xref: /XiangShan/src/main/scala/xiangshan/backend/rob/Rob.scala (revision c379dcbed904398ac6c1a35069ec970c74a6b7ab)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.rob
18
19import org.chipsalliance.cde.config.Parameters
20import chisel3._
21import chisel3.util._
22import difftest._
23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp}
24import utility._
25import utils._
26import xiangshan._
27import xiangshan.backend.BackendParams
28import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput}
29import xiangshan.backend.fu.{FuType, FuConfig}
30import xiangshan.frontend.FtqPtr
31import xiangshan.mem.{LqPtr, LsqEnqIO, SqPtr}
32import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput}
33import xiangshan.backend.ctrlblock.{DebugLSIO, DebugLsInfo, LsTopdownInfo}
34import xiangshan.backend.rename.SnapshotGenerator
35
36
37class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr](
38  entries
39) with HasCircularQueuePtrHelper {
40
41  def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize)
42
43  def needFlush(redirect: Valid[Redirect]): Bool = {
44    val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx
45    redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx))
46  }
47
48  def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR
49}
50
51object RobPtr {
52  def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = {
53    val ptr = Wire(new RobPtr)
54    ptr.flag := f
55    ptr.value := v
56    ptr
57  }
58}
59
60class RobCSRIO(implicit p: Parameters) extends XSBundle {
61  val intrBitSet = Input(Bool())
62  val trapTarget = Input(UInt(VAddrBits.W))
63  val isXRet     = Input(Bool())
64  val wfiEvent   = Input(Bool())
65
66  val fflags     = Output(Valid(UInt(5.W)))
67  val vxsat      = Output(Valid(Bool()))
68  val dirty_fs   = Output(Bool())
69  val perfinfo   = new Bundle {
70    val retiredInstr = Output(UInt(3.W))
71  }
72
73  val vcsrFlag   = Output(Bool())
74}
75
76class RobLsqIO(implicit p: Parameters) extends XSBundle {
77  val lcommit = Output(UInt(log2Up(CommitWidth + 1).W))
78  val scommit = Output(UInt(log2Up(CommitWidth + 1).W))
79  val pendingld = Output(Bool())
80  val pendingst = Output(Bool())
81  val commit = Output(Bool())
82  val pendingPtr = Output(new RobPtr)
83  val pendingPtrNext = Output(new RobPtr)
84
85  val mmio = Input(Vec(LoadPipelineWidth, Bool()))
86  // Todo: what's this?
87  val uop = Input(Vec(LoadPipelineWidth, new DynInst))
88}
89
90class RobEnqIO(implicit p: Parameters) extends XSBundle {
91  val canAccept = Output(Bool())
92  val isEmpty = Output(Bool())
93  // valid vector, for robIdx gen and walk
94  val needAlloc = Vec(RenameWidth, Input(Bool()))
95  val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst)))
96  val resp = Vec(RenameWidth, Output(new RobPtr))
97}
98
99class RobCoreTopDownIO(implicit p: Parameters) extends XSBundle {
100  val robHeadVaddr = Valid(UInt(VAddrBits.W))
101  val robHeadPaddr = Valid(UInt(PAddrBits.W))
102}
103
104class RobDispatchTopDownIO extends Bundle {
105  val robTrueCommit = Output(UInt(64.W))
106  val robHeadLsIssue = Output(Bool())
107}
108
109class RobDebugRollingIO extends Bundle {
110  val robTrueCommit = Output(UInt(64.W))
111}
112
113class RobDispatchData(implicit p: Parameters) extends RobCommitInfo {}
114
115class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
116  val io = IO(new Bundle {
117    // for commits/flush
118    val state = Input(UInt(2.W))
119    val deq_v = Vec(CommitWidth, Input(Bool()))
120    val deq_w = Vec(CommitWidth, Input(Bool()))
121    val exception_state = Flipped(ValidIO(new RobExceptionInfo))
122    // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth)
123    val intrBitSetReg = Input(Bool())
124    val hasNoSpecExec = Input(Bool())
125    val interrupt_safe = Input(Bool())
126    val blockCommit = Input(Bool())
127    // output: the CommitWidth deqPtr
128    val out = Vec(CommitWidth, Output(new RobPtr))
129    val next_out = Vec(CommitWidth, Output(new RobPtr))
130  })
131
132  val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr))))
133
134  // for exceptions (flushPipe included) and interrupts:
135  // only consider the first instruction
136  val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe
137  val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0)
138  val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable)
139
140  // for normal commits: only to consider when there're no exceptions
141  // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions.
142  val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last)
143  val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i)))
144  val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B)
145  // when io.intrBitSetReg or there're possible exceptions in these instructions,
146  // only one instruction is allowed to commit
147  val allowOnlyOne = commit_exception || io.intrBitSetReg
148  val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt)
149
150  val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt))
151  val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec)
152
153  deqPtrVec := deqPtrVec_next
154
155  io.next_out := deqPtrVec_next
156  io.out      := deqPtrVec
157
158  when (io.state === 0.U) {
159    XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt)
160  }
161
162}
163
164class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
165  val io = IO(new Bundle {
166    // for input redirect
167    val redirect = Input(Valid(new Redirect))
168    // for enqueue
169    val allowEnqueue = Input(Bool())
170    val hasBlockBackward = Input(Bool())
171    val enq = Vec(RenameWidth, Input(Bool()))
172    val out = Output(Vec(RenameWidth, new RobPtr))
173  })
174
175  val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr)))
176
177  // enqueue
178  val canAccept = io.allowEnqueue && !io.hasBlockBackward
179  val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U)
180
181  for ((ptr, i) <- enqPtrVec.zipWithIndex) {
182    when(io.redirect.valid) {
183      ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
184    }.otherwise {
185      ptr := ptr + dispatchNum
186    }
187  }
188
189  io.out := enqPtrVec
190
191}
192
193class RobExceptionInfo(implicit p: Parameters) extends XSBundle {
194  // val valid = Bool()
195  val robIdx = new RobPtr
196  val exceptionVec = ExceptionVec()
197  val flushPipe = Bool()
198  val isVset = Bool()
199  val replayInst = Bool() // redirect to that inst itself
200  val singleStep = Bool() // TODO add frontend hit beneath
201  val crossPageIPFFix = Bool()
202  val trigger = new TriggerCf
203
204//  def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend
205//  def trigger_after = trigger.getTimingBackend && trigger.getHitBackend
206  def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit
207  def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit
208  // only exceptions are allowed to writeback when enqueue
209  def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit
210}
211
212class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
213  val io = IO(new Bundle {
214    val redirect = Input(Valid(new Redirect))
215    val flush = Input(Bool())
216    val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo)))
217    // csr + load + store
218    val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo)))
219    val out = ValidIO(new RobExceptionInfo)
220    val state = ValidIO(new RobExceptionInfo)
221  })
222
223  val wbExuParams = params.allExuParams.filter(_.exceptionOut.nonEmpty)
224
225  def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): RobExceptionInfo = {
226    def getOldest_recursion(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = {
227      assert(valid.length == bits.length)
228      if (valid.length == 1) {
229        (valid, bits)
230      } else if (valid.length == 2) {
231        val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0)))))
232        for (i <- res.indices) {
233          res(i).valid := valid(i)
234          res(i).bits := bits(i)
235        }
236        val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1))
237        (Seq(oldest.valid), Seq(oldest.bits))
238      } else {
239        val left = getOldest_recursion(valid.take(valid.length / 2), bits.take(valid.length / 2))
240        val right = getOldest_recursion(valid.drop(valid.length / 2), bits.drop(valid.length / 2))
241        getOldest_recursion(left._1 ++ right._1, left._2 ++ right._2)
242      }
243    }
244    getOldest_recursion(valid, bits)._2.head
245  }
246
247
248  val currentValid = RegInit(false.B)
249  val current = Reg(new RobExceptionInfo)
250
251  // orR the exceptionVec
252  val lastCycleFlush = RegNext(io.flush)
253  val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush))
254
255  // s0: compare wb in 4 groups
256  val csrvldu_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isCsr || t.fuType == FuType.vldu).nonEmpty).map(_._1)
257  val load_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.ldu).nonEmpty).map(_._1)
258  val store_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isSta || t.fuType == FuType.mou).nonEmpty).map(_._1)
259  val varith_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.isVecArith).nonEmpty).map(_._1)
260  // TODO: vsta_wb = ???
