1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 24import utils._ 25import utility._ 26import xiangshan._ 27import xiangshan.backend.exu.ExuConfig 28import xiangshan.frontend.FtqPtr 29 30class DebugMdpInfo(implicit p: Parameters) extends XSBundle{ 31 val ssid = UInt(SSIDWidth.W) 32 val waitAllStore = Bool() 33} 34 35class DebugLsInfo(implicit p: Parameters) extends XSBundle{ 36 val s1 = new Bundle{ 37 val isTlbFirstMiss = Bool() // in s1 38 val isBankConflict = Bool() // in s1 39 val isLoadToLoadForward = Bool() 40 val isReplayFast = Bool() 41 } 42 val s2 = new Bundle{ 43 val isDcacheFirstMiss = Bool() // in s2 (predicted result is in s1 when using WPU, real result is in s2) 44 val isForwardFail = Bool() // in s2 45 val isReplaySlow = Bool() 46 val isLoadReplayTLBMiss = Bool() 47 val isLoadReplayCacheMiss = Bool() 48 } 49 val replayCnt = UInt(XLEN.W) 50 51 def s1SignalEnable(ena: DebugLsInfo) = { 52 when(ena.s1.isTlbFirstMiss) { s1.isTlbFirstMiss := true.B } 53 when(ena.s1.isBankConflict) { s1.isBankConflict := true.B } 54 when(ena.s1.isLoadToLoadForward) { s1.isLoadToLoadForward := true.B } 55 when(ena.s1.isReplayFast) { 56 s1.isReplayFast := true.B 57 replayCnt := replayCnt + 1.U 58 } 59 } 60 61 def s2SignalEnable(ena: DebugLsInfo) = { 62 when(ena.s2.isDcacheFirstMiss) { s2.isDcacheFirstMiss := true.B } 63 when(ena.s2.isForwardFail) { s2.isForwardFail := true.B } 64 when(ena.s2.isLoadReplayTLBMiss) { s2.isLoadReplayTLBMiss := true.B } 65 when(ena.s2.isLoadReplayCacheMiss) { s2.isLoadReplayCacheMiss := true.B } 66 when(ena.s2.isReplaySlow) { 67 s2.isReplaySlow := true.B 68 replayCnt := replayCnt + 1.U 69 } 70 } 71 72} 73object DebugLsInfo{ 74 def init(implicit p: Parameters): DebugLsInfo = { 75 val lsInfo = Wire(new DebugLsInfo) 76 lsInfo.s1.isTlbFirstMiss := false.B 77 lsInfo.s1.isBankConflict := false.B 78 lsInfo.s1.isLoadToLoadForward := false.B 79 lsInfo.s1.isReplayFast := false.B 80 lsInfo.s2.isDcacheFirstMiss := false.B 81 lsInfo.s2.isForwardFail := false.B 82 lsInfo.s2.isReplaySlow := false.B 83 lsInfo.s2.isLoadReplayTLBMiss := false.B 84 lsInfo.s2.isLoadReplayCacheMiss := false.B 85 lsInfo.replayCnt := 0.U 86 lsInfo 87 } 88 89} 90class DebugLsInfoBundle(implicit p: Parameters) extends DebugLsInfo { 91 // unified processing at the end stage of load/store ==> s2 ==> bug that will write error robIdx data 92 val s1_robIdx = UInt(log2Ceil(RobSize).W) 93 val s2_robIdx = UInt(log2Ceil(RobSize).W) 94} 95class DebugLSIO(implicit p: Parameters) extends XSBundle { 96 val debugLsInfo = Vec(exuParameters.LduCnt + exuParameters.StuCnt, Output(new DebugLsInfoBundle)) 97} 98 99class DebugInstDB(implicit p: Parameters) extends XSBundle{ 100 val globalID = UInt(XLEN.W) 101 val robIdx = UInt(log2Ceil(RobSize).W) 102 val instType = FuType() 103 val exceptType = ExceptionVec() 104 val ivaddr = UInt(VAddrBits.W) 105 val dvaddr = UInt(VAddrBits.W) // the l/s access address 106 val dpaddr = UInt(VAddrBits.W) // need the physical address when the TLB is valid 107 val tlbLatency = UInt(XLEN.W) // original requirements is L1toL2TlbLatency 108 // val levelTlbHit = UInt(2.W) // 01, 10, 11(memory) 109 // val otherPerfNoteThing // FIXME: how much? 110 val accessLatency = UInt(XLEN.W) // RS out time --> write back time 111 val executeLatency = UInt(XLEN.W) 112 val issueLatency = UInt(XLEN.W) 113 val lsInfo = new DebugLsInfo 114 val mdpInfo = new DebugMdpInfo 115} 116 117class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr]( 118 p => p(XSCoreParamsKey).RobSize 119) with HasCircularQueuePtrHelper { 120 121 def needFlush(redirect: Valid[Redirect]): Bool = { 122 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 123 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 124 } 125 126 def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR 127} 128 129object RobPtr { 130 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 131 val ptr = Wire(new RobPtr) 132 ptr.flag := f 133 ptr.value := v 134 ptr 135 } 136} 137 138class RobCSRIO(implicit p: Parameters) extends XSBundle { 139 val intrBitSet = Input(Bool()) 140 val trapTarget = Input(UInt(VAddrBits.W)) 141 val isXRet = Input(Bool()) 142 val wfiEvent = Input(Bool()) 143 144 val fflags = Output(Valid(UInt(5.W))) 145 val vxsat = Output(Valid(UInt(1.W))) 146 val dirty_fs = Output(Bool()) 147 val perfinfo = new Bundle { 148 val retiredInstr = Output(UInt(3.W)) 149 } 150 151 val vcsrFlag = Output(Bool()) 152} 153 154class RobLsqIO(implicit p: Parameters) extends XSBundle { 155 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 156 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 157 val pendingld = Output(Bool()) 158 val pendingst = Output(Bool()) 159 val commit = Output(Bool()) 160} 161 162class RobEnqIO(implicit p: Parameters) extends XSBundle { 163 val canAccept = Output(Bool()) 164 val isEmpty = Output(Bool()) 165 // valid vector, for robIdx gen and walk 166 val needAlloc = Vec(RenameWidth, Input(Bool())) 167 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 168 val resp = Vec(RenameWidth, Output(new RobPtr)) 169} 170 171class RobDispatchData(implicit p: Parameters) extends RobCommitInfo 172 173class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 174 val io = IO(new Bundle { 175 // for commits/flush 176 val state = Input(UInt(2.W)) 177 val deq_v = Vec(CommitWidth, Input(Bool())) 178 val deq_w = Vec(CommitWidth, Input(Bool())) 179 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 180 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 181 val intrBitSetReg = Input(Bool()) 182 val hasNoSpecExec = Input(Bool()) 183 val interrupt_safe = Input(Bool()) 184 val blockCommit = Input(Bool()) 185 // output: the CommitWidth deqPtr 186 val out = Vec(CommitWidth, Output(new RobPtr)) 187 val next_out = Vec(CommitWidth, Output(new RobPtr)) 188 }) 189 190 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 191 192 // for exceptions (flushPipe included) and interrupts: 193 // only consider the first instruction 194 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe 195 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0) 196 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 197 198 // for normal commits: only to consider when there're no exceptions 199 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 200 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 201 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i))) 202 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 203 // when io.intrBitSetReg or there're possible exceptions in these instructions, 204 // only one instruction is allowed to commit 205 val allowOnlyOne = commit_exception || io.intrBitSetReg 206 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 207 208 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 209 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec) 210 211 deqPtrVec := deqPtrVec_next 212 213 io.next_out := deqPtrVec_next 214 io.out := deqPtrVec 215 216 when (io.state === 0.U) { 217 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 218 } 219 220} 221 222class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 223 val io = IO(new Bundle { 224 // for input redirect 225 val redirect = Input(Valid(new Redirect)) 226 // for enqueue 227 val allowEnqueue = Input(Bool()) 228 val hasBlockBackward = Input(Bool()) 229 val enq = Vec(RenameWidth, Input(Bool())) 230 val out = Output(Vec(RenameWidth, new RobPtr)) 231 }) 232 233 val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr))) 234 235 // enqueue 236 val canAccept = io.allowEnqueue && !io.hasBlockBackward 237 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 