1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import org.chipsalliance.cde.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 24import utility._ 25import utils._ 26import xiangshan._ 27import xiangshan.backend.BackendParams 28import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 29import xiangshan.backend.fu.{FuType, FuConfig} 30import xiangshan.frontend.FtqPtr 31import xiangshan.mem.{LqPtr, LsqEnqIO, SqPtr} 32import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 33import xiangshan.backend.ctrlblock.{DebugLSIO, DebugLsInfo, LsTopdownInfo} 34import xiangshan.backend.rename.SnapshotGenerator 35 36 37class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr]( 38 entries 39) with HasCircularQueuePtrHelper { 40 41 def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize) 42 43 def needFlush(redirect: Valid[Redirect]): Bool = { 44 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 45 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 46 } 47 48 def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR 49} 50 51object RobPtr { 52 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 53 val ptr = Wire(new RobPtr) 54 ptr.flag := f 55 ptr.value := v 56 ptr 57 } 58} 59 60class RobCSRIO(implicit p: Parameters) extends XSBundle { 61 val intrBitSet = Input(Bool()) 62 val trapTarget = Input(UInt(VAddrBits.W)) 63 val isXRet = Input(Bool()) 64 val wfiEvent = Input(Bool()) 65 66 val fflags = Output(Valid(UInt(5.W))) 67 val vxsat = Output(Valid(Bool())) 68 val vstart = Output(Valid(UInt(XLEN.W))) 69 val dirty_fs = Output(Bool()) 70 val perfinfo = new Bundle { 71 val retiredInstr = Output(UInt(3.W)) 72 } 73 74 val vcsrFlag = Output(Bool()) 75} 76 77class RobLsqIO(implicit p: Parameters) extends XSBundle { 78 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 79 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 80 val pendingld = Output(Bool()) 81 val pendingst = Output(Bool()) 82 val commit = Output(Bool()) 83 val pendingPtr = Output(new RobPtr) 84 val pendingPtrNext = Output(new RobPtr) 85 86 val mmio = Input(Vec(LoadPipelineWidth, Bool())) 87 // Todo: what's this? 88 val uop = Input(Vec(LoadPipelineWidth, new DynInst)) 89} 90 91class RobEnqIO(implicit p: Parameters) extends XSBundle { 92 val canAccept = Output(Bool()) 93 val isEmpty = Output(Bool()) 94 // valid vector, for robIdx gen and walk 95 val needAlloc = Vec(RenameWidth, Input(Bool())) 96 val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst))) 97 val resp = Vec(RenameWidth, Output(new RobPtr)) 98} 99 100class RobCoreTopDownIO(implicit p: Parameters) extends XSBundle { 101 val robHeadVaddr = Valid(UInt(VAddrBits.W)) 102 val robHeadPaddr = Valid(UInt(PAddrBits.W)) 103} 104 105class RobDispatchTopDownIO extends Bundle { 106 val robTrueCommit = Output(UInt(64.W)) 107 val robHeadLsIssue = Output(Bool()) 108} 109 110class RobDebugRollingIO extends Bundle { 111 val robTrueCommit = Output(UInt(64.W)) 112} 113 114class RobDispatchData(implicit p: Parameters) extends RobCommitInfo {} 115 116class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 117 val io = IO(new Bundle { 118 // for commits/flush 119 val state = Input(UInt(2.W)) 120 val deq_v = Vec(CommitWidth, Input(Bool())) 121 val deq_w = Vec(CommitWidth, Input(Bool())) 122 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 123 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 124 val intrBitSetReg = Input(Bool()) 125 val hasNoSpecExec = Input(Bool()) 126 val interrupt_safe = Input(Bool()) 127 val blockCommit = Input(Bool()) 128 // output: the CommitWidth deqPtr 129 val out = Vec(CommitWidth, Output(new RobPtr)) 130 val next_out = Vec(CommitWidth, Output(new RobPtr)) 131 }) 132 133 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 134 135 // for exceptions (flushPipe included) and interrupts: 136 // only consider the first instruction 137 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe 138 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0) 139 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 140 141 // for normal commits: only to