261
262  val writebacks = Seq(csrvldu_wb, load_wb, store_wb, varith_wb)
263  val in_wb_valids = writebacks.map(_.map(w => w.valid && w.bits.has_exception && !lastCycleFlush))
264  val wb_valid = in_wb_valids.zip(writebacks).map { case (valid, wb) =>
265    valid.zip(wb.map(_.bits)).map { case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }.reduce(_ || _)
266  }
267  val wb_bits = in_wb_valids.zip(writebacks).map { case (valid, wb) => getOldest(valid, wb.map(_.bits))}
268
269  val s0_out_valid = wb_valid.map(x => RegNext(x))
270  val s0_out_bits = wb_bits.map(x => RegNext(x))
271
272  // s1: compare last four and current flush
273  val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) })
274  val s1_out_bits = RegNext(getOldest(s0_out_valid, s0_out_bits))
275  val s1_out_valid = RegNext(s1_valid.asUInt.orR)
276
277  val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
278  val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)))
279
280  // s2: compare the input exception with the current one
281  // priorities:
282  // (1) system reset
283  // (2) current is valid: flush, remain, merge, update
284  // (3) current is not valid: s1 or enq
285  val current_flush = current.robIdx.needFlush(io.redirect) || io.flush
286  val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush
287  when (currentValid) {
288    when (current_flush) {
289      currentValid := Mux(s1_flush, false.B, s1_out_valid)
290    }
291    when (s1_out_valid && !s1_flush) {
292      when (isAfter(current.robIdx, s1_out_bits.robIdx)) {
293        current := s1_out_bits
294      }.elsewhen (current.robIdx === s1_out_bits.robIdx) {
295        current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec())
296        current.flushPipe := s1_out_bits.flushPipe || current.flushPipe
297        current.replayInst := s1_out_bits.replayInst || current.replayInst
298        current.singleStep := s1_out_bits.singleStep || current.singleStep
299        current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf)
300      }
301    }
302  }.elsewhen (s1_out_valid && !s1_flush) {
303    currentValid := true.B
304    current := s1_out_bits
305  }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) {
306    currentValid := true.B
307    current := enq_bits
308  }
309
310  io.out.valid   := s1_out_valid || enq_valid && enq_bits.can_writeback
311  io.out.bits    := Mux(s1_out_valid, s1_out_bits, enq_bits)
312  io.state.valid := currentValid
313  io.state.bits  := current
314
315}
316
317class RobFlushInfo(implicit p: Parameters) extends XSBundle {
318  val ftqIdx = new FtqPtr
319  val robIdx = new RobPtr
320  val ftqOffset = UInt(log2Up(PredictWidth).W)
321  val replayInst = Bool()
322}
323
324class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter {
325  override def shouldBeInlined: Boolean = false
326
327  lazy val module = new RobImp(this)(p, params)
328}
329
330class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper)
331  with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents {
332
333  private val LduCnt = params.LduCnt
334  private val StaCnt = params.StaCnt
335  private val HyuCnt = params.HyuCnt
336
337  val io = IO(new Bundle() {
338    val hartId = Input(UInt(8.W))
339    val redirect = Input(Valid(new Redirect))
340    val enq = new RobEnqIO
341    val flushOut = ValidIO(new Redirect)
342    val exception = ValidIO(new ExceptionInfo)
343    // exu + brq
344    val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles)
345    val commits = Output(new RobCommitIO)
346    val rabCommits = Output(new RobCommitIO)
347    val diffCommits = Output(new DiffCommitIO)
348    val isVsetFlushPipe = Output(Bool())
349    val vconfigPdest = Output(UInt(PhyRegIdxWidth.W))
350    val lsq = new RobLsqIO
351    val robDeqPtr = Output(new RobPtr)
352    val csr = new RobCSRIO
353    val snpt = Input(new SnapshotPort)
354    val robFull = Output(Bool())
355    val headNotReady = Output(Bool())
356    val cpu_halt = Output(Bool())
357    val wfi_enable = Input(Bool())
358
359    val debug_ls = Flipped(new DebugLSIO)
360    val debugRobHead = Output(new DynInst)
361    val debugEnqLsq = Input(new LsqEnqIO)
362    val debugHeadLsIssue = Input(Bool())
363    val lsTopdownInfo = Vec(LduCnt + HyuCnt, Input(new LsTopdownInfo))
364    val debugTopDown = new Bundle {
365      val toCore = new RobCoreTopDownIO
366      val toDispatch = new RobDispatchTopDownIO
367      val robHeadLqIdx = Valid(new LqPtr)
368    }
369    val debugRolling = new RobDebugRollingIO
370  })
371
372  val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu).toSeq
373  val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu).toSeq
374  val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty)
375  val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty)
376  val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty)
377
378  val exuWbPorts = io.writeback.filter(!_.bits.params.hasStdFu)
379  val stdWbPorts = io.writeback.filter(_.bits.params.hasStdFu)
380  val fflagsPorts = io.writeback.filter(x => x.bits.fflags.nonEmpty)
381  val vxsatPorts = io.writeback.filter(x => x.bits.vxsat.nonEmpty)
382  val exceptionPorts = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty)
383  val numExuWbPorts = exuWBs.length
384  val numStdWbPorts = stdWBs.length
385
386
387  println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth")
388//  println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}")
389//  println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}")
390//  println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}")
391
392
393  // instvalid field
394  val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
395  // writeback status
396
397  val stdWritebacked = Reg(Vec(RobSize, Bool()))
398  val uopNumVec          = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W))))
399  val realDestSize       = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W))))
400  val fflagsDataModule   = RegInit(VecInit(Seq.fill(RobSize)(0.U(5.W))))
401  val vxsatDataModule    = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
402
403  def isWritebacked(ptr: UInt): Bool = {
404    !uopNumVec(ptr).orR && stdWritebacked(ptr)
405  }
406
407  def isUopWritebacked(ptr: UInt): Bool = {
408    !uopNumVec(ptr).orR
409  }
410
411  val mmio = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
412
413  // data for redirect, exception, etc.
414  val flagBkup = Mem(RobSize, Bool())
415  // some instructions are not allowed to trigger interrupts
416  // They have side effects on the states of the processor before they write back
417  val interrupt_safe = Mem(RobSize, Bool())
418
419  // data for debug
420  // Warn: debug_* prefix should not exist in generated verilog.