238 239 for ((ptr, i) <- enqPtrVec.zipWithIndex) { 240 when(io.redirect.valid) { 241 ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 242 }.otherwise { 243 ptr := ptr + dispatchNum 244 } 245 } 246 247 io.out := enqPtrVec 248 249} 250 251class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 252 // val valid = Bool() 253 val robIdx = new RobPtr 254 val exceptionVec = ExceptionVec() 255 val flushPipe = Bool() 256 val isVset = Bool() 257 val replayInst = Bool() // redirect to that inst itself 258 val singleStep = Bool() // TODO add frontend hit beneath 259 val crossPageIPFFix = Bool() 260 val trigger = new TriggerCf 261 262// def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend 263// def trigger_after = trigger.getTimingBackend && trigger.getHitBackend 264 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit 265 def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit 266 // only exceptions are allowed to writeback when enqueue 267 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit 268} 269 270class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 271 val io = IO(new Bundle { 272 val redirect = Input(Valid(new Redirect)) 273 val flush = Input(Bool()) 274 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 275 val wb = Vec(1 + LoadPipelineWidth + StorePipelineWidth, Flipped(ValidIO(new RobExceptionInfo))) 276 val out = ValidIO(new RobExceptionInfo) 277 val state = ValidIO(new RobExceptionInfo) 278 }) 279 280 def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = { 281 assert(valid.length == bits.length) 282 assert(isPow2(valid.length)) 283 if (valid.length == 1) { 284 (valid, bits) 285 } else if (valid.length == 2) { 286 val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) 287 for (i <- res.indices) { 288 res(i).valid := valid(i) 289 res(i).bits := bits(i) 290 } 291 val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1)) 292 (Seq(oldest.valid), Seq(oldest.bits)) 293 } else { 294 val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2)) 295 val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2)) 296 getOldest(left._1 ++ right._1, left._2 ++ right._2) 297 } 298 } 299 300 val currentValid = RegInit(false.B) 301 val current = Reg(new RobExceptionInfo) 302 303 // orR the exceptionVec 304 val lastCycleFlush = RegNext(io.flush) 305 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 306 val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush) 307 308 // s0: compare wb(1)~wb(LoadPipelineWidth) and wb(1 + LoadPipelineWidth)~wb(LoadPipelineWidth + StorePipelineWidth) 309 val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) } 310 val csr_wb_bits = io.wb(0).bits 311 val load_wb_bits = getOldest(in_wb_valid.slice(1, 1 + LoadPipelineWidth), io.wb.map(_.bits).slice(1, 1 + LoadPipelineWidth))._2(0) 312 val store_wb_bits = getOldest(in_wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth), io.wb.map(_.bits).slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth))._2(0) 313 val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid.slice(1, 1 + LoadPipelineWidth).reduce(_ || _), wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth).reduce(_ || _)))) 314 val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits))) 315 316 // s1: compare last four and current flush 317 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 318 val compare_01_valid = s0_out_valid(0) || s0_out_valid(1) 319 val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0)) 320 val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2)) 321 val s1_out_bits = RegNext(compare_bits) 322 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 323 324 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 325 val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits))) 326 327 // s2: compare the input exception with the current one 328 // priorities: 329 // (1) system reset 330 // (2) current is valid: flush, remain, merge, update 331 // (3) current is not valid: s1 or enq 332 val current_flush = current.robIdx.needFlush(io.redirect) || io.flush 333 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 334 when (currentValid) { 335 when (current_flush) { 336 currentValid := Mux(s1_flush, false.B, s1_out_valid) 337 } 338 when (s1_out_valid && !s1_flush) { 339 when (isAfter(current.robIdx, s1_out_bits.robIdx)) { 340 current := s1_out_bits 341 }.elsewhen (current.robIdx === s1_out_bits.robIdx) { 342 current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 343 current.flushPipe := s1_out_bits.flushPipe || current.flushPipe 344 current.replayInst := s1_out_bits.replayInst || current.replayInst 345 current.singleStep := s1_out_bits.singleStep || current.singleStep 346 current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf) 347 } 348 } 349 }.elsewhen (s1_out_valid && !s1_flush) { 350 currentValid := true.B 351 current := s1_out_bits 352 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 353 currentValid := true.B 354 current := enq_bits 355 } 356 357 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 358 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 359 io.state.valid := currentValid 360 io.state.bits := current 361 362} 363 364class RobFlushInfo(implicit p: Parameters) extends XSBundle { 365 val ftqIdx = new FtqPtr 366 val robIdx = new RobPtr 367 val ftqOffset = UInt(log2Up(PredictWidth).W) 368 val replayInst = Bool() 369} 370 371class Rob(implicit p: Parameters) extends LazyModule with HasWritebackSink with HasXSParameter { 372 373 lazy val module = new RobImp(this) 374 375 override def generateWritebackIO( 376 thisMod: Option[HasWritebackSource] = None, 377 thisModImp: Option[HasWritebackSourceImp] = None 378 ): Unit = { 379 val sources = writebackSinksImp(thisMod, thisModImp) 380 module.io.writeback.zip(sources).foreach(x => x._1 := x._2) 381 } 382} 383 384class RobImp(outer: Rob)(implicit p: Parameters) extends LazyModuleImp(outer) 385 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents { 386 val wbExuConfigs = outer.writebackSinksParams.map(_.exuConfigs) 387 val numWbPorts = wbExuConfigs.map(_.length) 388 389 val io = IO(new Bundle() { 390 val hartId = Input(UInt(8.W)) 391 val redirect = Input(Valid(new Redirect)) 392 val enq = new RobEnqIO 393 val flushOut = ValidIO(new Redirect) 394 val isVsetFlushPipe = Output(Bool()) 395 val vconfigPdest = Output(UInt(PhyRegIdxWidth.W)) 396 val exception = ValidIO(new ExceptionInfo) 397 // exu + brq 398 val writeback = MixedVec(numWbPorts.map(num => Vec(num, Flipped(ValidIO(new ExuOutput))))) 399 val commits = Output(new RobCommitIO) 400 val rabCommits = Output(new RobCommitIO) 401 val diffCommits = Output(new DiffCommitIO) 402 val lsq = new RobLsqIO 403 val robDeqPtr = Output(new RobPtr) 404 val csr = new RobCSRIO 405 val robFull = Output(Bool()) 406 val cpu_halt = Output(Bool()) 407 val wfi_enable = Input(Bool()) 408 val debug_ls = Flipped(new DebugLSIO) 409 }) 410 411 def selectWb(index: Int, func: Seq[ExuConfig] => Boolean): Seq[(Seq[ExuConfig], ValidIO[ExuOutput])] = { 412 wbExuConfigs(index).zip(io.writeback(index)).filter(x => func(x._1)) 413 } 414 val exeWbSel = outer.selWritebackSinks(_.exuConfigs.length) 415 val fflagsWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.writeFflags))) 416 val fflagsPorts = selectWb(fflagsWbSel, _.exists(_.writeFflags)) 417 val vxsatWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.writeVxsat))) 418 val vxsatPorts = selectWb(vxsatWbSel, _.exists(_.writeVxsat)) 419 val exceptionWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.needExceptionGen))) 420 val exceptionPorts = selectWb(exceptionWbSel, _.exists(_.needExceptionGen)) 