(0.U.asTypeOf(new RobPtr)) 144 145 // enqueue 146 val canAccept = io.allowEnqueue && !io.hasBlockBackward 147 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 148 149 when (io.redirect.valid) { 150 enqPtr := io.redirect.bits.robIdx + Mux(io.redirect.bits.flushItself(), 0.U, 1.U) 151 }.otherwise { 152 enqPtr := enqPtr + dispatchNum 153 } 154 155 io.out := enqPtr 156 157} 158 159class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 160 // val valid = Bool() 161 val robIdx = new RobPtr 162 val exceptionVec = ExceptionVec() 163 val flushPipe = Bool() 164 val replayInst = Bool() // redirect to that inst itself 165 val singleStep = Bool() // TODO add frontend hit beneath 166 val crossPageIPFFix = Bool() 167 val trigger = new TriggerCf 168 169// def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend 170// def trigger_after = trigger.getTimingBackend && trigger.getHitBackend 171 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit 172 def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit 173 // only exceptions are allowed to writeback when enqueue 174 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit 175} 176 177class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 178 val io = IO(new Bundle { 179 val redirect = Input(Valid(new Redirect)) 180 val flush = Input(Bool()) 181 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 182 val wb = Vec(1 + LoadPipelineWidth + StorePipelineWidth, Flipped(ValidIO(new RobExceptionInfo))) 183 val out = ValidIO(new RobExceptionInfo) 184 val state = ValidIO(new RobExceptionInfo) 185 }) 186 187 def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = { 188 assert(valid.length == bits.length) 189 assert(isPow2(valid.length)) 190 if (valid.length == 1) { 191 (valid, bits) 192 } else if (valid.length == 2) { 193 val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) 194 for (i <- res.indices) { 195 res(i).valid := valid(i) 196 res(i).bits := bits(i) 197 } 198 val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1)) 199 (Seq(oldest.valid), Seq(oldest.bits)) 200 } else { 201 val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2)) 202 val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2)) 203 getOldest(left._1 ++ right._1, left._2 ++ right._2) 204 } 205 } 206 207 val current = Reg(Valid(new RobExceptionInfo)) 208 209 // orR the exceptionVec 210 val lastCycleFlush = RegNext(io.flush) 211 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 212 val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush) 213 214 // s0: compare wb(1)~wb(LoadPipelineWidth) and wb(1 + LoadPipelineWidth)~wb(LoadPipelineWidth + StorePipelineWidth) 215 val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) } 216 val csr_wb_bits = io.wb(0).bits 217 val load_wb_bits = getOldest(in_wb_valid.slice(1, 1 + LoadPipelineWidth), io.wb.map(_.bits).slice(1, 1 + LoadPipelineWidth))._2(0) 218 val store_wb_bits = getOldest(in_wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth), io.wb.map(_.bits).slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth))._2(0) 219 val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid.slice(1, 1 + LoadPipelineWidth).reduce(_ || _), wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth).reduce(_ || _)))) 220 val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits))) 221 222 // s1: compare last four and current flush 223 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 224 val compare_01_valid = s0_out_valid(0) || s0_out_valid(1) 225 val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0)) 226 val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2)) 227 val s1_out_bits = RegNext(compare_bits) 228 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 229 230 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 231 val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits))) 232 233 // s2: compare the input exception with the current one 234 // priorities: 235 // (1) system reset 236 // (2) current is valid: flush, remain, merge, update 237 // (3) current is not valid: s1 or enq 238 val current_flush = current.bits.robIdx.needFlush(io.redirect) || io.flush 239 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 240 when (reset.asBool) { 241 current.valid := false.B 242 }.elsewhen (current.valid) { 243 when (current_flush) { 244 current.valid := Mux(s1_flush, false.B, s1_out_valid) 245 } 246 when (s1_out_valid && !s1_flush) { 247 when (isAfter(current.bits.robIdx, s1_out_bits.robIdx)) { 248 current.bits := s1_out_bits 249 }.elsewhen (current.bits.robIdx === s1_out_bits.robIdx) { 250 current.bits.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.bits.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 251 current.bits.flushPipe := s1_out_bits.flushPipe || current.bits.flushPipe 252 current.bits.replayInst := s1_out_bits.replayInst || current.bits.replayInst 253 current.bits.singleStep := s1_out_bits.singleStep || current.bits.singleStep 254 current.bits.trigger := (s1_out_bits.trigger.asUInt | current.bits.trigger.asUInt).asTypeOf(new TriggerCf) 255 } 256 } 257 }.elsewhen (s1_out_valid && !s1_flush) { 258 current.valid := true.B 259 current.bits := s1_out_bits 260 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 261 current.valid := true.B 262 current.bits := enq_bits 263 } 264 265 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 266 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 267 io.state := current 268 269} 270 271class RobFlushInfo(implicit p: Parameters) extends XSBundle { 272 val ftqIdx = new