421  val debug_microOp = DebugMem(RobSize, new DynInst)
422  val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug
423  val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug
424  val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init)))
425  val debug_lsTopdownInfo = RegInit(VecInit(Seq.fill(RobSize)(LsTopdownInfo.init)))
426  val debug_lqIdxValid = RegInit(VecInit.fill(RobSize)(false.B))
427  val debug_lsIssued = RegInit(VecInit.fill(RobSize)(false.B))
428
429  // pointers
430  // For enqueue ptr, we don't duplicate it since only enqueue needs it.
431  val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr))
432  val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr))
433
434  dontTouch(enqPtrVec)
435  dontTouch(deqPtrVec)
436
437  val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr))
438  val lastWalkPtr = Reg(new RobPtr)
439  val allowEnqueue = RegInit(true.B)
440
441  val enqPtr = enqPtrVec.head
442  val deqPtr = deqPtrVec(0)
443  val walkPtr = walkPtrVec(0)
444
445  val isEmpty = enqPtr === deqPtr
446  val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level)
447
448  val snptEnq = io.enq.canAccept && io.enq.req.head.valid && io.enq.req.head.bits.snapshot
449  val snapshots = SnapshotGenerator(enqPtrVec, snptEnq, io.snpt.snptDeq, io.redirect.valid, io.snpt.flushVec)
450  val debug_lsIssue = WireDefault(debug_lsIssued)
451  debug_lsIssue(deqPtr.value) := io.debugHeadLsIssue
452
453  /**
454    * states of Rob
455    */
456  val s_idle :: s_walk :: Nil = Enum(2)
457  val state = RegInit(s_idle)
458
459  /**
460    * Data Modules
461    *
462    * CommitDataModule: data from dispatch
463    * (1) read: commits/walk/exception
464    * (2) write: enqueue
465    *
466    * WritebackData: data from writeback
467    * (1) read: commits/walk/exception
468    * (2) write: write back from exe units
469    */
470  val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth))
471  val dispatchDataRead = dispatchData.io.rdata
472
473  val exceptionGen = Module(new ExceptionGen(params))
474  val exceptionDataRead = exceptionGen.io.state
475  val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W)))
476  val vxsatDataRead = Wire(Vec(CommitWidth, Bool()))
477
478  io.robDeqPtr := deqPtr
479  io.debugRobHead := debug_microOp(deqPtr.value)
480
481  val rab = Module(new RenameBuffer(RabSize))
482
483  rab.io.redirect.valid := io.redirect.valid
484
485  rab.io.req.zip(io.enq.req).map { case (dest, src) =>
486    dest.bits := src.bits
487    dest.valid := src.valid && io.enq.canAccept
488  }
489
490  val commitDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(deqPtrVec(i).value))
491  val walkDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(walkPtrVec(i).value))
492
493  val commitSizeSum = io.commits.commitValid.zip(commitDestSizeSeq).map { case (commitValid, destSize) =>
494    Mux(io.commits.isCommit && commitValid, destSize, 0.U)
495  }.reduce(_ +& _)
496  val walkSizeSum = io.commits.walkValid.zip(walkDestSizeSeq).map { case (walkValid, destSize) =>
497    Mux(io.commits.isWalk && walkValid, destSize, 0.U)
498  }.reduce(_ +& _)
499
500  rab.io.fromRob.commitSize := commitSizeSum
501  rab.io.fromRob.walkSize := walkSizeSum
502  rab.io.snpt := io.snpt
503  rab.io.snpt.snptEnq := snptEnq
504
505  io.rabCommits := rab.io.commits
506  io.diffCommits := rab.io.diffCommits
507
508  /**
509    * Enqueue (from dispatch)
510    */
511  // special cases
512  val hasBlockBackward = RegInit(false.B)
513  val hasWaitForward = RegInit(false.B)
514  val doingSvinval = RegInit(false.B)
515  // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B
516  // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty.
517  when (isEmpty) { hasBlockBackward:= false.B }
518  // When any instruction commits, hasNoSpecExec should be set to false.B
519  when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B }
520
521  // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing.
522  // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle.
523  // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts.
524  val hasWFI = RegInit(false.B)
525  io.cpu_halt := hasWFI
526  // WFI Timeout: 2^20 = 1M cycles
527  val wfi_cycles = RegInit(0.U(20.W))
528  when (hasWFI) {
529    wfi_cycles := wfi_cycles + 1.U
530  }.elsewhen (!hasWFI && RegNext(hasWFI)) {
531    wfi_cycles := 0.U
532  }
533  val wfi_timeout = wfi_cycles.andR
534  when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) {
535    hasWFI := false.B
536  }
537
538  val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.firstUop)))))
539  io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq
540  io.enq.resp      := allocatePtrVec
541  val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop && io.enq.canAccept))
542  val timer = GTimer()
543  for (i <- 0 until RenameWidth) {
544    // we don't check whether io.redirect is valid here since redirect has higher priority
545    when (canEnqueue(i)) {
546      val enqUop = io.enq.req(i).bits
547      val enqIndex = allocatePtrVec(i).value
548      // store uop in data module and debug_microOp Vec
549      debug_microOp(enqIndex) := enqUop
550      debug_microOp(enqIndex).debugInfo.dispatchTime := timer
551      debug_microOp(enqIndex).debugInfo.enqRsTime := timer
552      debug_microOp(enqIndex).debugInfo.selectTime := timer
553      debug_microOp(enqIndex).debugInfo.issueTime := timer
554      debug_microOp(enqIndex).debugInfo.writebackTime := timer
555      debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer
556      debug_microOp(enqIndex).debugInfo.tlbRespTime := timer
557      debug_lsInfo(enqIndex) := DebugLsInfo.init
558      debug_lsTopdownInfo(enqIndex) := LsTopdownInfo.init
559      debug_lqIdxValid(enqIndex) := false.B
560      debug_lsIssued(enqIndex) := false.B
561
562      when (enqUop.blockBackward) {
563        hasBlockBackward := true.B
564      }
565      when (enqUop.waitForward) {
566        hasWaitForward := true.B
567      }
568      val enqHasTriggerHit = false.B // io.enq.req(i).bits.cf.trigger.getHitFrontend
569      val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR
570      // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process
571      when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe))
572      {
573        doingSvinval := true.B
574      }
575      // the end instruction of Svinval enqs so clear doingSvinval
576      when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe))
577      {
578        doingSvinval := false.B
579      }
580      // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear
581      assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe)))
582      when (enqUop.isWFI && !enqHasException && !enqHasTriggerHit) {
583        hasWFI := true.B
584      }
585
586      mmio(enqIndex) := false.B
587    }
588  }
589  val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.firstUop)), 0.U)
590  io.enq.isEmpty   := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR)
591
592  when (!io.wfi_enable) {
593    hasWFI := false.B
594  }
595  // sel vsetvl's flush position
596  val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3)
597  val vsetvlState = RegInit(vs_idle)
598
599  val firstVInstrFtqPtr    = RegInit(0.U.asTypeOf(new FtqPtr))
600  val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W)))
601  val firstVInstrRobIdx    = RegInit(0.U.asTypeOf(new RobPtr))
602
603  val enq0            = io.enq.req(0)
604  val enq0IsVset      = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0)
605  val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe
606  val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVArith(req.bits.fuType) && fire}
607  // for vs_idle
608  val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType)))
609  // for vs_waitVinstr
610  val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1)
611  val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req)
612  when(vsetvlState === vs_idle){
613    firstVInstrFtqPtr    := firstVInstrIdle.bits.ftqPtr
614    firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset
615    firstVInstrRobIdx    := firstVInstrIdle.bits.robIdx
616  }.elsewhen(vsetvlState === vs_waitVinstr){
617    when(Cat(enqIsVInstrOrVset).orR){