421 val exuWbPorts = selectWb(exeWbSel, _.forall(_ != StdExeUnitCfg)) 422 val stdWbPorts = selectWb(exeWbSel, _.contains(StdExeUnitCfg)) 423 println(s"Rob: size $RobSize, numWbPorts: $numWbPorts, commitwidth: $CommitWidth") 424 println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}") 425 println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}") 426 println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}") 427 println(s"vxsat: ${vxsatPorts.map(_._1.map(_.name))}") 428 429 430 val exuWriteback = exuWbPorts.map(_._2) 431 val stdWriteback = stdWbPorts.map(_._2) 432 433 // instvalid field 434 val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 435 // writeback status 436// val writebackedCounter = Mem(RobSize, UInt(log2Up(MaxUopSize * 2).W)) 437// val realDestSize = Mem(RobSize, UInt(log2Up(MaxUopSize).W)) 438 val writebackedCounter = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize).W)))) 439 val realDestSize = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize).W)))) 440 val fflagsDataModule = RegInit(VecInit(Seq.fill(RobSize)(0.U(5.W)))) 441 val vxsatDataModule = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 442 443 def isWritebacked(ptr: UInt): Bool = { 444 !writebackedCounter(ptr).orR 445 } 446 447 // data for redirect, exception, etc. 448 val flagBkup = Mem(RobSize, Bool()) 449 // some instructions are not allowed to trigger interrupts 450 // They have side effects on the states of the processor before they write back 451 val interrupt_safe = Mem(RobSize, Bool()) 452 453 // data for debug 454 // Warn: debug_* prefix should not exist in generated verilog. 455 val debug_microOp = Mem(RobSize, new MicroOp) 456 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 457 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 458 val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init))) 459 460 // pointers 461 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 462 val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr)) 463 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 464 465 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 466 val allowEnqueue = RegInit(true.B) 467 468 val enqPtr = enqPtrVec.head 469 val deqPtr = deqPtrVec(0) 470 val walkPtr = walkPtrVec(0) 471 472 val isEmpty = enqPtr === deqPtr 473 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 474 475 /** 476 * states of Rob 477 */ 478 val s_idle :: s_walk :: Nil = Enum(2) 479 val state = RegInit(s_idle) 480 481 /** 482 * Data Modules 483 * 484 * CommitDataModule: data from dispatch 485 * (1) read: commits/walk/exception 486 * (2) write: enqueue 487 * 488 * WritebackData: data from writeback 489 * (1) read: commits/walk/exception 490 * (2) write: write back from exe units 491 */ 492 val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth)) 493 val dispatchDataRead = dispatchData.io.rdata 494 495 val exceptionGen = Module(new ExceptionGen) 496 val exceptionDataRead = exceptionGen.io.state 497 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 498 val vxsatDataRead = Wire(Vec(CommitWidth, UInt(1.W))) 499 500 io.robDeqPtr := deqPtr 501 502 val rab = Module(new RenameBuffer(RabSize)) 503 rab.io.redirectValid := io.redirect.valid 504 rab.io.req.zip(io.enq.req).map{ case(dest, src) => 505 dest.bits := src.bits 506 dest.valid := src.valid && io.enq.canAccept 507 } 508 509 val realDestSizeCandidates = (0 until CommitWidth).map(i => realDestSize(Mux(state === s_idle, deqPtrVec(i).value, walkPtrVec(i).value))) 510 val wbSizeSeq = io.commits.commitValid.zip(io.commits.walkValid).zip(realDestSizeCandidates).map{ case((commitValid, walkValid), realDestSize) => 511 Mux(io.commits.isCommit, Mux(commitValid, realDestSize, 0.U), Mux(walkValid, realDestSize, 0.U)) 512 } 513 val wbSizeSum = wbSizeSeq.reduce(_ + _) 514 rab.io.commitSize := wbSizeSum 515 rab.io.walkSize := wbSizeSum 516 517 io.rabCommits := rab.io.commits 518 io.diffCommits := rab.io.diffCommits 519 /** 520 * Enqueue (from dispatch) 521 */ 522 // special cases 523 val hasBlockBackward = RegInit(false.B) 524 val hasNoSpecExec = RegInit(false.B) 525 val doingSvinval = RegInit(false.B) 526 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 527 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 528 when (isEmpty) { hasBlockBackward:= false.B } 529 // When any instruction commits, hasNoSpecExec should be set to false.B 530 when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasNoSpecExec:= false.B } 531 532 // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. 533 // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. 534 // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. 535 val hasWFI = RegInit(false.B) 536 io.cpu_halt := hasWFI 537 // WFI Timeout: 2^20 = 1M cycles 538 val wfi_cycles = RegInit(0.U(20.W)) 539 when (hasWFI) { 540 wfi_cycles := wfi_cycles + 1.U 541 }.elsewhen (!hasWFI && RegNext(hasWFI)) { 542 wfi_cycles := 0.U 543 } 544 val wfi_timeout = wfi_cycles.andR 545 when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) { 546 hasWFI := false.B 547 } 548 549 // inst allocate 550 val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.ctrl.firstUop))))) 551 io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq 552 io.enq.resp := allocatePtrVec 553 val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.ctrl.firstUop && io.enq.canAccept)) 554 val timer = GTimer() 555 for (i <- 0 until RenameWidth) { 556 // we don't check whether io.redirect is valid here since redirect has higher priority 557 when (canEnqueue(i)) { 558 val enqUop = io.enq.req(i).bits 559 val enqIndex = allocatePtrVec(i).value 560 // store uop in data module and debug_microOp Vec 561 debug_microOp(enqIndex) := enqUop 562 debug_microOp(enqIndex).debugInfo.dispatchTime := timer 563 debug_microOp(enqIndex).debugInfo.enqRsTime := timer 564 debug_microOp(enqIndex).debugInfo.selectTime := timer 565 debug_microOp(enqIndex).debugInfo.issueTime := timer 566 debug_microOp(enqIndex).debugInfo.writebackTime := timer 567 debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer 568 debug_microOp(enqIndex).debugInfo.tlbRespTime := timer 569 debug_lsInfo(enqIndex) := DebugLsInfo.init 570 when (enqUop.ctrl.blockBackward) { 571 hasBlockBackward := true.B 572 } 573 when (enqUop.ctrl.noSpecExec) { 574 hasNoSpecExec := true.B 575 } 576 val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend 577 val enqHasException = ExceptionNO.selectFrontend(enqUop.cf.exceptionVec).asUInt.orR 578 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 579 when(!enqHasTriggerHit && !enqHasException && FuType.isSvinvalBegin(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)) 580 { 581 doingSvinval := true.B 582 } 583 // the end instruction of Svinval enqs so clear doingSvinval 584 when(!enqHasTriggerHit && !enqHasException && FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)) 585 { 586 doingSvinval := false.B 587 } 588 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 589 assert(!doingSvinval || (FuType.isSvinval(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe) || 590 FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))) 591 when (enqUop.ctrl.isWFI && !enqHasException && !enqHasTriggerHit) { 592 hasWFI := true.B 593 } 594 } 595 } 596 val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.ctrl.firstUop)), 0.U) 597 io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR) 598 599 when (!io.wfi_enable) { 600 hasWFI := false.B 601 } 602 // sel vsetvl's flush position 603 val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3) 604 val vsetvlState = RegInit(vs_idle) 605 606 val firstVInstrFtqPtr = RegInit(0.U.asTypeOf(new FtqPtr)) 607 val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W))) 608 val firstVInstrRobIdx = RegInit(0.U.asTypeOf(new RobPtr)) 609 610 val enq0 = io.enq.req(0) 611 val enq0IsVset = FuType.isIntExu(enq0.bits.ctrl.fuType) && ALUOpType.isVset(enq0.bits.ctrl.fuOpType) && enq0.bits.ctrl.lastUop && canEnqueue(0) 612 val enq0IsVsetFlush = enq0IsVset && enq0.bits.ctrl.flushPipe 613 val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVecExu(req.bits.ctrl.fuType) && fire} 614 // for vs_idle 615 val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType))) 616 // for vs_waitVinstr 617 val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1) 618 val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req) 619 when(vsetvlState === vs_idle){ 620 firstVInstrFtqPtr := firstVInstrIdle.bits.cf.ftqPtr 621 firstVInstrFtqOffset := firstVInstrIdle.bits.cf.ftqOffset 622 firstVInstrRobIdx := firstVInstrIdle.bits.robIdx 623 }.elsewhen(vsetvlState === vs_waitVinstr){ 624 firstVInstrFtqPtr := firstVInstrWait.bits.cf.ftqPtr 625 firstVInstrFtqOffset := firstVInstrWait.bits.cf.ftqOffset 626 firstVInstrRobIdx := firstVInstrWait.bits.robIdx 627 } 628 629 val hasVInstrAfterI = Cat(enqIsVInstrVec.drop(1)).orR 630 when(vsetvlState === vs_idle){ 631 when(enq0IsVsetFlush){ 632 vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr) 633 } 634 }.elsewhen(vsetvlState === vs_waitVinstr){ 635 when(io.redirect.valid){ 636 vsetvlState := vs_idle 637 }.elsewhen(Cat(enqIsVInstrOrVset).orR){ 638 vsetvlState := vs_waitFlush 639 } 640 }.elsewhen(vsetvlState === vs_waitFlush){ 641 when(io.redirect.valid){ 642 vsetvlState := vs_idle 643 } 644 } 645 646 /** 647 * Writeback (from execution units) 648 */ 649 for (wb <- exuWriteback) { 650 when (wb.valid) { 651 val wbIdx = wb.bits.uop.robIdx.value 652 debug_exuData(wbIdx) := wb.bits.data 653 debug_exuDebug(wbIdx) := wb.bits.debug 654 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.uop.debugInfo.enqRsTime 655 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.uop.debugInfo.selectTime 656 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.uop.debugInfo.issueTime 657 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.uop.debugInfo.writebackTime 658 debug_microOp(wbIdx).debugInfo.tlbFirstReqTime := wb.bits.uop.debugInfo.tlbFirstReqTime 659 debug_microOp(wbIdx).debugInfo.tlbRespTime := wb.bits.uop.debugInfo.tlbRespTime 660 661 // debug for lqidx and sqidx 662 debug_microOp(wbIdx).lqIdx := wb.bits.uop.lqIdx 663 debug_microOp(wbIdx).sqIdx := wb.bits.uop.sqIdx 664 665 val debug_Uop = debug_microOp(wbIdx) 666 XSInfo(true.B, 667 p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " + 668 p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " + 669 p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.uop.robIdx}\n" 670 ) 671 } 672 } 673 val writebackNum = PopCount(exuWriteback.map(_.valid)) 674 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 675 676 677 /** 678 * RedirectOut: Interrupt and Exceptions 679 */ 680 val deqDispatchData = dispatchDataRead(0) 681 val debug_deqUop = debug_microOp(deqPtr.value) 682 683 val intrBitSetReg = RegNext(io.csr.intrBitSet) 684 val intrEnable = intrBitSetReg && !hasNoSpecExec && interrupt_safe(deqPtr.value) 685 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 686 val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR || 687 exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit) 688 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 689 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 690 val exceptionEnable = isWritebacked(deqPtr.value) && deqHasException 691 692 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 693 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n") 694 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n") 695 696 val isFlushPipe = isWritebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 697 698 val isVsetFlushPipe = isWritebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset 699 val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush) 700 io.isVsetFlushPipe := isVsetFlushPipe 701 io.vconfigPdest := rab.io.vconfigPdest 702 // io.flushOut will trigger redirect at the next cycle. 703 // Block any redirect or commit at the next cycle. 704 val lastCycleFlush = RegNext(io.flushOut.valid) 705 706 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 707 io.flushOut.bits := DontCare 708 io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr) 709 io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx) 710 io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset) 711 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 712 io.flushOut.bits.interrupt := true.B 713 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 714 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 715 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 716 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 717 718 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 719 io.exception.valid := RegNext(exceptionHappen) 720 io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen) 721 io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 722 io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 723 io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 724 io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 725 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 726 io.exception.bits.uop.cf.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 727 728 XSDebug(io.flushOut.valid, 729 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " + 730 p"excp $exceptionEnable flushPipe $isFlushPipe " + 731 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 732 733 734 /** 735 * Commits (and walk) 736 * They share the same width. 737 */ 738 val walkCounter = Reg(UInt(log2Up(RobSize + 1).W)) 739 val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter)) 740 val walkFinished = walkCounter <= CommitWidth.U 741 rab.io.robWalkEnd := state === s_walk && walkFinished 742 require(RenameWidth <= CommitWidth) 743 744 // wiring to csr 745 val (wflags, fpWen) = (0 until CommitWidth).map(i => { 746 val v = io.commits.commitValid(i) 747 val info = io.commits.info(i) 748 (v & info.wflags, v & info.fpWen) 749 }).unzip 750 val fflags = Wire(Valid(UInt(5.W))) 751 fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR 752 fflags.bits := wflags.zip(fflagsDataRead).map({ 753 case (w, f) => Mux(w, f, 0.U) 754 }).reduce(_|_) 755 val dirty_fs = io.commits.isCommit && VecInit(fpWen).asUInt.orR 756 757 val vxsat = Wire(Valid(UInt(1.W))) 758 vxsat.valid := io.commits.isCommit && vxsat.bits.asBool 759 vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map{ 760 case(valid, vxsat) => valid & vxsat.asBool 761 }.reduce(_ | _) 762 763 // when mispredict branches writeback, stop commit in the next 2 cycles 764 // TODO: don't check all exu write back 765 val misPredWb = Cat(VecInit(exuWriteback.map(wb => 766 wb.bits.redirect.cfiUpdate.isMisPred && wb.bits.redirectValid 767 ))).orR 768 val misPredBlockCounter = Reg(UInt(3.W)) 769 misPredBlockCounter := Mux(misPredWb, 770 "b111".U, 771 misPredBlockCounter >> 1.U 772 ) 773 val misPredBlock = misPredBlockCounter(0) 774 val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI 775 776 io.commits.isWalk := state === s_walk 777 io.commits.isCommit := state === s_idle && !blockCommit 778 val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value))) 779 val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value))) 780 // store will be commited iff both sta & std have been writebacked 781 val commit_w = VecInit(deqPtrVec.map(ptr => isWritebacked(ptr.value))) 782 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 783 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 784 val allowOnlyOneCommit = commit_exception || intrBitSetReg 785 // for instructions that may block others, we don't allow them to commit 786 for (i <- 0 until CommitWidth) { 787 // defaults: state === s_idle and instructions commit 788 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 789 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 790 io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked 791 io.commits.info(i) := dispatchDataRead(i) 792 793 when (state === s_walk) { 794 io.commits.walkValid(i) := shouldWalkVec(i) 795 when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) { 796 XSError(!walk_v(i), s"why not $i???