FtqPtr 273 val robIdx = new RobPtr 274 val ftqOffset = UInt(log2Up(PredictWidth).W) 275 val replayInst = Bool() 276} 277 278class Rob(implicit p: Parameters) extends LazyModule with HasWritebackSink with HasXSParameter { 279 280 lazy val module = new RobImp(this) 281 282 override def generateWritebackIO( 283 thisMod: Option[HasWritebackSource] = None, 284 thisModImp: Option[HasWritebackSourceImp] = None 285 ): Unit = { 286 val sources = writebackSinksImp(thisMod, thisModImp) 287 module.io.writeback.zip(sources).foreach(x => x._1 := x._2) 288 } 289} 290 291class RobImp(outer: Rob)(implicit p: Parameters) extends LazyModuleImp(outer) 292 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents { 293 val wbExuConfigs = outer.writebackSinksParams.map(_.exuConfigs) 294 val numWbPorts = wbExuConfigs.map(_.length) 295 296 val io = IO(new Bundle() { 297 val hartId = Input(UInt(8.W)) 298 val redirect = Input(Valid(new Redirect)) 299 val enq = new RobEnqIO 300 val flushOut = ValidIO(new Redirect) 301 val exception = ValidIO(new ExceptionInfo) 302 // exu + brq 303 val writeback = MixedVec(numWbPorts.map(num => Vec(num, Flipped(ValidIO(new ExuOutput))))) 304 val commits = new RobCommitIO 305 val lsq = new RobLsqIO 306 val robDeqPtr = Output(new RobPtr) 307 val csr = new RobCSRIO 308 val robFull = Output(Bool()) 309 val cpu_halt = Output(Bool()) 310 }) 311 312 def selectWb(index: Int, func: Seq[ExuConfig] => Boolean): Seq[(Seq[ExuConfig], ValidIO[ExuOutput])] = { 313 wbExuConfigs(index).zip(io.writeback(index)).filter(x => func(x._1)) 314 } 315 val exeWbSel = outer.selWritebackSinks(_.exuConfigs.length) 316 val fflagsWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.writeFflags))) 317 val fflagsPorts = selectWb(fflagsWbSel, _.exists(_.writeFflags)) 318 val exceptionWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.needExceptionGen))) 319 val exceptionPorts = selectWb(fflagsWbSel, _.exists(_.needExceptionGen)) 320 val exuWbPorts = selectWb(exeWbSel, _.forall(_ != StdExeUnitCfg)) 321 val stdWbPorts = selectWb(exeWbSel, _.contains(StdExeUnitCfg)) 322 println(s"Rob: size $RobSize, numWbPorts: $numWbPorts, commitwidth: $CommitWidth") 323 println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}") 324 println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}") 325 println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}") 326 327 328 val exuWriteback = exuWbPorts.map(_._2) 329 val stdWriteback = stdWbPorts.map(_._2) 330 331 // instvalid field 332 val valid = Mem(RobSize, Bool()) 333 // writeback status 334 val writebacked = Mem(RobSize, Bool()) 335 val store_data_writebacked = Mem(RobSize, Bool()) 336 // data for redirect, exception, etc. 337 val flagBkup = Mem(RobSize, Bool()) 338 // some instructions are not allowed to trigger interrupts 339 // They have side effects on the states of the processor before they write back 340 val interrupt_safe = Mem(RobSize, Bool()) 341 342 // data for debug 343 // Warn: debug_* prefix should not exist in generated verilog. 344 val debug_microOp = Mem(RobSize, new MicroOp) 345 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 346 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 347 348 // pointers 349 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 350 val enqPtr = Wire(new RobPtr) 351 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 352 353 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 354 val validCounter = RegInit(0.U(log2Ceil(RobSize + 1).W)) 355 val allowEnqueue = RegInit(true.B) 356 357 val enqPtrVec = VecInit((0 until RenameWidth).map(i => enqPtr + PopCount(io.enq.needAlloc.take(i)))) 358 val deqPtr = deqPtrVec(0) 359 val walkPtr = walkPtrVec(0) 360 361 val isEmpty = enqPtr === deqPtr 362 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 363 364 /** 365 * states of Rob 366 */ 367 val s_idle :: s_walk :: s_extrawalk :: Nil = Enum(3) 368 val state = RegInit(s_idle) 369 370 /** 371 * Data Modules 372 * 373 * CommitDataModule: data from dispatch 374 * (1) read: commits/walk/exception 375 * (2) write: enqueue 376 * 377 * WritebackData: data from writeback 378 * (1) read: commits/walk/exception 379 * (2) write: write back from exe units 380 */ 381 val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth)) 382 val dispatchDataRead = dispatchData.io.rdata 383 384 val exceptionGen = Module(new ExceptionGen) 385 val exceptionDataRead = exceptionGen.io.state 386 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 387 388 io.robDeqPtr := deqPtr 389 390 /** 391 * Enqueue (from dispatch) 392 */ 393 // special cases 394 val hasBlockBackward = RegInit(false.B) 395 val hasNoSpecExec = RegInit(false.B) 396 val doingSvinval = RegInit(false.B) 397 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 398 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 399 when (isEmpty) { hasBlockBackward:= false.B } 400 // When any instruction commits, hasNoSpecExec should be set to false.B 401 when (io.commits.valid.asUInt.orR && state =/= s_extrawalk) { hasNoSpecExec:= false.B } 402 403 // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. 404 // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. 405 // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. 