618      firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr
619      firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset
620      firstVInstrRobIdx := firstVInstrWait.bits.robIdx
621    }
622  }
623
624  val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR
625  when(vsetvlState === vs_idle && !io.redirect.valid){
626    when(enq0IsVsetFlush){
627      vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr)
628    }
629  }.elsewhen(vsetvlState === vs_waitVinstr){
630    when(io.redirect.valid){
631      vsetvlState := vs_idle
632    }.elsewhen(Cat(enqIsVInstrOrVset).orR){
633      vsetvlState := vs_waitFlush
634    }
635  }.elsewhen(vsetvlState === vs_waitFlush){
636    when(io.redirect.valid){
637      vsetvlState := vs_idle
638    }
639  }
640
641  // lqEnq
642  io.debugEnqLsq.needAlloc.map(_(0)).zip(io.debugEnqLsq.req).foreach { case (alloc, req) =>
643    when(io.debugEnqLsq.canAccept && alloc && req.valid) {
644      debug_microOp(req.bits.robIdx.value).lqIdx := req.bits.lqIdx
645      debug_lqIdxValid(req.bits.robIdx.value) := true.B
646    }
647  }
648
649  // lsIssue
650  when(io.debugHeadLsIssue) {
651    debug_lsIssued(deqPtr.value) := true.B
652  }
653
654  /**
655    * Writeback (from execution units)
656    */
657  for (wb <- exuWBs) {
658    when (wb.valid) {
659      val wbIdx = wb.bits.robIdx.value
660      debug_exuData(wbIdx) := wb.bits.data
661      debug_exuDebug(wbIdx) := wb.bits.debug
662      debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime
663      debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime
664      debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime
665      debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime
666
667      // debug for lqidx and sqidx
668      debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr))
669      debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr))
670
671      val debug_Uop = debug_microOp(wbIdx)
672      XSInfo(true.B,
673        p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " +
674        p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " +
675        p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n"
676      )
677    }
678  }
679
680  val writebackNum = PopCount(exuWBs.map(_.valid))
681  XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum)
682
683  for (i <- 0 until LoadPipelineWidth) {
684    when (RegNext(io.lsq.mmio(i))) {
685      mmio(RegNext(io.lsq.uop(i).robIdx).value) := true.B
686    }
687  }
688
689  /**
690    * RedirectOut: Interrupt and Exceptions
691    */
692  val deqDispatchData = dispatchDataRead(0)
693  val debug_deqUop = debug_microOp(deqPtr.value)
694
695  val intrBitSetReg = RegNext(io.csr.intrBitSet)
696  val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safe(deqPtr.value)
697  val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr
698  val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR ||
699    exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit)
700  val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe
701  val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst
702  val exceptionEnable = isWritebacked(deqPtr.value) && deqHasException
703
704  XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n")
705  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n")
706  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n")
707
708  val isFlushPipe = isWritebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst)
709
710  val isVsetFlushPipe = isWritebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset
711//  val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush)
712  val needModifyFtqIdxOffset = false.B
713  io.isVsetFlushPipe := isVsetFlushPipe
714  io.vconfigPdest := rab.io.vconfigPdest
715  // io.flushOut will trigger redirect at the next cycle.
716  // Block any redirect or commit at the next cycle.
717  val lastCycleFlush = RegNext(io.flushOut.valid)
718
719  io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush
720  io.flushOut.bits := DontCare
721  io.flushOut.bits.isRVC := deqDispatchData.isRVC
722  io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr)
723  io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx)
724  io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset)
725  io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next"
726  io.flushOut.bits.interrupt := true.B
727  XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable)
728  XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable)
729  XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe)
730  XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst)
731
732  val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush
733  io.exception.valid                := RegNext(exceptionHappen)
734  io.exception.bits.pc              := RegEnable(debug_deqUop.pc, exceptionHappen)
735  io.exception.bits.instr           := RegEnable(debug_deqUop.instr, exceptionHappen)
736  io.exception.bits.commitType      := RegEnable(deqDispatchData.commitType, exceptionHappen)
737  io.exception.bits.exceptionVec    := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen)
738  io.exception.bits.singleStep      := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen)
739  io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen)
740  io.exception.bits.isInterrupt     := RegEnable(intrEnable, exceptionHappen)
741//  io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen)
742
743  XSDebug(io.flushOut.valid,
744    p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " +
745    p"excp $exceptionEnable flushPipe $isFlushPipe " +
746    p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n")
747
748
749  /**
750    * Commits (and walk)
751    * They share the same width.
752    */
753  val shouldWalkVec = VecInit(walkPtrVec.map(_ <= lastWalkPtr))
754  val walkFinished = VecInit(walkPtrVec.map(_ >= lastWalkPtr)).asUInt.orR
755  rab.io.fromRob.walkEnd := state === s_walk && walkFinished
756
757  require(RenameWidth <= CommitWidth)
758
759  // wiring to csr
760  val (wflags, dirtyFs) = (0 until CommitWidth).map(i => {
761    val v = io.commits.commitValid(i)
762    val info = io.commits.info(i)
763    (v & info.wflags, v & info.dirtyFs)
764  }).unzip
765  val fflags = Wire(Valid(UInt(5.W)))
766  fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR
767  fflags.bits := wflags.zip(fflagsDataRead).map({
768    case (w, f) => Mux(w, f, 0.U)
769  }).reduce(_|_)
770  val dirty_fs = io.commits.isCommit && VecInit(dirtyFs).asUInt.orR
771
772  val vxsat = Wire(Valid(Bool()))
773  vxsat.valid := io.commits.isCommit && vxsat.bits
774  vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map {
775    case (valid, vxsat) => valid & vxsat
776  }.reduce(_ | _)
777
778  // when mispredict branches writeback, stop commit in the next 2 cycles
779  // TODO: don't check all exu write back
780  val misPredWb = Cat(VecInit(redirectWBs.map(wb =>
781    wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid
782  ).toSeq)).orR
783  val misPredBlockCounter = Reg(UInt(3.W))
784  misPredBlockCounter := Mux(misPredWb,
785    "b111".U,
786    misPredBlockCounter >> 1.U
787  )
788  val misPredBlock = misPredBlockCounter(0)
789  val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI || io.redirect.valid
790
791  io.commits.isWalk := state === s_walk
792  io.commits.isCommit := state === s_idle && !blockCommit
793  val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value)))
794  val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value)))
795  // store will be commited iff both sta & std have been writebacked
796  val commit_w = VecInit(deqPtrVec.map(ptr => isWritebacked(ptr.value)))
797  val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last)
798  val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i)))
799  val allowOnlyOneCommit = commit_exception || intrBitSetReg
800  // for instructions that may block others, we don't allow them to commit
801  for (i <- 0 until CommitWidth) {
802    // defaults: state === s_idle and instructions commit
803    // when intrBitSetReg, allow only one instruction to commit at each clock cycle
804    val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst
805    io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked
806    io.commits.info(i) := dispatchDataRead(i)
807    io.commits.robIdx(i) := deqPtrVec(i)
808
809    io.commits.walkValid(i) := shouldWalkVec(i)
810    when (state === s_walk) {
811      when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) {
812        XSError(!walk_v(i), s"The walking entry($i) should be valid\n")
813      }
814    }
815
816    XSInfo(io.commits.isCommit && io.commits.commitValid(i),
817      "retired pc %x wen %d ldest %d pdest %x data %x fflags: %b vxsat: %b\n",
818      debug_microOp(deqPtrVec(i).value).pc,
819      io.commits.info(i).rfWen,
820      io.commits.info(i).ldest,
821      io.commits.info(i).pdest,
822      debug_exuData(deqPtrVec(i).value),
823      fflagsDataRead(i),
824      vxsatDataRead(i)
825    )
826    XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n",
827      debug_microOp(walkPtrVec(i).value).pc,
828      io.commits.info(i).rfWen,
829      io.commits.info(i).ldest,
830      debug_exuData(walkPtrVec(i).value)
831    )
832  }
833  if (env.EnableDifftest) {
834    io.commits.info.map(info => dontTouch(info.pc))
835  }
836
837  // sync fflags/dirty_fs/vxsat to csr
838  io.csr.fflags := RegNext(fflags)
839  io.csr.dirty_fs := RegNext(dirty_fs)
840  io.csr.vxsat := RegNext(vxsat)
841
842  // sync v csr to csr
843  // for difftest
844  if(env.AlwaysBasicDiff || env.EnableDifftest) {
845    val isDiffWriteVconfigVec = io.diffCommits.commitValid.zip(io.diffCommits.info).map { case (valid, info) => valid && info.ldest === VCONFIG_IDX.U && info.vecWen }.reverse
846    io.csr.vcsrFlag := RegNext(io.diffCommits.isCommit && Cat(isDiffWriteVconfigVec).orR)
847  }
848  else{
849    io.csr.vcsrFlag := false.B
850  }
851
852  // commit load/store to lsq
853  val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD))
854  val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE))
855  val deqPtrVec_next = Wire(Vec(CommitWidth, Output(new RobPtr)))
856  io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U))
857  io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U))
858  // indicate a pending load or store
859  io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value) && mmio(deqPtr.value))
860  io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value))
861  io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0))
862  io.lsq.pendingPtr := RegNext(deqPtr)
863  io.lsq.pendingPtrNext := RegNext(deqPtrVec_next.head)
864
865  /**
866    * state changes
867    * (1) redirect: switch to s_walk
868    * (2) walk: when walking comes to the end, switch to s_idle
869    */
870  val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished && rab.io.status.walkEnd, s_idle, state))
871  XSPerfAccumulate("s_idle_to_idle",            state === s_idle && state_next === s_idle)
872  XSPerfAccumulate("s_idle_to_walk",            state === s_idle && state_next === s_walk)
873  XSPerfAccumulate("s_walk_to_idle",            state === s_walk && state_next === s_idle)
874  XSPerfAccumulate("s_walk_to_walk",            state === s_walk && state_next === s_walk)
875  state := state_next
876
877  /**
878    * pointers and counters
879    */
880  val deqPtrGenModule = Module(new RobDeqPtrWrapper)
881  deqPtrGenModule.io.state := state
882  deqPtrGenModule.io.deq_v := commit_v
883  deqPtrGenModule.io.deq_w := commit_w
884  deqPtrGenModule.io.exception_state := exceptionDataRead
885  deqPtrGenModule.io.intrBitSetReg := intrBitSetReg
886  deqPtrGenModule.io.hasNoSpecExec := hasWaitForward
887  deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value)
888  deqPtrGenModule.io.blockCommit := blockCommit
889  deqPtrVec := deqPtrGenModule.io.out
890  deqPtrVec_next := deqPtrGenModule.io.next_out
891
892  val enqPtrGenModule = Module(new RobEnqPtrWrapper)
893  enqPtrGenModule.io.redirect := io.redirect
894  enqPtrGenModule.io.allowEnqueue := allowEnqueue && rab.io.canEnq
895  enqPtrGenModule.io.hasBlockBackward := hasBlockBackward
896  enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop))
897  enqPtrVec := enqPtrGenModule.io.out
898
899  // next walkPtrVec:
900  // (1) redirect occurs: update according to state
901  // (2) walk: move forwards
902  val walkPtrVec_next = Mux(io.redirect.valid,
903    Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect), deqPtrVec_next),
904    Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec)
905  )
906  walkPtrVec := walkPtrVec_next
907
908  val numValidEntries = distanceBetween(enqPtr, deqPtr)
909  val commitCnt = PopCount(io.commits.commitValid)
910
911  allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U
912
913  val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0))
914  when (io.redirect.valid) {
915    lastWalkPtr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx - 1.U, io.redirect.bits.robIdx)
916  }
917
918
919  /**
920    * States
921    * We put all the stage bits changes here.
922
923    * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit);
924    * All states: (1) valid; (2) writebacked; (3) flagBkup
925    */
926  val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value)))
927
928  // redirect logic writes 6 valid
929  val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr))
930  val redirectTail = Reg(new RobPtr)
931  val redirectIdle :: redirectBusy :: Nil = Enum(2)
932  val redirectState = RegInit(redirectIdle)
933  val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail))
934  when(redirectState === redirectBusy) {
935    redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U)
936    redirectHeadVec zip invMask foreach {
937      case (redirectHead, inv) => when(inv) {
938        valid(redirectHead.value) := false.B
939      }
940    }
941    when(!invMask.last) {
942      redirectState := redirectIdle
943    }
944  }
945  when(io.redirect.valid) {
946    redirectState := redirectBusy
947    when(redirectState === redirectIdle) {
948      redirectTail := enqPtr
949    }
950    redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) =>
951      redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
952    }
953  }
954  // enqueue logic writes 6 valid
955  for (i <- 0 until RenameWidth) {
956    when (canEnqueue(i) && !io.redirect.valid) {
957      valid(allocatePtrVec(i).value) := true.B
958    }
959  }
960  // dequeue logic writes 6 valid
961  for (i <- 0 until CommitWidth) {
962    val commitValid = io.commits.isCommit && io.commits.commitValid(i)
963    when (commitValid) {
964      valid(commitReadAddr(i)) := false.B
965    }
966  }
967
968  // debug_inst update
969  for(i <- 0 until (LduCnt + StaCnt)) {
970    debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i))
971    debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i))
972  }
973  for (i <- 0 until LduCnt) {
974    debug_lsTopdownInfo(io.lsTopdownInfo(i).s1.robIdx).s1SignalEnable(io.lsTopdownInfo(i))
975    debug_lsTopdownInfo(io.lsTopdownInfo(i).s2.robIdx).s2SignalEnable(io.lsTopdownInfo(i))
976  }
977
978  // writeback logic set numWbPorts writebacked to true
979  val blockWbSeq = Wire(Vec(exuWBs.length, Bool()))
980  blockWbSeq.map(_ := false.B)
981  for ((wb, blockWb) <- exuWBs.zip(blockWbSeq)) {
982    when(wb.valid) {
983      val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR
984      val wbHasTriggerHit = false.B //Todo: wb.bits.trigger.getHitBackend
985      val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B)
986      val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst
987      blockWb := wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit
988    }
989  }
990
991  // if the first uop of an instruction is valid , write writebackedCounter
992  val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid)
993  val instEnqValidSeq = io.enq.req.map (req => io.enq.canAccept && req.valid && req.bits.firstUop)
994  val enqNeedWriteRFSeq = io.enq.req.map(_.bits.needWriteRf)
995  val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value)
996  val enqUopNumVec = VecInit(io.enq.req.map(req => req.bits.numUops))
997  val enqEliminatedMoveVec = VecInit(io.enq.req.map(req => req.bits.eliminatedMove))
998
999  private val enqWriteStdVec: Vec[Bool] = VecInit(io.enq.req.map {
1000    req => FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType)
1001  })
1002  val fflags_wb = fflagsPorts