\n") 797 } 798 } 799 800 XSInfo(io.commits.isCommit && io.commits.commitValid(i), 801 "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b vxsat: %b\n", 802 debug_microOp(deqPtrVec(i).value).cf.pc, 803 io.commits.info(i).rfWen, 804 io.commits.info(i).ldest, 805 io.commits.info(i).pdest, 806 io.commits.info(i).old_pdest, 807 debug_exuData(deqPtrVec(i).value), 808 fflagsDataRead(i), 809 vxsatDataRead(i) 810 ) 811 XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n", 812 debug_microOp(walkPtrVec(i).value).cf.pc, 813 io.commits.info(i).rfWen, 814 io.commits.info(i).ldest, 815 debug_exuData(walkPtrVec(i).value) 816 ) 817 } 818 if (env.EnableDifftest) { 819 io.commits.info.map(info => dontTouch(info.pc)) 820 } 821 822 // sync fflags/dirty_fs/vxsat to csr 823 io.csr.fflags := RegNext(fflags) 824 io.csr.dirty_fs := RegNext(dirty_fs) 825 io.csr.vxsat := RegNext(vxsat) 826 827 // sync v csr to csr 828 // for difftest 829 val isDiffWriteVconfigVec = io.diffCommits.commitValid.zip(io.diffCommits.info).map { case (valid, info) => valid && info.ldest === 32.U }.reverse 830 io.csr.vcsrFlag := RegNext(io.diffCommits.isCommit && Cat(isDiffWriteVconfigVec).orR) 831 832 // commit load/store to lsq 833 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 834 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE)) 835 io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U)) 836 io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U)) 837 // indicate a pending load or store 838 io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value)) 839 io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 840 io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0)) 841 842 /** 843 * state changes 844 * (1) redirect: switch to s_walk 845 * (2) walk: when walking comes to the end, switch to s_idle 846 */ 847 val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished && rab.io.rabWalkEnd, s_idle, state)) 848 XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle) 849 XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk) 850 XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle) 851 XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk) 852 state := state_next 853 854 /** 855 * pointers and counters 856 */ 857 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 858 deqPtrGenModule.io.state := state 859 deqPtrGenModule.io.deq_v := commit_v 860 deqPtrGenModule.io.deq_w := commit_w 861 deqPtrGenModule.io.exception_state := exceptionDataRead 862 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 863 deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec 864 deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value) 865 deqPtrGenModule.io.blockCommit := blockCommit 866 deqPtrVec := deqPtrGenModule.io.out 867 val deqPtrVec_next = deqPtrGenModule.io.next_out 868 869 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 870 enqPtrGenModule.io.redirect := io.redirect 871 enqPtrGenModule.io.allowEnqueue := allowEnqueue 872 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 873 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.ctrl.firstUop)) 874 enqPtrVec := enqPtrGenModule.io.out 875 876 val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U) 877 // next walkPtrVec: 878 // (1) redirect occurs: update according to state 879 // (2) walk: move forwards 880 val walkPtrVec_next = Mux(io.redirect.valid, 881 deqPtrVec_next, 882 Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec) 883 ) 884 walkPtrVec := walkPtrVec_next 885 886 val numValidEntries = distanceBetween(enqPtr, deqPtr) 887 val commitCnt = PopCount(io.commits.commitValid) 888 889 allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U 890 891 val currentWalkPtr = Mux(state === s_walk, walkPtr, deqPtrVec_next(0)) 892 val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0)) 893 when (io.redirect.valid) { 894 // full condition: 895 // +& is used here because: 896 // When rob is full and the tail instruction causes a misprediction, 897 // the redirect robIdx is the deqPtr - 1. In this case, redirectWalkDistance 898 // is RobSize - 1. 899 // Since misprediction does not flush the instruction itself, flushItSelf is false.B. 900 // Previously we use `+` to count the walk distance and it causes overflows 901 // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize. 902 // The width of walkCounter also needs to be changed. 903 // empty condition: 904 // When the last instruction in ROB commits and causes a flush, a redirect 905 // will be raised later. In such circumstances, the redirect robIdx is before 906 // the deqPtrVec_next(0) and will cause underflow. 907 walkCounter := Mux(isBefore(io.redirect.bits.robIdx, deqPtrVec_next(0)), 0.U, 908 redirectWalkDistance +& !io.redirect.bits.flushItself()) 909 }.elsewhen (state === s_walk) { 910 walkCounter := walkCounter - thisCycleWalkCount 911 XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n") 912 } 913 914 915 /** 916 * States 917 * We put all the stage bits changes here. 918 919 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 920 * All states: (1) valid; (2) writebacked; (3) flagBkup 921 */ 922 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 923 924 // redirect logic writes 6 valid 925 val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr)) 926 val redirectTail = Reg(new RobPtr) 927 val redirectIdle :: redirectBusy :: Nil = Enum(2) 928 val redirectState = RegInit(redirectIdle) 929 val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail)) 930 when(redirectState === redirectBusy) { 931 redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U) 932 redirectHeadVec zip invMask foreach { 933 case (redirectHead, inv) => when(inv) { 934 valid(redirectHead.value) := false.B 935 } 936 } 937 when(!invMask.last) { 938 redirectState := redirectIdle 939 } 940 } 941 when(io.redirect.valid) { 942 redirectState := redirectBusy 943 when(redirectState === redirectIdle) { 944 redirectTail := enqPtr 945 } 946 redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) => 947 redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 948 } 949 } 950 // enqueue logic writes 6 valid 951 for (i <- 0 until RenameWidth) { 952 when (canEnqueue(i) && !io.redirect.valid) { 953 valid(allocatePtrVec(i).value) := true.B 954 } 955 } 956 // dequeue logic writes 6 valid 957 for (i <- 0 until CommitWidth) { 958 val commitValid = io.commits.isCommit && io.commits.commitValid(i) 959 when (commitValid) { 960 valid(commitReadAddr(i)) := false.B 961 } 962 } 963 964 // debug_inst update 965 for(i <- 0 until (exuParameters.LduCnt + exuParameters.StuCnt)) { 966 debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i)) 967 debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i)) 968 } 969 970 // writeback logic set numWbPorts writebacked to true 971 val blockWbSeq = Wire(Vec(exuWriteback.length, Bool())) 972 blockWbSeq.map(_ := false.B) 973 for (((wb, cfgs), blockWb) <- exuWriteback.zip(wbExuConfigs(exeWbSel)).zip(blockWbSeq)) { 974 when(wb.valid) { 975 val wbHasException = ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, cfgs).asUInt.orR 976 val wbHasTriggerHit = wb.bits.uop.cf.trigger.getHitBackend 977 val wbHasFlushPipe = cfgs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe 978 val wbHasReplayInst = cfgs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst 979 blockWb := wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit 980 } 981 } 982 983 // if the first uop of an instruction is valid , write writebackedCounter 984 val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid) 985 val instEnqValidSeq = io.enq.req.map (req => io.enq.canAccept && req.valid && req.bits.ctrl.firstUop) 986 val enqNeedWriteRFSeq = io.enq.req.map(_.bits.ctrl.needWriteRf) 987 val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value) 988 989 val enqWbSizeSeq = io.enq.req.map { req => 990 val enqHasException = ExceptionNO.selectFrontend(req.bits.cf.exceptionVec).asUInt.orR 991 val enqHasTriggerHit = req.bits.cf.trigger.getHitFrontend 992 Mux(req.bits.eliminatedMove, Mux(enqHasException || enqHasTriggerHit, 1.U, 0.U), 993 Mux(FuType.isMemExu(req.bits.ctrl.fuType) && FuType.isAMO(req.bits.ctrl.fuType), 3.U, 994 Mux(FuType.isStoreExu(req.bits.ctrl.fuType), 2.U, 1.U))) 995 } 996 val enqWbSizeSumSeq = enqRobIdxSeq.zipWithIndex.map { case (robIdx, idx) => 997 val addend = uopEnqValidSeq.zip(enqRobIdxSeq).zip(enqWbSizeSeq).take(idx + 1).map { case ((valid, uopRobIdx), uopWbSize) => Mux(valid && robIdx === uopRobIdx, uopWbSize, 0.U) } 998 addend.reduce(_ +& _) 999 } 1000 val fflags_wb = fflagsPorts.map(_._2) 1001 val vxsat_wb = vxsatPorts.map(_._2) 1002 for(i <- 0 until RobSize){ 1003 1004 val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U) 1005 val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch } 1006 val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch } 1007 val instCanEnqFlag = Cat(instCanEnqSeq).orR 1008 1009 realDestSize(i) := Mux(!valid(i) && instCanEnqFlag || valid(i), realDestSize(i) + PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map{ case(writeFlag, valid) => writeFlag && valid }), 0.U) 1010 1011 1012 val enqCnt = ParallelPriorityMux(uopCanEnqSeq.reverse :+ true.B, enqWbSizeSumSeq.reverse :+ 0.U) 1013 1014 val canWbSeq = exuWriteback.map(writeback => writeback.valid && writeback.bits.uop.robIdx.value === i.U) 1015 val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map{ case(canWb, blockWb) => canWb && !blockWb } 1016 val canStuWbSeq = stdWriteback.map(writeback => writeback.valid && writeback.bits.uop.robIdx.value === i.U) 1017 val wbCnt = PopCount(canWbNoBlockSeq ++ canStuWbSeq) 1018 1019 writebackedCounter(i) := Mux(!valid(i) && instCanEnqFlag || valid(i), Mux(exceptionGen.io.out.valid && exceptionGen.io.out.bits.robIdx.value === i.U, 0.U, writebackedCounter(i) + enqCnt - wbCnt), 0.U) 1020 1021 val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.uop.robIdx.value === i.U) 1022 val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map{ case(canWb, wb) => Mux(canWb, wb.bits.fflags, 0.U)}.reduce(_ | _) 1023 fflagsDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, fflagsDataModule(i) | fflagsRes) 1024 1025 val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.uop.robIdx.value === i.U) 1026 val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map{ case(canWb, wb) => Mux(canWb, wb.bits.vxsat, 0.U)}.reduce(_ | _) 1027 vxsatDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, vxsatDataModule(i) | vxsatRes) 1028 } 1029 1030 // flagBkup 1031 // enqueue logic set 6 flagBkup at most 1032 for (i <- 0 until RenameWidth) { 1033 when (canEnqueue(i)) { 1034 flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag 1035 } 1036 } 1037 1038 // interrupt_safe 1039 for (i <- 0 until RenameWidth) { 1040 // We RegNext the updates for better timing. 1041 // Note that instructions won't change the system's states in this cycle. 1042 when (RegNext(canEnqueue(i))) { 1043 // For now, we allow non-load-store instructions to trigger interrupts 1044 // For MMIO instructions, they should not trigger interrupts since they may 1045 // be sent to lower level before it writes back. 1046 // However, we cannot determine whether a load/store instruction is MMIO. 1047 // Thus, we don't allow load/store instructions to trigger an interrupt. 1048 // TODO: support non-MMIO load-store instructions to trigger interrupts 1049 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.ctrl.commitType) 1050 interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts) 1051 } 1052 } 1053 1054 /** 1055 * read and write of data modules 1056 */ 1057 val commitReadAddr_next = Mux(state_next === s_idle, 1058 VecInit(deqPtrVec_next.map(_.value)), 1059 VecInit(walkPtrVec_next.map(_.value)) 1060 ) 1061 // NOTE: dispatch info will record the uop of inst 1062 dispatchData.io.wen := canEnqueue 1063 dispatchData.io.waddr := allocatePtrVec.map(_.value) 1064 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) => 1065 wdata.ldest := req.ctrl.ldest 1066 wdata.rfWen := req.ctrl.rfWen 1067 wdata.fpWen := req.ctrl.fpWen 1068 wdata.vecWen := req.ctrl.vecWen 1069 wdata.wflags := req.ctrl.fpu.wflags 1070 wdata.commitType := req.ctrl.commitType 1071 wdata.pdest := req.pdest 1072 wdata.old_pdest := req.old_pdest 1073 wdata.ftqIdx := req.cf.ftqPtr 1074 wdata.ftqOffset := req.cf.ftqOffset 1075 wdata.isMove := req.eliminatedMove 1076 wdata.pc := req.cf.pc 1077 wdata.uopIdx := req.ctrl.uopIdx 1078 wdata.vconfig := req.ctrl.vconfig 1079 } 1080 dispatchData.io.raddr := commitReadAddr_next 1081 1082 exceptionGen.io.redirect <> io.redirect 1083 exceptionGen.io.flush := io.flushOut.valid 1084 for (i <- 0 until RenameWidth) { 1085 exceptionGen.io.enq(i).valid := canEnqueue(i) 1086 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 1087 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec) 1088 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe 1089 exceptionGen.io.enq(i).bits.isVset := FuType.isIntExu(io.enq.req(i).bits.ctrl.fuType) && ALUOpType.isVset(io.enq.req(i).bits.ctrl.fuOpType) 1090 exceptionGen.io.enq(i).bits.replayInst := false.B 1091 XSError(canEnqueue(i) && io.enq.req(i).bits.ctrl.replayInst, "enq should not set replayInst") 1092 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep 1093 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.cf.crossPageIPFFix 1094 exceptionGen.io.enq(i).bits.trigger.clear() 1095 exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.cf.trigger.frontendHit 1096 } 1097 1098 println(s"ExceptionGen:") 1099 val exceptionCases = exceptionPorts.map(_._1.flatMap(_.exceptionOut).distinct.sorted) 1100 require(exceptionCases.length == exceptionGen.io.wb.length) 1101 for ((((configs, wb), exc_wb), i) <- exceptionPorts.zip(exceptionGen.io.wb).zipWithIndex) { 1102 exc_wb.valid := wb.valid 1103 exc_wb.bits.robIdx := wb.bits.uop.robIdx 1104 exc_wb.bits.exceptionVec := ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, configs) 1105 exc_wb.bits.flushPipe := configs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe 1106 exc_wb.bits.isVset := false.B 1107 exc_wb.bits.replayInst := configs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst 1108 exc_wb.bits.singleStep := false.B 1109 exc_wb.bits.crossPageIPFFix := false.B 1110 // TODO: make trigger configurable 1111 exc_wb.bits.trigger.clear() 1112 exc_wb.bits.trigger.backendHit := wb.bits.uop.cf.trigger.backendHit 1113 