consider when there're no exceptions 142 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 143 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 144 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i))) 145 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 146 // when io.intrBitSetReg or there're possible exceptions in these instructions, 147 // only one instruction is allowed to commit 148 val allowOnlyOne = commit_exception || io.intrBitSetReg 149 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 150 151 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 152 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec) 153 154 deqPtrVec := deqPtrVec_next 155 156 io.next_out := deqPtrVec_next 157 io.out := deqPtrVec 158 159 when (io.state === 0.U) { 160 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 161 } 162 163} 164 165class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 166 val io = IO(new Bundle { 167 // for input redirect 168 val redirect = Input(Valid(new Redirect)) 169 // for enqueue 170 val allowEnqueue = Input(Bool()) 171 val hasBlockBackward = Input(Bool()) 172 val enq = Vec(RenameWidth, Input(Bool())) 173 val out = Output(Vec(RenameWidth, new RobPtr)) 174 }) 175 176 val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr))) 177 178 // enqueue 179 val canAccept = io.allowEnqueue && !io.hasBlockBackward 180 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 181 182 for ((ptr, i) <- enqPtrVec.zipWithIndex) { 183 when(io.redirect.valid) { 184 ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 185 }.otherwise { 186 ptr := ptr + dispatchNum 187 } 188 } 189 190 io.out := enqPtrVec 191 192} 193 194class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 195 // val valid = Bool() 196 val robIdx = new RobPtr 197 val exceptionVec = ExceptionVec() 198 val flushPipe = Bool() 199 val isVset = Bool() 200 val replayInst = Bool() // redirect to that inst itself 201 val singleStep = Bool() // TODO add frontend hit beneath 202 val crossPageIPFFix = Bool() 203 val trigger = new TriggerCf 204 val vstartEn = Bool() 205 val vstart = UInt(XLEN.W) 206 207 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.canFire 208 def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.canFire 209 // only exceptions are allowed to writeback when enqueue 210 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.canFire 211} 212 213class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 214 val io = IO(new Bundle { 215 val redirect = Input(Valid(new Redirect)) 216 val flush = Input(Bool()) 217 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 218 // csr + load + store + varith + vload + vstore 219 val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo))) 220 val out = ValidIO(new RobExceptionInfo) 221 val state = ValidIO(new RobExceptionInfo) 222 }) 223 224 val wbExuParams = params.allExuParams.filter(_.exceptionOut.nonEmpty) 225 226 def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): RobExceptionInfo = { 227 def getOldest_recursion(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = { 228 assert(valid.length == bits.length) 229 if (valid.length == 1) { 230 (valid, bits) 231 } else if (valid.length == 2) { 232 val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) 233 for (i <- res.indices) { 234 res(i).valid := valid(i) 235 res(i).bits := bits(i) 236 } 237 val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1)) 238 (Seq(oldest.valid), Seq(oldest.bits)) 239 } else { 240 val left = getOldest_recursion(valid.take(valid.length / 2), bits.take(valid.length / 2)) 241 val right = getOldest_recursion(valid.drop(valid.length / 2), bits.drop(valid.length / 2)) 242 getOldest_recursion(left._1 ++ right._1, left._2 ++ right._2) 243 } 244 } 245 getOldest_recursion(valid, bits)._2.head 246 } 247 248 249 val currentValid = RegInit(false.B) 250 val current = Reg(new RobExceptionInfo) 251 252 // orR the exceptionVec 253 val lastCycleFlush = RegNext(io.flush) 254 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 255 256 // s0: compare wb in 6 groups 257 val