1003  val vxsat_wb = vxsatPorts
1004  for(i <- 0 until RobSize){
1005
1006    val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U)
1007    val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch }
1008    val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch }
1009    val instCanEnqFlag = Cat(instCanEnqSeq).orR
1010
1011    realDestSize(i) := Mux(!valid(i) && instCanEnqFlag || valid(i), realDestSize(i) + PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map{ case(writeFlag, valid) => writeFlag && valid }), 0.U)
1012
1013    val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec)
1014    val enqEliminatedMove = PriorityMux(instCanEnqSeq, enqEliminatedMoveVec)
1015    val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec)
1016
1017    val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)
1018    val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map{ case(canWb, blockWb) => canWb && !blockWb }
1019    val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U))
1020    val wbCnt = PopCount(canWbNoBlockSeq)
1021
1022    val exceptionHas = RegInit(false.B)
1023    val exceptionHasWire = Wire(Bool())
1024    exceptionHasWire := MuxCase(exceptionHas, Seq(
1025      (valid(i) && exceptionGen.io.out.valid && exceptionGen.io.out.bits.robIdx.value === i.U) -> true.B,
1026      !valid(i) -> false.B
1027    ))
1028    exceptionHas := exceptionHasWire
1029
1030    when (exceptionHas || exceptionHasWire) {
1031      // exception flush
1032      uopNumVec(i) := 0.U
1033      stdWritebacked(i) := true.B
1034    }.elsewhen(!valid(i) && instCanEnqFlag) {
1035      // enq set num of uops
1036      uopNumVec(i) := enqUopNum
1037      stdWritebacked(i) := Mux(enqWriteStd, false.B, true.B)
1038    }.elsewhen(valid(i)) {
1039      // update by writing back
1040      uopNumVec(i) := uopNumVec(i) - wbCnt
1041      when (canStdWbSeq.asUInt.orR) {
1042        stdWritebacked(i) := true.B
1043      }
1044    }.otherwise {
1045      uopNumVec(i) := 0.U
1046    }
1047
1048    val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && writeback.bits.wflags.getOrElse(false.B))
1049    val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _)
1050    fflagsDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, fflagsDataModule(i) | fflagsRes)
1051
1052    val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)
1053    val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _)
1054    vxsatDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, vxsatDataModule(i) | vxsatRes)
1055  }
1056
1057  // flagBkup
1058  // enqueue logic set 6 flagBkup at most
1059  for (i <- 0 until RenameWidth) {
1060    when (canEnqueue(i)) {
1061      flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag
1062    }
1063  }
1064
1065  // interrupt_safe
1066  for (i <- 0 until RenameWidth) {
1067    // We RegNext the updates for better timing.
1068    // Note that instructions won't change the system's states in this cycle.
1069    when (RegNext(canEnqueue(i))) {
1070      // For now, we allow non-load-store instructions to trigger interrupts
1071      // For MMIO instructions, they should not trigger interrupts since they may
1072      // be sent to lower level before it writes back.
1073      // However, we cannot determine whether a load/store instruction is MMIO.
1074      // Thus, we don't allow load/store instructions to trigger an interrupt.
1075      // TODO: support non-MMIO load-store instructions to trigger interrupts
1076      val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType)
1077      interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts)
1078    }
1079  }
1080
1081  /**
1082    * read and write of data modules
1083    */
1084  val commitReadAddr_next = Mux(state_next === s_idle,
1085    VecInit(deqPtrVec_next.map(_.value)),
1086    VecInit(walkPtrVec_next.map(_.value))
1087  )
1088  dispatchData.io.wen := canEnqueue
1089  dispatchData.io.waddr := allocatePtrVec.map(_.value)
1090  dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).zipWithIndex.foreach { case ((wdata, req), portIdx) =>
1091    wdata.ldest := req.ldest
1092    wdata.rfWen := req.rfWen
1093    wdata.dirtyFs := req.dirtyFs
1094    wdata.vecWen := req.vecWen
1095    wdata.wflags := req.wfflags
1096    wdata.commitType := req.commitType
1097    wdata.pdest := req.pdest
1098    wdata.ftqIdx := req.ftqPtr
1099    wdata.ftqOffset := req.ftqOffset
1100    wdata.isMove := req.eliminatedMove
1101    wdata.isRVC := req.preDecodeInfo.isRVC
1102    wdata.pc := req.pc
1103    wdata.vtype := req.vpu.vtype
1104    wdata.isVset := req.isVset
1105    wdata.instrSize := req.instrSize
1106  }
1107  dispatchData.io.raddr := commitReadAddr_next
1108
1109  exceptionGen.io.redirect <> io.redirect
1110  exceptionGen.io.flush := io.flushOut.valid
1111
1112  val canEnqueueEG = VecInit(io.enq.req.map(req => req.valid && io.enq.canAccept))
1113  for (i <- 0 until RenameWidth) {
1114    exceptionGen.io.enq(i).valid := canEnqueueEG(i)
1115    exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx
1116    exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec)
1117    exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe
1118    exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset
1119    exceptionGen.io.enq(i).bits.replayInst := false.B
1120    XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst")
1121    exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep
1122    exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix
1123    exceptionGen.io.enq(i).bits.trigger.clear()
1124    exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit
1125  }
1126
1127  println(s"ExceptionGen:")
1128  println(s"num of exceptions: ${params.numException}")
1129  require(exceptionWBs.length == exceptionGen.io.wb.length,
1130    f"exceptionWBs.length: ${exceptionWBs.length}, " +
1131      f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}")
1132  for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) {
1133    exc_wb.valid                := wb.valid
1134    exc_wb.bits.robIdx          := wb.bits.robIdx
1135    exc_wb.bits.exceptionVec    := wb.bits.exceptionVec.get
1136    exc_wb.bits.flushPipe       := wb.bits.flushPipe.getOrElse(false.B)
1137    exc_wb.bits.isVset          := false.B
1138    exc_wb.bits.replayInst      := wb.bits.replay.getOrElse(false.B)
1139    exc_wb.bits.singleStep      := false.B
1140    exc_wb.bits.crossPageIPFFix := false.B
1141    exc_wb.bits.trigger         := 0.U.asTypeOf(exc_wb.bits.trigger) // Todo
1142//    println(s"  [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " +
1143//      s"flushPipe ${configs.exists(_.flushPipe)}, " +
1144//      s"replayInst ${configs.exists(_.replayInst)}")
1145  }
1146
1147  fflagsDataRead := (0 until CommitWidth).map(i => fflagsDataModule(deqPtrVec(i).value))
1148  vxsatDataRead := (0 until CommitWidth).map(i => vxsatDataModule(deqPtrVec(i).value))
1149
1150  val instrCntReg = RegInit(0.U(64.W))
1151  val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) })
1152  val trueCommitCnt = RegNext(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => Mux(v, i.instrSize, 0.U) }.reduce(_ +& _)) +& fuseCommitCnt
1153  val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U)
1154  val instrCnt = instrCntReg + retireCounter
1155  instrCntReg := instrCnt
1156  io.csr.perfinfo.retiredInstr := retireCounter
1157  io.robFull := !allowEnqueue
1158  io.headNotReady := commit_v.head && !commit_w.head
1159
1160  /**
1161    * debug info
1162    */
1163  XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n")
1164  XSDebug("")
1165  XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n")
1166  for(i <- 0 until RobSize) {
1167    XSDebug(false, !valid(i), "-")
1168    XSDebug(false, valid(i) && isWritebacked(i.U), "w")
1169    XSDebug(false, valid(i) && !isWritebacked(i.U), "v")
1170  }
1171  XSDebug(false, true.B, "\n")
1172
1173  for(i <- 0 until RobSize) {
1174    if (i % 4 == 0) XSDebug("")
1175    XSDebug(false, true.B, "%x ", debug_microOp(i).pc)
1176    XSDebug(false, !valid(i), "- ")
1177    XSDebug(false, valid(i) && isWritebacked(i.U), "w ")
1178    XSDebug(false, valid(i) && !isWritebacked(i.U), "v ")
1179    if (i % 4 == 3) XSDebug(false, true.B, "\n")
1180  }