406 val hasWFI = RegInit(false.B) 407 io.cpu_halt := hasWFI 408 when (RegNext(RegNext(io.csr.wfiEvent))) { 409 hasWFI := false.B 410 } 411 412 io.enq.canAccept := allowEnqueue && !hasBlockBackward 413 io.enq.resp := enqPtrVec 414 val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept)) 415 val timer = GTimer() 416 for (i <- 0 until RenameWidth) { 417 // we don't check whether io.redirect is valid here since redirect has higher priority 418 when (canEnqueue(i)) { 419 val enqUop = io.enq.req(i).bits 420 // store uop in data module and debug_microOp Vec 421 debug_microOp(enqPtrVec(i).value) := enqUop 422 debug_microOp(enqPtrVec(i).value).debugInfo.dispatchTime := timer 423 debug_microOp(enqPtrVec(i).value).debugInfo.enqRsTime := timer 424 debug_microOp(enqPtrVec(i).value).debugInfo.selectTime := timer 425 debug_microOp(enqPtrVec(i).value).debugInfo.issueTime := timer 426 debug_microOp(enqPtrVec(i).value).debugInfo.writebackTime := timer 427 when (enqUop.ctrl.blockBackward) { 428 hasBlockBackward := true.B 429 } 430 when (enqUop.ctrl.noSpecExec) { 431 hasNoSpecExec := true.B 432 } 433 val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend 434 val enqHasException = ExceptionNO.selectFrontend(enqUop.cf.exceptionVec).asUInt.orR 435 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 436 when(!enqHasTriggerHit && !enqHasException && FuType.isSvinvalBegin(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)) 437 { 438 doingSvinval := true.B 439 } 440 // the end instruction of Svinval enqs so clear doingSvinval 441 when(!enqHasTriggerHit && !enqHasException && FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)) 442 { 443 doingSvinval := false.B 444 } 445 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 446 assert(!doingSvinval || (FuType.isSvinval(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe) || 447 FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))) 448 when (enqUop.ctrl.isWFI && !enqHasException && !enqHasTriggerHit) { 449 hasWFI := true.B 450 } 451 } 452 } 453 val dispatchNum = Mux(io.enq.canAccept, PopCount(Cat(io.enq.req.map(_.valid))), 0.U) 454 io.enq.isEmpty := RegNext(isEmpty && dispatchNum === 0.U) 455 456 // debug info for enqueue (dispatch) 457 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 458 XSInfo(dispatchNum =/= 0.U, p"dispatched $dispatchNum insts\n") 459 460 461 /** 462 * Writeback (from execution units) 463 */ 464 for (wb <- exuWriteback) { 465 when (wb.valid) { 466 val wbIdx = wb.bits.uop.robIdx.value 467 debug_exuData(wbIdx) := wb.bits.data 468 debug_exuDebug(wbIdx) := wb.bits.debug 469 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.uop.debugInfo.enqRsTime 470 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.uop.debugInfo.selectTime 471 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.uop.debugInfo.issueTime 472 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.uop.debugInfo.writebackTime 473 474 val debug_Uop = debug_microOp(wbIdx) 475 XSInfo(true.B, 476 p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " + 477 p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " + 478 p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.uop.robIdx}\n" 479 ) 480 } 481 } 482 val writebackNum = PopCount(exuWriteback.map(_.valid)) 483 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 484 485 486 /** 487 * RedirectOut: Interrupt and Exceptions 488 */ 489 val deqDispatchData = dispatchDataRead(0) 490 val debug_deqUop = debug_microOp(deqPtr.value) 491 492 val intrBitSetReg = RegNext(io.csr.intrBitSet) 493 val intrEnable = intrBitSetReg && !hasNoSpecExec && interrupt_safe(deqPtr.value) 494 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 495 val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR || 496 exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit) 497 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 498 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 499 val exceptionEnable = writebacked(deqPtr.value) && deqHasException 500 501 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 502 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n") 503 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n") 504 505 val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 506 507 // io.flushOut will trigger redirect at the next cycle. 508 // Block any redirect or commit at the next cycle. 509 val lastCycleFlush = RegNext(io.flushOut.valid) 510 511 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 512 io.flushOut.bits := DontCare 513 io.flushOut.bits.robIdx := deqPtr 514 io.flushOut.bits.ftqIdx := deqDispatchData.ftqIdx 515 io.flushOut.bits.ftqOffset := deqDispatchData.ftqOffset 516 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 517 io.flushOut.bits.interrupt := true.B 518 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 519 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 520 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 521 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 522 523 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 524 io.exception.valid := RegNext(exceptionHappen) 525 io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen) 526 io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 527 io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 528 io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 529 io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 530 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 531 io.exception.bits.uop.cf.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 532 533 XSDebug(io.flushOut.valid, 534 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " + 535 p"excp $exceptionEnable flushPipe $isFlushPipe " + 536 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 537 538 539 /** 540 * Commits (and walk) 541 * They share the same width. 