println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + 1114 s"flushPipe ${configs.exists(_.flushPipe)}, " + 1115 s"replayInst ${configs.exists(_.replayInst)}") 1116 } 1117 1118 fflagsDataRead := (0 until CommitWidth).map(i => fflagsDataModule(deqPtrVec(i).value)) 1119 1120 vxsatDataRead := (0 until CommitWidth).map(i => vxsatDataModule(deqPtrVec(i).value)) 1121 1122 val instrCntReg = RegInit(0.U(64.W)) 1123 val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) }) 1124 val trueCommitCnt = RegNext(commitCnt) +& fuseCommitCnt 1125 val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U) 1126 val instrCnt = instrCntReg + retireCounter 1127 instrCntReg := instrCnt 1128 io.csr.perfinfo.retiredInstr := retireCounter 1129 io.robFull := !allowEnqueue 1130 1131 /** 1132 * debug info 1133 */ 1134 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 1135 XSDebug("") 1136 for(i <- 0 until RobSize){ 1137 XSDebug(false, !valid(i), "-") 1138 XSDebug(false, valid(i) && !writebackedCounter(i).orR, "w") 1139 XSDebug(false, valid(i) && writebackedCounter(i).orR, "v") 1140 } 1141 XSDebug(false, true.B, "\n") 1142 1143 for(i <- 0 until RobSize) { 1144 if(i % 4 == 0) XSDebug("") 1145 XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc) 1146 XSDebug(false, !valid(i), "- ") 1147 XSDebug(false, valid(i) && !writebackedCounter(i).orR, "w ") 1148 XSDebug(false, valid(i) && writebackedCounter(i).orR, "v ") 1149 if(i % 4 == 3) XSDebug(false, true.B, "\n") 1150 } 1151 1152 def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U) 1153 def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U) 1154 1155 val commitDebugExu = deqPtrVec.map(_.value).map(debug_exuDebug(_)) 1156 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 1157 val commitDebugLsInfo = deqPtrVec.map(_.value).map(debug_lsInfo(_)) 1158 XSPerfAccumulate("clock_cycle", 1.U) 1159 QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue) 1160 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 1161 XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt)) 1162 val commitIsMove = commitDebugUop.map(_.ctrl.isMove) 1163 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }))) 1164 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 1165 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e }))) 1166 XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt)) 1167 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 1168 val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t } 1169 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 1170 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 1171 val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t } 1172 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 1173 val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit) 1174 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 1175 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 1176 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }))) 1177 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && !writebackedCounter(i).orR))) 1178 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) 1179 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 1180 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)) 1181 XSPerfAccumulate("walkCycle", state === s_walk) 1182 val deqNotWritebacked = valid(deqPtr.value) && isWritebacked(deqPtr.value) 1183 val deqUopCommitType = io.commits.info(0).commitType 1184 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 1185 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 1186 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 1187 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 1188 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 1189 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 1190 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 1191 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 1192 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 1193 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1194 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 1195 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 1196 val accessLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1197 val tlbLatency = commitDebugUop.map(uop => uop.debugInfo.tlbRespTime - uop.debugInfo.tlbFirstReqTime) 1198 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 1199 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 1200 } 1201 for (fuType <- FuType.functionNameMap.keys) { 1202 val fuName = FuType.functionNameMap(fuType) 1203 val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U ) 1204 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 1205 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 1206 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 1207 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 1208 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 1209 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 1210 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 1211 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 1212 if (fuType == FuType.fmac.litValue) { 1213 val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 ) 1214 XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma))) 1215 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency))) 1216 XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency))) 1217 } 1218 } 1219 1220 /** 1221 * DataBase info: 1222 * log trigger is at writeback valid 1223 * */ 1224 if(!env.FPGAPlatform){ 1225 val instTableName = "InstDB" + p(XSCoreParamsKey).HartId.toString 1226 val instSiteName = "Rob" + p(XSCoreParamsKey).HartId.toString 1227 val debug_instTable = ChiselDB.createTable(instTableName, new DebugInstDB) 1228 // FIXME lyq: only get inst (alu, bj, ls) in exuWriteback 1229 for (wb <- exuWriteback) { 1230 when(wb.valid) { 1231 val debug_instData = Wire(new DebugInstDB) 1232 val idx = wb.bits.uop.robIdx.value 1233 debug_instData.globalID := wb.bits.uop.ctrl.debug_globalID 1234 debug_instData.robIdx := idx 1235 debug_instData.instType := wb.bits.uop.ctrl.fuType 1236 debug_instData.ivaddr := wb.bits.uop.cf.pc 1237 debug_instData.dvaddr := wb.bits.debug.vaddr 1238 debug_instData.dpaddr := wb.bits.debug.paddr 1239 debug_instData.tlbLatency := wb.bits.uop.debugInfo.tlbRespTime - wb.bits.uop.debugInfo.tlbFirstReqTime 1240 debug_instData.accessLatency := wb.bits.uop.debugInfo.writebackTime - wb.bits.uop.debugInfo.issueTime 1241 debug_instData.executeLatency := wb.bits.uop.debugInfo.writebackTime - wb.bits.uop.debugInfo.issueTime 1242 debug_instData.issueLatency := wb.bits.uop.debugInfo.issueTime - wb.bits.uop.debugInfo.selectTime 1243 debug_instData.exceptType := wb.bits.uop.cf.exceptionVec 1244 debug_instData.lsInfo := debug_lsInfo(idx) 1245 debug_instData.mdpInfo.ssid := wb.bits.uop.cf.ssid 1246 debug_instData.mdpInfo.waitAllStore := wb.bits.uop.cf.loadWaitStrict && wb.bits.uop.cf.loadWaitBit 1247 debug_instTable.log( 1248 data = debug_instData, 1249 en = wb.valid, 1250 site = instSiteName, 1251 clock = clock, 1252 reset = reset 1253 ) 1254 } 1255 } 1256 } 1257 1258 1259 //difftest signals 1260 val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value 1261 1262 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1263 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1264 1265 for(i <- 0 until CommitWidth) { 1266 val idx = deqPtrVec(i).value 1267 wdata(i) := debug_exuData(idx) 1268 wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN) 1269 } 1270 1271 if (env.EnableDifftest) { 1272 for (i <- 0 until CommitWidth) { 1273 val difftest = Module(new DifftestInstrCommit) 