1181
1182  def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U)
1183  def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U)
1184
1185  val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_))
1186  XSPerfAccumulate("clock_cycle", 1.U)
1187  QueuePerf(RobSize, numValidEntries, numValidEntries === RobSize.U)
1188  XSPerfAccumulate("commitUop", ifCommit(commitCnt))
1189  XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt))
1190  XSPerfRolling("ipc", ifCommitReg(trueCommitCnt), 1000, clock, reset)
1191  XSPerfRolling("cpi", perfCnt = 1.U/*Cycle*/, eventTrigger = ifCommitReg(trueCommitCnt), granularity = 1000, clock, reset)
1192  val commitIsMove = commitDebugUop.map(_.isMove)
1193  XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })))
1194  val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove)
1195  XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e })))
1196  XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt))
1197  val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD)
1198  val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t }
1199  XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid)))
1200  val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH)
1201  val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t }
1202  XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid)))
1203  val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit)
1204  XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })))
1205  val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE)
1206  XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })))
1207  XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && isWritebacked(i.U))))
1208  // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire)))
1209  // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready)))
1210  XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U))
1211  XSPerfAccumulate("walkCycleTotal", state === s_walk)
1212  XSPerfAccumulate("waitRabWalkEnd", state === s_walk && walkFinished && !rab.io.status.walkEnd)
1213  private val walkCycle = RegInit(0.U(8.W))
1214  private val waitRabWalkCycle = RegInit(0.U(8.W))
1215  walkCycle := Mux(io.redirect.valid, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U))
1216  waitRabWalkCycle := Mux(state === s_walk && walkFinished, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U))
1217
1218  XSPerfHistogram("walkRobCycleHist", walkCycle, state === s_walk && walkFinished, 0, 32)
1219  XSPerfHistogram("walkRabExtraCycleHist", waitRabWalkCycle, state === s_walk && walkFinished && rab.io.status.walkEnd, 0, 32)
1220  XSPerfHistogram("walkTotalCycleHist", walkCycle, state === s_walk && state_next === s_idle, 0, 32)
1221
1222  private val deqNotWritebacked = valid(deqPtr.value) && !isWritebacked(deqPtr.value)
1223  private val deqStdNotWritebacked = valid(deqPtr.value) && !stdWritebacked(deqPtr.value)
1224  private val deqUopNotWritebacked = valid(deqPtr.value) && !isUopWritebacked(deqPtr.value)
1225  private val deqHeadInfo = debug_microOp(deqPtr.value)
1226  val deqUopCommitType = io.commits.info(0).commitType
1227
1228  XSPerfAccumulate("waitAluCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.alu.U)
1229  XSPerfAccumulate("waitMulCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.mul.U)
1230  XSPerfAccumulate("waitDivCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.div.U)
1231  XSPerfAccumulate("waitBrhCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.brh.U)
1232  XSPerfAccumulate("waitJmpCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.jmp.U)
1233  XSPerfAccumulate("waitCsrCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.csr.U)
1234  XSPerfAccumulate("waitFenCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.fence.U)
1235  XSPerfAccumulate("waitBkuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.bku.U)
1236  XSPerfAccumulate("waitLduCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.ldu.U)
1237  XSPerfAccumulate("waitStuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.stu.U)
1238  XSPerfAccumulate("waitStaCycle", deqUopNotWritebacked && deqHeadInfo.fuType === FuType.stu.U)
1239  XSPerfAccumulate("waitStdCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.stu.U)
1240  XSPerfAccumulate("waitAtmCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.mou.U)
1241
1242  XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL)
1243  XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH)
1244  XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD)
1245  XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE)
1246  XSPerfAccumulate("robHeadPC", io.commits.info(0).pc)
1247  XSPerfAccumulate("commitCompressCntAll", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize > 1.U}))
1248  (2 to RenameWidth).foreach(i =>
1249    XSPerfAccumulate(s"commitCompressCnt${i}", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize === i.U}))
1250  )
1251  XSPerfAccumulate("compressSize", io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => Mux(io.commits.isCommit && valid && info.instrSize > 1.U, info.instrSize, 0.U) }.reduce(_ +& _))
1252  val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime)
1253  val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime)
1254  val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime)
1255  val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime)
1256  val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
1257  val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime)
1258  val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime)
1259  def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = {
1260    cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _)
1261  }
1262  for (fuType <- FuType.functionNameMap.keys) {
1263    val fuName = FuType.functionNameMap(fuType)
1264    val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U )
1265    XSPerfRolling(s"ipc_futype_${fuName}", ifCommit(PopCount(commitIsFuType)), 1000, clock, reset)
1266    XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType)))
1267    XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency)))
1268    XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency)))
1269    XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency)))
1270    XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency)))
1271    XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency)))
1272    XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency)))
1273    XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency)))
1274  }
1275  XSPerfAccumulate(s"redirect_use_snapshot", io.redirect.valid && io.snpt.useSnpt)
1276
1277  // top-down info
1278  io.debugTopDown.toCore.robHeadVaddr.valid := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_valid
1279  io.debugTopDown.toCore.robHeadVaddr.bits  := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_bits
1280  io.debugTopDown.toCore.robHeadPaddr.valid := debug_lsTopdownInfo(deqPtr.value).s2.paddr_valid
1281  io.debugTopDown.toCore.robHeadPaddr.bits  := debug_lsTopdownInfo(deqPtr.value).s2.paddr_bits
1282  io.debugTopDown.toDispatch.robTrueCommit := ifCommitReg(trueCommitCnt)
1283  io.debugTopDown.toDispatch.robHeadLsIssue := debug_lsIssue(deqPtr.value)
1284  io.debugTopDown.robHeadLqIdx.valid := debug_lqIdxValid(deqPtr.value)
1285  io.debugTopDown.robHeadLqIdx.bits  := debug_microOp(deqPtr.value).lqIdx
1286
1287  // rolling
1288  io.debugRolling.robTrueCommit := ifCommitReg(trueCommitCnt)
1289
1290  /**
1291    * DataBase info:
1292    * log trigger is at writeback valid
1293    * */
1294
1295  /**
1296    * @todo add InstInfoEntry back
1297    * @author Maxpicca-Li
1298    */
1299
1300  //difftest signals
1301  val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value
1302
1303  val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1304  val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1305
1306  for(i <- 0 until CommitWidth) {
1307    val idx = deqPtrVec(i).value
1308    wdata(i) := debug_exuData(idx)
1309    wpc(i) := SignExt(commitDebugUop(i).pc, XLEN)
1310  }
1311
1312  if (env.EnableDifftest || env.AlwaysBasicDiff) {
1313    // These are the structures used by difftest only and should be optimized after synthesis.