542 */ 543 val walkCounter = Reg(UInt(log2Up(RobSize + 1).W)) 544 val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter)) 545 val walkFinished = walkCounter <= CommitWidth.U 546 547 // extra space is used when rob has no enough space, but mispredict recovery needs such info to walk regmap 548 require(RenameWidth <= CommitWidth) 549 val extraSpaceForMPR = Reg(Vec(RenameWidth, new RobDispatchData)) 550 val usedSpaceForMPR = Reg(Vec(RenameWidth, Bool())) 551 when (io.enq.needAlloc.asUInt.orR && io.redirect.valid) { 552 usedSpaceForMPR := io.enq.needAlloc 553 extraSpaceForMPR := dispatchData.io.wdata 554 XSDebug("rob full, switched to s_extrawalk. needExtraSpaceForMPR: %b\n", io.enq.needAlloc.asUInt) 555 } 556 557 // wiring to csr 558 val (wflags, fpWen) = (0 until CommitWidth).map(i => { 559 val v = io.commits.valid(i) 560 val info = io.commits.info(i) 561 (v & info.wflags, v & info.fpWen) 562 }).unzip 563 val fflags = Wire(Valid(UInt(5.W))) 564 fflags.valid := Mux(io.commits.isWalk, false.B, Cat(wflags).orR) 565 fflags.bits := wflags.zip(fflagsDataRead).map({ 566 case (w, f) => Mux(w, f, 0.U) 567 }).reduce(_|_) 568 val dirty_fs = Mux(io.commits.isWalk, false.B, Cat(fpWen).orR) 569 570 // when mispredict branches writeback, stop commit in the next 2 cycles 571 // TODO: don't check all exu write back 572 val misPredWb = Cat(VecInit(exuWriteback.map(wb => 573 wb.bits.redirect.cfiUpdate.isMisPred && wb.bits.redirectValid 574 ))).orR 575 val misPredBlockCounter = Reg(UInt(3.W)) 576 misPredBlockCounter := Mux(misPredWb, 577 "b111".U, 578 misPredBlockCounter >> 1.U 579 ) 580 val misPredBlock = misPredBlockCounter(0) 581 582 io.commits.isWalk := state =/= s_idle 583 val commit_v = Mux(state === s_idle, VecInit(deqPtrVec.map(ptr => valid(ptr.value))), VecInit(walkPtrVec.map(ptr => valid(ptr.value)))) 584 // store will be commited iff both sta & std have been writebacked 585 val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value))) 586 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 587 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 588 val allowOnlyOneCommit = commit_exception || intrBitSetReg 589 // for instructions that may block others, we don't allow them to commit 590 for (i <- 0 until CommitWidth) { 591 // defaults: state === s_idle and instructions commit 592 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 593 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 594 io.commits.valid(i) := commit_v(i) && commit_w(i) && !isBlocked && !misPredBlock && !isReplaying && !lastCycleFlush && !hasWFI 595 io.commits.walkValid(i) := DontCare 596 io.commits.info(i) := dispatchDataRead(i) 597 598 when (state === s_walk) { 599 io.commits.valid(i) := commit_v(i) && shouldWalkVec(i) 600 io.commits.walkValid(i) := commit_v(i) && shouldWalkVec(i) 601 }.elsewhen(state === s_extrawalk) { 602 io.commits.valid(i) := (if (i < RenameWidth) usedSpaceForMPR(RenameWidth-i-1) else false.B) 603 io.commits.walkValid(i) := (if (i < RenameWidth) usedSpaceForMPR(RenameWidth-i-1) else false.B) 604 io.commits.info(i) := (if (i < RenameWidth) extraSpaceForMPR(RenameWidth-i-1) else DontCare) 605 } 606 607 XSInfo(state === s_idle && io.commits.valid(i), 608 "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n", 609 debug_microOp(deqPtrVec(i).value).cf.pc, 610 io.commits.info(i).rfWen, 611 io.commits.info(i).ldest, 612 io.commits.info(i).pdest, 613 io.commits.info(i).old_pdest, 614 debug_exuData(deqPtrVec(i).value), 615 fflagsDataRead(i) 616 ) 617 XSInfo(state === s_walk && io.commits.valid(i), "walked pc %x wen %d ldst %d data %x\n", 618 debug_microOp(walkPtrVec(i).value).cf.pc, 619 io.commits.info(i).rfWen, 620 io.commits.info(i).ldest, 621 debug_exuData(walkPtrVec(i).value) 622 ) 623 XSInfo(state === s_extrawalk && io.commits.valid(i), "use extra space walked wen %d ldst %d\n", 624 io.commits.info(i).rfWen, 625 io.commits.info(i).ldest 626 ) 627 } 628 if (env.EnableDifftest) { 629 io.commits.info.map(info => dontTouch(info.pc)) 630 } 631 632 // sync fflags/dirty_fs to csr 633 io.csr.fflags := RegNext(fflags) 634 io.csr.dirty_fs := RegNext(dirty_fs) 635 636 // commit load/store to lsq 637 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 638 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.STORE)) 639 io.lsq.lcommit := RegNext(Mux(io.commits.isWalk, 0.U, PopCount(ldCommitVec))) 640 io.lsq.scommit := RegNext(Mux(io.commits.isWalk, 0.U, PopCount(stCommitVec))) 641 io.lsq.pendingld := RegNext(!io.commits.isWalk && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value)) 642 io.lsq.pendingst := RegNext(!io.commits.isWalk && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 643 io.lsq.commit := RegNext(!io.commits.isWalk && io.commits.valid(0)) 644 645 /** 646 * state changes 647 * (1) exceptions: when exception occurs, cancels all and switch to s_idle 648 * (2) redirect: switch to s_walk or s_extrawalk (depends on whether there're pending instructions in dispatch1) 649 * (3) walk: when walking comes to the end, switch to s_walk 650 * (4) s_extrawalk to s_walk 651 */ 652 val state_next = Mux(io.redirect.valid, 653 Mux(io.enq.needAlloc.asUInt.orR, s_extrawalk, s_walk), 654 Mux(state === s_walk && walkFinished, 655 s_idle, 656 Mux(state === s_extrawalk, s_walk, state) 657 ) 658 ) 659 state := state_next 660 661 /** 662 * pointers and counters 663 */ 664 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 665 deqPtrGenModule.io.state := state 666 deqPtrGenModule.io.deq_v := commit_v 667 deqPtrGenModule.io.deq_w := commit_w 668 deqPtrGenModule.io.exception_state := exceptionDataRead 669 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 670 deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec 671 deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value) 672 deqPtrGenModule.io.misPredBlock := misPredBlock 673 deqPtrGenModule.io.isReplaying := isReplaying 674 deqPtrGenModule.io.hasWFI := hasWFI 675 deqPtrVec := deqPtrGenModule.io.out 676 val deqPtrVec_next = deqPtrGenModule.io.next_out 677 678 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 679 enqPtrGenModule.io.redirect := io.redirect 680 enqPtrGenModule.io.allowEnqueue := allowEnqueue 681 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 682 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid)) 683 enqPtr := enqPtrGenModule.io.out 684 685 val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U) 686 // next walkPtrVec: 687 // (1) redirect occurs: update according to state 688 // (2) walk: move backwards 689 val walkPtrVec_next = Mux(io.redirect.valid && state =/= s_extrawalk, 690 Mux(state === s_walk, 691 VecInit(walkPtrVec.map(_ - thisCycleWalkCount)), 692 VecInit((0 until CommitWidth).map(i => enqPtr - (i+1).U)) 693 ), 694 Mux(state === s_walk, VecInit(walkPtrVec.map(_ - CommitWidth.U)), walkPtrVec) 695 ) 696 walkPtrVec := walkPtrVec_next 697 698 val lastCycleRedirect = RegNext(io.redirect.valid) 699 val trueValidCounter = Mux(lastCycleRedirect, distanceBetween(enqPtr, deqPtr), validCounter) 700 val commitCnt = PopCount(io.commits.valid) 701 validCounter := Mux(state === s_idle, 702 (validCounter - commitCnt) + dispatchNum, 703 trueValidCounter 704 ) 705 706 allowEnqueue := Mux(state === s_idle, 707 validCounter + dispatchNum <= (RobSize - RenameWidth).U, 708 trueValidCounter <= (RobSize - RenameWidth).U 709 ) 710 711 val currentWalkPtr = Mux(state === s_walk || state === s_extrawalk, walkPtr, enqPtr - 1.U) 712 val redirectWalkDistance = distanceBetween(currentWalkPtr, io.redirect.bits.robIdx) 713 when (io.redirect.valid) { 714 walkCounter := Mux(state === s_walk, 715 // NOTE: +& is used here because: 716 // When rob is full and the head instruction causes an exception, 717 // the redirect robIdx is the deqPtr. In this case, currentWalkPtr is 718 // enqPtr - 1.U and redirectWalkDistance is RobSize - 1. 719 // Since exceptions flush the instruction itself, flushItSelf is true.B. 720 // Previously we use `+` to count the walk distance and it causes overflows 721 // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize. 722 // The width of walkCounter also needs to be changed. 723 redirectWalkDistance +& io.redirect.bits.flushItself() - commitCnt, 724 redirectWalkDistance +& io.redirect.bits.flushItself() 725 ) 726 }.elsewhen (state === s_walk) { 727 walkCounter := walkCounter - commitCnt 728 XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n") 729 } 730 731 732 /** 733 * States 734 * We put all the stage bits changes here. 735 736 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 737 * All states: (1) valid; (2) writebacked; (3) flagBkup 738 */ 739 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 740 741 // enqueue logic writes 6 valid 742 for (i <- 0 until RenameWidth) { 743 when (canEnqueue(i) && !io.redirect.valid) { 744 valid(enqPtrVec(i).value) := true.B 745 } 746 } 747 // dequeue/walk logic writes 6 valid, dequeue and walk will not happen at the same time 748 for (i <- 0 until CommitWidth) { 749 when (io.commits.valid(i) && state =/= s_extrawalk) { 750 valid(commitReadAddr(i)) := false.B 751 } 752 } 753 // reset: when exception, reset all valid to false 754 when (reset.asBool) { 755 for (i <- 0 until RobSize) { 756 valid(i) := false.B 757 } 758 } 759 760 // status field: writebacked 761 // enqueue logic set 6 writebacked to false 762 for (i <- 0 until RenameWidth) { 763 when (canEnqueue(i)) { 764 val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec).asUInt.orR 765 val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend 766 val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove 767 writebacked(enqPtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerHit 768 val isStu = io.enq.req(i).bits.ctrl.fuType === FuType.stu 769 store_data_writebacked(enqPtrVec(i).value) := !isStu 770 } 771 } 772 when (exceptionGen.io.out.valid) { 773 val wbIdx = exceptionGen.io.out.bits.robIdx.value 774 writebacked(wbIdx) := true.B 775 store_data_writebacked(wbIdx) := true.B 776 } 777 // writeback logic set numWbPorts writebacked to true 778 for ((wb, cfgs) <- exuWriteback.zip(wbExuConfigs(exeWbSel))) { 779 when (wb.valid) { 780 val wbIdx = wb.bits.uop.robIdx.value 781 val wbHasException = ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, cfgs).asUInt.orR 782 val wbHasTriggerHit = wb.bits.uop.cf.trigger.getHitBackend 783 val wbHasFlushPipe = cfgs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe 784 val wbHasReplayInst = cfgs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst 785 val block_wb = wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit 786 writebacked(wbIdx) := !block_wb 787 } 788 } 789 // store data writeback logic mark store as data_writebacked 790 for (wb <- stdWriteback) { 791 when(RegNext(wb.valid)) { 792 store_data_writebacked(RegNext(wb.bits.uop.robIdx.value)) := true.B 793 } 794 } 795 796 // flagBkup 797 // enqueue logic set 6 flagBkup at most 798 for (i <- 0 until RenameWidth) { 799 when (canEnqueue(i)) { 800 flagBkup(enqPtrVec(i).value) := enqPtrVec(i).flag 801 } 802 } 803 804 // interrupt_safe 805 for (i <- 0 until RenameWidth) { 806 // We RegNext the updates for better timing. 