1274 // assgin default value 1275 difftest.io := DontCare 1276 1277 difftest.io.clock := clock 1278 difftest.io.coreid := io.hartId 1279 difftest.io.index := i.U 1280 1281 val ptr = deqPtrVec(i).value 1282 val uop = commitDebugUop(i) 1283 val exuOut = debug_exuDebug(ptr) 1284 val exuData = debug_exuData(ptr) 1285 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1286 difftest.io.pc := RegNext(RegNext(RegNext(SignExt(uop.cf.pc, XLEN)))) 1287 difftest.io.instr := RegNext(RegNext(RegNext(uop.cf.instr))) 1288 difftest.io.robIdx := RegNext(RegNext(RegNext(ZeroExt(ptr, 10)))) 1289 difftest.io.lqIdx := RegNext(RegNext(RegNext(ZeroExt(uop.lqIdx.value, 7)))) 1290 difftest.io.sqIdx := RegNext(RegNext(RegNext(ZeroExt(uop.sqIdx.value, 7)))) 1291 difftest.io.isLoad := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.LOAD))) 1292 difftest.io.isStore := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.STORE))) 1293 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType)))) 1294 // when committing an eliminated move instruction, 1295 // we must make sure that skip is properly set to false (output from EXU is random value) 1296 difftest.io.skip := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1297 difftest.io.isRVC := RegNext(RegNext(RegNext(uop.cf.pd.isRVC))) 1298 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U))) 1299 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).fpWen))) 1300 difftest.io.vecwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).vecWen))) 1301 difftest.io.wpdest := RegNext(RegNext(RegNext(io.commits.info(i).pdest))) 1302 difftest.io.wdest := RegNext(RegNext(RegNext(io.commits.info(i).ldest))) 1303 // // runahead commit hint 1304 // val runahead_commit = Module(new DifftestRunaheadCommitEvent) 1305 // runahead_commit.io.clock := clock 1306 // runahead_commit.io.coreid := io.hartId 1307 // runahead_commit.io.index := i.U 1308 // runahead_commit.io.valid := difftest.io.valid && 1309 // (commitBranchValid(i) || commitIsStore(i)) 1310 // // TODO: is branch or store 1311 // runahead_commit.io.pc := difftest.io.pc 1312 } 1313 } 1314 else if (env.AlwaysBasicDiff) { 1315 // These are the structures used by difftest only and should be optimized after synthesis. 1316 val dt_eliminatedMove = Mem(RobSize, Bool()) 1317 val dt_isRVC = Mem(RobSize, Bool()) 1318 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1319 for (i <- 0 until RenameWidth) { 1320 when (canEnqueue(i)) { 1321 dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1322 dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.cf.pd.isRVC 1323 } 1324 } 1325 for (wb <- exuWriteback) { 1326 when (wb.valid) { 1327 val wbIdx = wb.bits.uop.robIdx.value 1328 dt_exuDebug(wbIdx) := wb.bits.debug 1329 } 1330 } 1331 // Always instantiate basic difftest modules. 1332 for (i <- 0 until CommitWidth) { 1333 val commitInfo = io.commits.info(i) 1334 val ptr = deqPtrVec(i).value 1335 val exuOut = dt_exuDebug(ptr) 1336 val eliminatedMove = dt_eliminatedMove(ptr) 1337 val isRVC = dt_isRVC(ptr) 1338 1339 val difftest = Module(new DifftestBasicInstrCommit) 1340 difftest.io.clock := clock 1341 difftest.io.coreid := io.hartId 1342 difftest.io.index := i.U 1343 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1344 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType)))) 1345 difftest.io.skip := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1346 difftest.io.isRVC := RegNext(RegNext(RegNext(isRVC))) 1347 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U))) 1348 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.fpWen))) 1349 difftest.io.vecwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).vecWen))) 1350 difftest.io.wpdest := RegNext(RegNext(RegNext(commitInfo.pdest))) 1351 difftest.io.wdest := RegNext(RegNext(RegNext(commitInfo.ldest))) 1352 } 1353 } 1354 1355 if (env.EnableDifftest) { 1356 for (i <- 0 until CommitWidth) { 1357 val difftest = Module(new DifftestLoadEvent) 1358 difftest.io.clock := clock 1359 difftest.io.coreid := io.hartId 1360 difftest.io.index := i.U 1361 1362 val ptr = deqPtrVec(i).value 1363 val uop = commitDebugUop(i) 1364 val exuOut = debug_exuDebug(ptr) 1365 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1366 difftest.io.paddr := RegNext(RegNext(RegNext(exuOut.paddr))) 1367 difftest.io.opType := RegNext(RegNext(RegNext(uop.ctrl.fuOpType))) 1368 difftest.io.fuType := RegNext(RegNext(RegNext(uop.ctrl.fuType))) 1369 } 1370 } 1371 1372 // Always instantiate basic difftest modules. 1373 if (env.EnableDifftest) { 1374 val dt_isXSTrap = Mem(RobSize, Bool()) 1375 for (i <- 0 until RenameWidth) { 1376 when (canEnqueue(i)) { 1377 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap 1378 } 1379 } 1380 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) } 1381 val hitTrap = trapVec.reduce(_||_) 1382 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1383 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1384 val difftest = Module(new DifftestTrapEvent) 1385 difftest.io.clock := clock 1386 difftest.io.coreid := io.hartId 1387 difftest.io.valid := hitTrap 1388 difftest.io.code := trapCode 1389 difftest.io.pc := trapPC 1390 difftest.io.cycleCnt := timer 1391 difftest.io.instrCnt := instrCnt 1392 difftest.io.hasWFI := hasWFI 1393 } 1394 else if (env.AlwaysBasicDiff) { 1395 val dt_isXSTrap = Mem(RobSize, Bool()) 1396 for (i <- 0 until RenameWidth) { 1397 when (canEnqueue(i)) { 1398 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap 1399 } 1400 } 1401 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) } 1402 val hitTrap = trapVec.reduce(_||_) 1403 val difftest = Module(new DifftestBasicTrapEvent) 1404 difftest.io.clock := clock 1405 difftest.io.coreid := io.hartId 1406 difftest.io.valid := hitTrap 1407 difftest.io.cycleCnt := timer 1408 difftest.io.instrCnt := instrCnt 1409 } 1410 1411 val validEntriesBanks = (0 until (RobSize + 63) / 64).map(i => RegNext(PopCount(valid.drop(i * 64).take(64)))) 1412 val validEntries = RegNext(ParallelOperation(validEntriesBanks, (a: UInt, b: UInt) => a +& b)) 1413 val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }) 1414 val commitLoadVec = VecInit(commitLoadValid) 1415 val commitBranchVec = VecInit(commitBranchValid) 1416 val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }) 1417 val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }) 1418 val perfEvents = Seq( 1419 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1420 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1421 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1422 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1423 ("rob_commitUop ", ifCommit(commitCnt) ), 1424 ("rob_commitInstr ", ifCommitReg(trueCommitCnt) ), 1425 ("rob_commitInstrMove ", ifCommitReg(PopCount(RegNext(commitMoveVec))) ), 1426 ("rob_commitInstrFused ", ifCommitReg(fuseCommitCnt) ), 1427 ("rob_commitInstrLoad ", ifCommitReg(PopCount(RegNext(commitLoadVec))) ), 1428 ("rob_commitInstrBranch ", ifCommitReg(PopCount(RegNext(commitBranchVec))) ), 1429 ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec))) ), 1430 ("rob_commitInstrStore ", ifCommitReg(PopCount(RegNext(commitStoreVec))) ), 1431 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U) ), 1432 ("rob_walkCycle ", (state === s_walk) ), 1433 ("rob_1_4_valid ", validEntries <= (RobSize / 4).U ), 1434 ("rob_2_4_valid ", validEntries > (RobSize / 4).U && validEntries <= (RobSize / 2).U ), 1435 ("rob_3_4_valid ", validEntries > (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U), 1436 ("rob_4_4_valid ", validEntries > (RobSize * 3 / 4).U ), 1437 ) 1438 generatePerfEvent() 1439} 1440