1314    val dt_eliminatedMove = Mem(RobSize, Bool())
1315    val dt_isRVC = Mem(RobSize, Bool())
1316    val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle))
1317    for (i <- 0 until RenameWidth) {
1318      when (canEnqueue(i)) {
1319        dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove
1320        dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC
1321      }
1322    }
1323    for (wb <- exuWBs) {
1324      when (wb.valid) {
1325        val wbIdx = wb.bits.robIdx.value
1326        dt_exuDebug(wbIdx) := wb.bits.debug
1327      }
1328    }
1329    // Always instantiate basic difftest modules.
1330    for (i <- 0 until CommitWidth) {
1331      val uop = commitDebugUop(i)
1332      val commitInfo = io.commits.info(i)
1333      val ptr = deqPtrVec(i).value
1334      val exuOut = dt_exuDebug(ptr)
1335      val eliminatedMove = dt_eliminatedMove(ptr)
1336      val isRVC = dt_isRVC(ptr)
1337
1338      val difftest = DifftestModule(new DiffInstrCommit(MaxPhyPregs), delay = 3, dontCare = true)
1339      difftest.coreid  := io.hartId
1340      difftest.index   := i.U
1341      difftest.valid   := io.commits.commitValid(i) && io.commits.isCommit
1342      difftest.skip    := Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)
1343      difftest.isRVC   := isRVC
1344      difftest.rfwen   := io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U
1345      difftest.fpwen   := io.commits.commitValid(i) && uop.fpWen
1346      difftest.wpdest  := commitInfo.pdest
1347      difftest.wdest   := commitInfo.ldest
1348      difftest.nFused  := CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize - 1.U
1349      when(difftest.valid) {
1350        assert(CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize >= 1.U)
1351      }
1352      if (env.EnableDifftest) {
1353        val uop = commitDebugUop(i)
1354        difftest.pc       := SignExt(uop.pc, XLEN)
1355        difftest.instr    := uop.instr
1356        difftest.robIdx   := ZeroExt(ptr, 10)
1357        difftest.lqIdx    := ZeroExt(uop.lqIdx.value, 7)
1358        difftest.sqIdx    := ZeroExt(uop.sqIdx.value, 7)
1359        difftest.isLoad   := io.commits.info(i).commitType === CommitType.LOAD
1360        difftest.isStore  := io.commits.info(i).commitType === CommitType.STORE
1361      }
1362    }
1363  }
1364
1365  if (env.EnableDifftest) {
1366    for (i <- 0 until CommitWidth) {
1367      val difftest = DifftestModule(new DiffLoadEvent, delay = 3)
1368      difftest.coreid := io.hartId
1369      difftest.index  := i.U
1370
1371      val ptr = deqPtrVec(i).value
1372      val uop = commitDebugUop(i)
1373      val exuOut = debug_exuDebug(ptr)
1374      difftest.valid  := io.commits.commitValid(i) && io.commits.isCommit
1375      difftest.paddr  := exuOut.paddr
1376      difftest.opType := uop.fuOpType
1377      difftest.fuType := uop.fuType
1378    }
1379  }
1380
1381  if (env.EnableDifftest || env.AlwaysBasicDiff) {
1382    val dt_isXSTrap = Mem(RobSize, Bool())
1383    for (i <- 0 until RenameWidth) {
1384      when (canEnqueue(i)) {
1385        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap
1386      }
1387    }
1388    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) =>
1389      io.commits.isCommit && v && dt_isXSTrap(d.value)
1390    }
1391    val hitTrap = trapVec.reduce(_||_)
1392    val difftest = DifftestModule(new DiffTrapEvent, dontCare = true)
1393    difftest.coreid   := io.hartId
1394    difftest.hasTrap  := hitTrap
1395    difftest.cycleCnt := timer
1396    difftest.instrCnt := instrCnt
1397    difftest.hasWFI   := hasWFI
1398
1399    if (env.EnableDifftest) {
1400      val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1))
1401      val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN)
1402      difftest.code     := trapCode
1403      difftest.pc       := trapPC
1404    }
1405  }
1406
1407  val validEntriesBanks = (0 until (RobSize + 31) / 32).map(i => RegNext(PopCount(valid.drop(i * 32).take(32))))
1408  val validEntries = RegNext(VecInit(validEntriesBanks).reduceTree(_ +& _))
1409  val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })
1410  val commitLoadVec = VecInit(commitLoadValid)
1411  val commitBranchVec = VecInit(commitBranchValid)
1412  val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })
1413  val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })
1414  val perfEvents = Seq(
1415    ("rob_interrupt_num      ", io.flushOut.valid && intrEnable                                       ),
1416    ("rob_exception_num      ", io.flushOut.valid && exceptionEnable                                  ),
1417    ("rob_flush_pipe_num     ", io.flushOut.valid && isFlushPipe                                      ),
1418    ("rob_replay_inst_num    ", io.flushOut.valid && isFlushPipe && deqHasReplayInst                  ),
1419    ("rob_commitUop          ", ifCommit(commitCnt)                                                   ),
1420    ("rob_commitInstr        ", ifCommitReg(trueCommitCnt)                                            ),
1421    ("rob_commitInstrMove    ", ifCommitReg(PopCount(RegNext(commitMoveVec)))                         ),
1422    ("rob_commitInstrFused   ", ifCommitReg(fuseCommitCnt)                                            ),
1423    ("rob_commitInstrLoad    ", ifCommitReg(PopCount(RegNext(commitLoadVec)))                         ),
1424    ("rob_commitInstrBranch  ", ifCommitReg(PopCount(RegNext(commitBranchVec)))                       ),
1425    ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec)))                     ),
1426    ("rob_commitInstrStore   ", ifCommitReg(PopCount(RegNext(commitStoreVec)))                        ),
1427    ("rob_walkInstr          ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)           ),
1428    ("rob_walkCycle          ", (state === s_walk)                                                    ),
1429    ("rob_1_4_valid          ", validEntries <= (RobSize / 4).U                                       ),
1430    ("rob_2_4_valid          ", validEntries >  (RobSize / 4).U && validEntries <= (RobSize / 2).U    ),
1431    ("rob_3_4_valid          ", validEntries >  (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U),
1432    ("rob_4_4_valid          ", validEntries >  (RobSize * 3 / 4).U                                   ),
1433  )
1434  generatePerfEvent()
1435}
1436