807 // Note that instructions won't change the system's states in this cycle. 808 when (RegNext(canEnqueue(i))) { 809 // For now, we allow non-load-store instructions to trigger interrupts 810 // For MMIO instructions, they should not trigger interrupts since they may 811 // be sent to lower level before it writes back. 812 // However, we cannot determine whether a load/store instruction is MMIO. 813 // Thus, we don't allow load/store instructions to trigger an interrupt. 814 // TODO: support non-MMIO load-store instructions to trigger interrupts 815 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.ctrl.commitType) 816 interrupt_safe(RegNext(enqPtrVec(i).value)) := RegNext(allow_interrupts) 817 } 818 } 819 820 /** 821 * read and write of data modules 822 */ 823 val commitReadAddr_next = Mux(state_next === s_idle, 824 VecInit(deqPtrVec_next.map(_.value)), 825 VecInit(walkPtrVec_next.map(_.value)) 826 ) 827 dispatchData.io.wen := canEnqueue 828 dispatchData.io.waddr := enqPtrVec.map(_.value) 829 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) => 830 wdata.ldest := req.ctrl.ldest 831 wdata.rfWen := req.ctrl.rfWen 832 wdata.fpWen := req.ctrl.fpWen 833 wdata.wflags := req.ctrl.fpu.wflags 834 wdata.commitType := req.ctrl.commitType 835 wdata.pdest := req.pdest 836 wdata.old_pdest := req.old_pdest 837 wdata.ftqIdx := req.cf.ftqPtr 838 wdata.ftqOffset := req.cf.ftqOffset 839 wdata.pc := req.cf.pc 840 } 841 dispatchData.io.raddr := commitReadAddr_next 842 843 exceptionGen.io.redirect <> io.redirect 844 exceptionGen.io.flush := io.flushOut.valid 845 for (i <- 0 until RenameWidth) { 846 exceptionGen.io.enq(i).valid := canEnqueue(i) 847 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 848 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec) 849 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe 850 exceptionGen.io.enq(i).bits.replayInst := false.B 851 XSError(canEnqueue(i) && io.enq.req(i).bits.ctrl.replayInst, "enq should not set replayInst") 852 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep 853 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.cf.crossPageIPFFix 854 exceptionGen.io.enq(i).bits.trigger.clear() 855 exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.cf.trigger.frontendHit 856 } 857 858 println(s"ExceptionGen:") 859 val exceptionCases = exceptionPorts.map(_._1.flatMap(_.exceptionOut).distinct.sorted) 860 require(exceptionCases.length == exceptionGen.io.wb.length) 861 for ((((configs, wb), exc_wb), i) <- exceptionPorts.zip(exceptionGen.io.wb).zipWithIndex) { 862 exc_wb.valid := wb.valid 863 exc_wb.bits.robIdx := wb.bits.uop.robIdx 864 exc_wb.bits.exceptionVec := ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, configs) 865 exc_wb.bits.flushPipe := configs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe 866 exc_wb.bits.replayInst := configs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst 867 exc_wb.bits.singleStep := false.B 868 exc_wb.bits.crossPageIPFFix := false.B 869 // TODO: make trigger configurable 870 exc_wb.bits.trigger.clear() 871 exc_wb.bits.trigger.backendHit := wb.bits.uop.cf.trigger.backendHit 872 println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + 873 s"flushPipe ${configs.exists(_.flushPipe)}, " + 874 s"replayInst ${configs.exists(_.replayInst)}") 875 } 876 877 val fflags_wb = fflagsPorts.map(_._2) 878 val fflagsDataModule = Module(new SyncDataModuleTemplate( 879 UInt(5.W), RobSize, CommitWidth, fflags_wb.size) 880 ) 881 for(i <- fflags_wb.indices){ 882 fflagsDataModule.io.wen (i) := fflags_wb(i).valid 883 fflagsDataModule.io.waddr(i) := fflags_wb(i).bits.uop.robIdx.value 884 fflagsDataModule.io.wdata(i) := fflags_wb(i).bits.fflags 885 } 886 fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value)) 887 fflagsDataRead := fflagsDataModule.io.rdata 888 889 890 val instrCnt = RegInit(0.U(64.W)) 891 val fuseCommitCnt = PopCount(io.commits.valid.zip(io.commits.info).map{ case (v, i) => v && CommitType.isFused(i.commitType) }) 892 val trueCommitCnt = commitCnt +& fuseCommitCnt 893 val retireCounter = Mux(state === s_idle, trueCommitCnt, 0.U) 894 instrCnt := instrCnt + retireCounter 895 io.csr.perfinfo.retiredInstr := RegNext(retireCounter) 896 io.robFull := !allowEnqueue 897 898 /** 899 * debug info 900 */ 901 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 902 XSDebug("") 903 for(i <- 0 until RobSize){ 904 XSDebug(false, !valid(i), "-") 905 XSDebug(false, valid(i) && writebacked(i), "w") 906 XSDebug(false, valid(i) && !writebacked(i), "v") 907 } 908 XSDebug(false, true.B, "\n") 909 910 for(i <- 0 until RobSize) { 911 if(i % 4 == 0) XSDebug("") 912 XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc) 913 XSDebug(false, !valid(i), "- ") 914 XSDebug(false, valid(i) && writebacked(i), "w ") 915 XSDebug(false, valid(i) && !writebacked(i), "v ") 916 if(i % 4 == 3) XSDebug(false, true.B, "\n") 917 } 918 919 def ifCommit(counter: UInt): UInt = Mux(io.commits.isWalk, 0.U, counter) 920 921 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 922 XSPerfAccumulate("clock_cycle", 1.U) 923 QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue) 924 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 925 XSPerfAccumulate("commitInstr", ifCommit(trueCommitCnt)) 926 val commitIsMove = commitDebugUop.map(_.ctrl.isMove) 927 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m }))) 928 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 929 