csr_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isCsr).nonEmpty).map(_._1) 258 val load_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.ldu).nonEmpty).map(_._1) 259 val store_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isSta || t.fuType == FuType.mou).nonEmpty).map(_._1) 260 val varith_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.isVecArith).nonEmpty).map(_._1) 261 val vload_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.vldu).nonEmpty).map(_._1) 262 val vstore_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.vstu).nonEmpty).map(_._1) 263 264 val writebacks = Seq(csr_wb, load_wb, store_wb, varith_wb, vload_wb, vstore_wb) 265 val in_wb_valids = writebacks.map(_.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)) 266 val wb_valid = in_wb_valids.zip(writebacks).map { case (valid, wb) => 267 valid.zip(wb.map(_.bits)).map { case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }.reduce(_ || _) 268 } 269 val wb_bits = in_wb_valids.zip(writebacks).map { case (valid, wb) => getOldest(valid, wb.map(_.bits))} 270 271 val s0_out_valid = wb_valid.map(x => RegNext(x)) 272 val s0_out_bits = wb_bits.zip(wb_valid).map{ case(b, v) => RegEnable(b, v)} 273 274 // s1: compare last six and current flush 275 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 276 val s1_out_bits = RegEnable(getOldest(s0_out_valid, s0_out_bits), s1_valid.asUInt.orR) 277 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 278 279 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 280 val enq_bits = RegEnable(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)), in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 281 282 // s2: compare the input exception with the current one 283 // priorities: 284 // (1) system reset 285 // (2) current is valid: flush, remain, merge, update 286 // (3) current is not valid: s1 or enq 287 val current_flush = current.robIdx.needFlush(io.redirect) || io.flush 288 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 289 when (currentValid) { 290 when (current_flush) { 291 currentValid := Mux(s1_flush, false.B, s1_out_valid) 292 } 293 when (s1_out_valid && !s1_flush) { 294 when (isAfter(current.robIdx, s1_out_bits.robIdx)) { 295 current := s1_out_bits 296 }.elsewhen (current.robIdx === s1_out_bits.robIdx) { 297 current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 298 current.flushPipe := s1_out_bits.flushPipe || current.flushPipe 299 current.replayInst := s1_out_bits.replayInst || current.replayInst 300 current.singleStep := s1_out_bits.singleStep || current.singleStep 301 current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf) 302 } 303 } 304 }.elsewhen (s1_out_valid && !s1_flush) { 305 currentValid := true.B 306 current := s1_out_bits 307 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 308 currentValid := true.B 309 current := enq_bits 310 } 311 312 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 313 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 314 io.state.valid := currentValid 315 io.state.bits := current 316 317} 318 319class RobFlushInfo(implicit p: Parameters) extends XSBundle { 320 val ftqIdx = new FtqPtr 321 val robIdx = new RobPtr 322 val ftqOffset = UInt(log2Up(PredictWidth).W) 323 val replayInst = Bool() 324} 325 326class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter { 327 override def shouldBeInlined: Boolean = false 328 329 lazy val module = new RobImp(this)(p, params) 330} 331 332class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper) 333 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents { 334 335 private val LduCnt = params.LduCnt 336 private val StaCnt = params.StaCnt 337 private val HyuCnt = params.HyuCnt 338 339 val io = IO(new Bundle() { 340 val hartId = Input(UInt(8.W)) 341 val redirect = Input(Valid(new Redirect)) 342 val enq = new RobEnqIO 343 val flushOut = ValidIO(new Redirect) 344 val exception = ValidIO(new ExceptionInfo) 345 // exu + brq 346 val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles) 347 val commits = Output(new RobCommitIO) 348 val rabCommits = Output(new RobCommitIO) 349 val diffCommits = Output(new DiffCommitIO) 350 val isVsetFlushPipe = Output(Bool()) 351 val vconfigPdest = Output(UInt(PhyRegIdxWidth.W)) 352 val lsq = new RobLsqIO 353 val robDeqPtr = Output(new RobPtr) 354 val csr = new RobCSRIO 355 val snpt = Input(new SnapshotPort) 356 val robFull = Output(Bool()) 357 val headNotReady = Output(Bool()) 358 val cpu_halt = Output(Bool()) 359 val wfi_enable = Input(Bool()) 360 361 val debug_ls = Flipped(new DebugLSIO) 362 val debugRobHead = Output(new DynInst) 363 val debugEnqLsq = Input(new LsqEnqIO) 364 val debugHeadLsIssue = Input(Bool()) 365 val lsTopdownInfo = Vec(LduCnt + HyuCnt, Input(new LsTopdownInfo)) 366 val debugTopDown = new Bundle { 367 val toCore = new RobCoreTopDownIO 368 val toDispatch = new RobDispatchTopDownIO 369 val robHeadLqIdx = Valid(new LqPtr) 370 } 371 val debugRolling = new RobDebugRollingIO 372 }) 373 374 val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu).toSeq 375 val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu).toSeq 376 val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty) 377 val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 378 val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty) 379 380 val exuWbPorts = io.writeback.filter(!_.bits.params.hasStdFu) 381 val stdWbPorts = io.writeback.filter(_.bits.params.hasStdFu) 382 val fflagsPorts = io.writeback.filter(x => x.bits.fflags.nonEmpty) 383 val vxsatPorts = io.writeback.filter(x => x.bits.vxsat.nonEmpty) 384 val exceptionPorts = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 385 val numExuWbPorts = exuWBs.length 386 val numStdWbPorts = stdWBs.length 387 388 389 println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth") 390// println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}") 391// println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}") 392// println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}") 393 394 395 // instvalid field 396 val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 397 // writeback status 398 399 val stdWritebacked = Reg(Vec(RobSize, Bool())) 400 val commitTrigger = Mem(RobSize, Bool()) 401 val uopNumVec = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W)))) 402 val realDestSize = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W)))) 403 val fflagsDataModule = RegInit(VecInit(Seq.fill(RobSize)(0.U(5.W)))) 404 val vxsatDataModule = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 405 406 def isWritebacked(ptr: UInt): Bool = { 407 !uopNumVec(ptr).orR && stdWritebacked(ptr) 408 } 409 410 def isUopWritebacked(ptr: UInt): Bool = { 411 !uopNumVec(ptr).orR 412 } 413 414 val mmio = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 415 416 // data for redirect, exception, etc. 417 val flagBkup = Mem(RobSize, Bool()) 418 // some instructions are not allowed to trigger interrupts 419 // They have side effects on the states of the processor before they write back 420 val interrupt_safe = RegInit(VecInit(Seq.fill(RobSize)(true.B))) 421 422 // data for debug 423 // Warn: debug_* prefix should not exist in generated verilog. 424 val debug_microOp = DebugMem(RobSize, new DynInst) 425 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 426 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 427 val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init))) 428 val debug_lsTopdownInfo = RegInit(VecInit(Seq.fill(RobSize)(LsTopdownInfo.init))) 429 val debug_lqIdxValid = RegInit(VecInit.fill(RobSize)(false.B)) 430 val debug_lsIssued = RegInit(VecInit.fill(RobSize)(false.B)) 431 432 // pointers 433 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 434 val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr)) 435 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 436 437 dontTouch(enqPtrVec) 438 dontTouch(deqPtrVec) 439 440 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 441 val lastWalkPtr = Reg(new RobPtr) 442 val allowEnqueue = RegInit(true.B) 443 444 val enqPtr = enqPtrVec.head 445 val deqPtr = deqPtrVec(0) 446 val walkPtr = walkPtrVec(0) 