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.valid zip commitMoveElim map { case (v, e) => v && e }))) 930 XSPerfAccumulate("commitInstrFused", ifCommit(fuseCommitCnt)) 931 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 932 val commitLoadValid = io.commits.valid.zip(commitIsLoad).map{ case (v, t) => v && t } 933 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 934 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 935 val commitBranchValid = io.commits.valid.zip(commitIsBranch).map{ case (v, t) => v && t } 936 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 937 val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit) 938 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 939 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 940 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t }))) 941 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i)))) 942 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) 943 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 944 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U)) 945 XSPerfAccumulate("walkCycle", state === s_walk || state === s_extrawalk) 946 val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value) 947 val deqUopCommitType = io.commits.info(0).commitType 948 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 949 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 950 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 951 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 952 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 953 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 954 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 955 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 956 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 957 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 958 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 959 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 960 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 961 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 962 } 963 for (fuType <- FuType.functionNameMap.keys) { 964 val fuName = FuType.functionNameMap(fuType) 965 val commitIsFuType = io.commits.valid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U ) 966 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 967 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 968 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 969 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 970 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 971 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 972 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 973 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 974 if (fuType == FuType.fmac.litValue) { 975 val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 ) 976 XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma))) 977 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency))) 978 XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency))) 979 } 980 } 981 982 //difftest signals 983 val firstValidCommit = (deqPtr + PriorityMux(io.commits.valid, VecInit(List.tabulate(CommitWidth)(_.U)))).value 984 985 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 986 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 987 988 for(i <- 0 until CommitWidth) { 989 val idx = deqPtrVec(i).value 990 wdata(i) := debug_exuData(idx) 991 wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN) 992 } 993 val retireCounterFix = Mux(io.exception.valid, 1.U, retireCounter) 994 val retirePCFix = SignExt(Mux(io.exception.valid, io.exception.bits.uop.cf.pc, debug_microOp(firstValidCommit).cf.pc), XLEN) 995 val retireInstFix = Mux(io.exception.valid, io.exception.bits.uop.cf.instr, debug_microOp(firstValidCommit).cf.instr) 996 997 if (env.EnableDifftest) { 998 for (i <- 0 until CommitWidth) { 999 val difftest = Module(new DifftestInstrCommit) 1000 difftest.io.clock := clock 1001 difftest.io.coreid := io.hartId 1002 difftest.io.index := i.U 1003 1004 val ptr = deqPtrVec(i).value 1005 val uop = commitDebugUop(i) 1006 val exuOut = debug_exuDebug(ptr) 1007 val exuData = debug_exuData(ptr) 1008 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.valid(i) && !io.commits.isWalk))) 1009 difftest.io.pc := RegNext(RegNext(RegNext(SignExt(uop.cf.pc, XLEN)))) 1010 difftest.io.instr := RegNext(RegNext(RegNext(uop.cf.instr))) 1011 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType)))) 1012 // when committing an eliminated move instruction, 1013 // we must make sure that skip is properly set to false (output from EXU is random value) 1014 difftest.io.skip := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1015 difftest.io.isRVC := RegNext(RegNext(RegNext(uop.cf.pd.isRVC))) 1016 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.valid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U))) 1017 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.valid(i) && io.commits.info(i).fpWen))) 1018 difftest.io.wpdest := RegNext(RegNext(RegNext(io.commits.info(i).pdest))) 1019 difftest.io.wdest := RegNext(RegNext(RegNext(io.commits.info(i).ldest))) 1020 1021 // // runahead commit hint 1022 // val runahead_commit = Module(new DifftestRunaheadCommitEvent) 1023 // runahead_commit.io.clock := clock 1024 // runahead_commit.io.coreid := io.hartId 1025 // runahead_commit.io.index := i.U 1026 // runahead_commit.io.valid := difftest.io.valid && 1027 // (commitBranchValid(i) || commitIsStore(i)) 1028 // // TODO: is branch or store 1029 // runahead_commit.io.pc := difftest.io.pc 1030 } 1031 } 1032 else if (env.AlwaysBasicDiff) { 1033 // These are the structures used by difftest only and should be optimized after synthesis. 1034 val dt_eliminatedMove = Mem(RobSize, Bool()) 1035 val dt_isRVC = Mem(RobSize, Bool()) 1036 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1037 for (i <- 0 until RenameWidth) { 1038 when (canEnqueue(i)) { 1039 dt_eliminatedMove(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1040 dt_isRVC(enqPtrVec(i).value) := io.enq.req(i).bits.cf.pd.isRVC 1041 } 1042 } 1043 for (wb <- exuWriteback) { 1044 when (wb.valid) { 1045 val wbIdx = wb.bits.uop.robIdx.value 1046 dt_exuDebug(wbIdx) := wb.bits.debug 1047 } 1048 } 1049 // Always instantiate basic difftest modules. 1050 for (i <- 0 until CommitWidth) { 1051 val commitInfo = io.commits.info(i) 1052 val ptr = deqPtrVec(i).value 1053 val exuOut = dt_exuDebug(ptr) 1054 val eliminatedMove = dt_eliminatedMove(ptr) 1055 val isRVC = dt_isRVC(ptr) 1056 1057 val difftest = Module(new DifftestBasicInstrCommit) 1058 difftest.io.clock := clock 1059 difftest.io.coreid := io.hartId 1060 difftest.io.index := i.U 1061 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.valid(i) && !io.commits.isWalk))) 1062 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType)))) 1063 difftest.io.skip := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1064 difftest.io.isRVC := RegNext(RegNext(RegNext(isRVC))) 1065 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.valid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U))) 1066 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.valid(i) && commitInfo.fpWen))) 1067 difftest.io.wpdest := RegNext(RegNext(RegNext(commitInfo.pdest))) 1068 difftest.io.wdest := RegNext(RegNext(RegNext(commitInfo.ldest))) 1069 } 1070 } 1071 1072 if (env.EnableDifftest) { 1073 for (i <- 0 until CommitWidth) { 1074 val difftest = Module(new DifftestLoadEvent) 1075 difftest.io.clock := clock 1076 difftest.io.coreid := io.hartId 1077 difftest.io.index := i.U 1078 1079 val ptr = deqPtrVec(i).value 1080 val uop = commitDebugUop(i) 1081 val exuOut = debug_exuDebug(ptr) 1082 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.valid(i) && !io.commits.isWalk))) 1083 difftest.io.paddr := RegNext(RegNext(RegNext(exuOut.paddr))) 1084 difftest.io.opType := RegNext(RegNext(RegNext(uop.ctrl.fuOpType))) 1085 difftest.io.fuType := RegNext(RegNext(RegNext(uop.ctrl.fuType))) 1086 } 1087 } 1088 1089 // Always instantiate basic difftest modules. 1090 if (env.EnableDifftest) { 1091 val dt_isXSTrap = Mem(RobSize, Bool()) 1092 for (i <- 0 until RenameWidth) { 1093 when (canEnqueue(i)) { 1094 dt_isXSTrap(enqPtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap 1095 } 1096 } 1097 val trapVec = io.commits.valid.zip(deqPtrVec).map{ case (v, d) => state === s_idle && v && dt_isXSTrap(d.value) } 1098 val hitTrap = trapVec.reduce(_||_) 1099 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1100 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1101 val difftest = Module(new DifftestTrapEvent) 1102 difftest.io.clock := clock 1103 difftest.io.coreid := io.hartId 1104 difftest.io.valid := hitTrap 1105 difftest.io.code := trapCode 1106 difftest.io.pc := trapPC 1107 difftest.io.cycleCnt := timer 1108 difftest.io.instrCnt := instrCnt 1109 difftest.io.hasWFI := hasWFI 1110 } 1111 else if (env.AlwaysBasicDiff) { 1112 val dt_isXSTrap = Mem(RobSize, Bool()) 1113 for (i <- 0 until RenameWidth) { 1114 when (canEnqueue(i)) { 1115 dt_isXSTrap(enqPtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap 1116 } 1117 } 1118 val trapVec = io.commits.valid.zip(deqPtrVec).map{ case (v, d) => state === s_idle && v && dt_isXSTrap(d.value) } 1119 val hitTrap = trapVec.reduce(_||_) 1120 val difftest = Module(new DifftestBasicTrapEvent) 1121 difftest.io.clock := clock 1122 difftest.io.coreid := io.hartId 1123 difftest.io.valid := hitTrap 1124 difftest.io.cycleCnt := timer 1125 difftest.io.instrCnt := instrCnt 1126 } 1127 1128 val perfEvents = Seq( 1129 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1130 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1131 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1132 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1133 ("rob_commitUop ", ifCommit(commitCnt) ), 1134 ("rob_commitInstr ", ifCommit(trueCommitCnt) ), 1135 ("rob_commitInstrMove ", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m })) ), 1136 ("rob_commitInstrFused ", ifCommit(fuseCommitCnt) ), 1137 ("rob_commitInstrLoad ", ifCommit(PopCount(commitLoadValid)) ), 1138 ("rob_commitInstrLoad ", ifCommit(PopCount(commitBranchValid)) ), 1139 ("rob_commitInstrLoadWait ", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })) ), 1140 ("rob_commitInstrStore ", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t })) ), 1141 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U) ), 1142 ("rob_walkCycle ", (state === s_walk || state === s_extrawalk) ), 1143 ("rob_1_4_valid ", (PopCount((0 until RobSize).map(valid(_))) < (RobSize.U/4.U)) ), 1144 ("rob_2_4_valid ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/4.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U/2.U)) ), 1145 ("rob_3_4_valid ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/2.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U*3.U/4.U))), 1146 ("rob_4_4_valid ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U*3.U/4.U)) ), 1147 ) 1148 generatePerfEvent() 1149} 1150