447 448 val isEmpty = enqPtr === deqPtr 449 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 450 451 val snptEnq = io.enq.canAccept && io.enq.req.map(x => x.valid && x.bits.snapshot).reduce(_ || _) 452 val snapshotPtrVec = Wire(Vec(RenameWidth, new RobPtr)) 453 snapshotPtrVec(0) := io.enq.req(0).bits.robIdx 454 for (i <- 1 until RenameWidth) { 455 snapshotPtrVec(i) := snapshotPtrVec(0) + i.U 456 } 457 val snapshots = SnapshotGenerator(snapshotPtrVec, snptEnq, io.snpt.snptDeq, io.redirect.valid, io.snpt.flushVec) 458 val debug_lsIssue = WireDefault(debug_lsIssued) 459 debug_lsIssue(deqPtr.value) := io.debugHeadLsIssue 460 461 /** 462 * states of Rob 463 */ 464 val s_idle :: s_walk :: Nil = Enum(2) 465 val state = RegInit(s_idle) 466 467 /** 468 * Data Modules 469 * 470 * CommitDataModule: data from dispatch 471 * (1) read: commits/walk/exception 472 * (2) write: enqueue 473 * 474 * WritebackData: data from writeback 475 * (1) read: commits/walk/exception 476 * (2) write: write back from exe units 477 */ 478 val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth)) 479 val dispatchDataRead = dispatchData.io.rdata 480 481 val exceptionGen = Module(new ExceptionGen(params)) 482 val exceptionDataRead = exceptionGen.io.state 483 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 484 val vxsatDataRead = Wire(Vec(CommitWidth, Bool())) 485 486 io.robDeqPtr := deqPtr 487 io.debugRobHead := debug_microOp(deqPtr.value) 488 489 val rab = Module(new RenameBuffer(RabSize)) 490 491 rab.io.redirect.valid := io.redirect.valid 492 493 rab.io.req.zip(io.enq.req).map { case (dest, src) => 494 dest.bits := src.bits 495 dest.valid := src.valid && io.enq.canAccept 496 } 497 498 val commitDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(deqPtrVec(i).value)) 499 val walkDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(walkPtrVec(i).value)) 500 501 val commitSizeSum = io.commits.commitValid.zip(commitDestSizeSeq).map { case (commitValid, destSize) => 502 Mux(io.commits.isCommit && commitValid, destSize, 0.U) 503 }.reduce(_ +& _) 504 val walkSizeSum = io.commits.walkValid.zip(walkDestSizeSeq).map { case (walkValid, destSize) => 505 Mux(io.commits.isWalk && walkValid, destSize, 0.U) 506 }.reduce(_ +& _) 507 508 rab.io.fromRob.commitSize := commitSizeSum 509 rab.io.fromRob.walkSize := walkSizeSum 510 rab.io.snpt := io.snpt 511 rab.io.snpt.snptEnq := snptEnq 512 513 io.rabCommits := rab.io.commits 514 io.diffCommits := rab.io.diffCommits 515 516 /** 517 * Enqueue (from dispatch) 518 */ 519 // special cases 520 val hasBlockBackward = RegInit(false.B) 521 val hasWaitForward = RegInit(false.B) 522 val doingSvinval = RegInit(false.B) 523 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 524 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 525 when (isEmpty) { hasBlockBackward:= false.B } 526 // When any instruction commits, hasNoSpecExec should be set to false.B 527 when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B } 528 529 // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. 530 // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. 531 // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. 532 val hasWFI = RegInit(false.B) 533 io.cpu_halt := hasWFI 534 // WFI Timeout: 2^20 = 1M cycles 535 val wfi_cycles = RegInit(0.U(20.W)) 536 when (hasWFI) { 537 wfi_cycles := wfi_cycles + 1.U 538 }.elsewhen (!hasWFI && RegNext(hasWFI)) { 539 wfi_cycles := 0.U 540 } 541 val wfi_timeout = wfi_cycles.andR 542 when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) { 543 hasWFI := false.B 544 } 545 546 val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.firstUop))))) 547 io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq 548 io.enq.resp := allocatePtrVec 549 val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop && io.enq.canAccept)) 550 val timer = GTimer() 551 for (i <- 0 until RenameWidth) { 552 // we don't check whether io.redirect is valid here since redirect has higher priority 553 when (canEnqueue(i)) { 554 val enqUop = io.enq.req(i).bits 555 val enqIndex = allocatePtrVec(i).value 556 // store uop in data module and debug_microOp Vec 557 debug_microOp(enqIndex) := enqUop 558 debug_microOp(enqIndex).debugInfo.dispatchTime := timer 559 debug_microOp(enqIndex).debugInfo.enqRsTime := timer 560 debug_microOp(enqIndex).debugInfo.selectTime := timer 561 debug_microOp(enqIndex).debugInfo.issueTime := timer 562 debug_microOp(enqIndex).debugInfo.writebackTime := timer 563 debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer 564 debug_microOp(enqIndex).debugInfo.tlbRespTime := timer 565 debug_lsInfo(enqIndex) := DebugLsInfo.init 566 debug_lsTopdownInfo(enqIndex) := LsTopdownInfo.init 567 debug_lqIdxValid(enqIndex) := false.B 568 debug_lsIssued(enqIndex) := false.B 569 570 when (enqUop.blockBackward) { 571 hasBlockBackward := true.B 572 } 573 when (enqUop.waitForward) { 574 hasWaitForward := true.B 575 } 576 val enqHasTriggerCanFire = io.enq.req(i).bits.trigger.getFrontendCanFire 577 val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR 578 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 579 when(!enqHasTriggerCanFire && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe)) 580 { 581 doingSvinval := true.B 582 } 583 // the end instruction of Svinval enqs so clear doingSvinval 584 when(!enqHasTriggerCanFire && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe)) 585 { 586 doingSvinval := false.B 587 } 588 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 589 assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe))) 590 when (enqUop.isWFI && !enqHasException && !enqHasTriggerCanFire) { 591 hasWFI := true.B 592 } 593 594 mmio(enqIndex) := false.B 595 } 596 } 597 val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.firstUop)), 0.U) 598 io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR) 599 600 when (!io.wfi_enable) { 601 hasWFI := false.B 602 } 603 // sel vsetvl's flush position 604 val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3) 605 val vsetvlState = RegInit(vs_idle) 606 607 val firstVInstrFtqPtr = RegInit(0.U.asTypeOf(new FtqPtr)) 608 val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W))) 609 val firstVInstrRobIdx = RegInit(0.U.asTypeOf(new RobPtr)) 610 611 val enq0 = io.enq.req(0) 612 val enq0IsVset = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0) 613 val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe 614 val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVArith(req.bits.fuType) && fire} 615 // for vs_idle 616 val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType))) 617 // for vs_waitVinstr 618 val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1) 619 val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req) 620 when(vsetvlState === vs_idle){ 621 firstVInstrFtqPtr := firstVInstrIdle.bits.ftqPtr 622 firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset 623 firstVInstrRobIdx := firstVInstrIdle.bits.robIdx 624 }.elsewhen(vsetvlState === vs_waitVinstr){ 625 when(Cat(enqIsVInstrOrVset).orR){ 626 firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr 627 firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset 628 firstVInstrRobIdx := firstVInstrWait.bits.robIdx 629 } 630 } 631 632 val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR 633 when(vsetvlState === vs_idle && !io.redirect.valid){ 634 when(enq0IsVsetFlush){ 635 vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr) 636 } 637 }.elsewhen(vsetvlState === vs_waitVinstr){ 638 when(io.redirect.valid){ 639 vsetvlState := vs_idle 640 }.elsewhen(Cat(enqIsVInstrOrVset).orR){ 641 vsetvlState := vs_waitFlush 642 } 643 }.elsewhen(vsetvlState === vs_waitFlush){ 644 when(io.redirect.valid){ 645 vsetvlState := vs_idle 646 } 647 } 648 649 // lqEnq 650 io.debugEnqLsq.needAlloc.map(_(0)).zip(io.debugEnqLsq.req).foreach { case (alloc, req) => 651 when(io.debugEnqLsq.canAccept && alloc && req.valid) { 652 debug_microOp(req.bits.robIdx.value).lqIdx := req.bits.lqIdx 653 debug_lqIdxValid(req.bits.robIdx.value) := true.B 654 } 655 } 656 657 // lsIssue 658 when(io.debugHeadLsIssue) { 659 debug_lsIssued(deqPtr.value) := true.B 660 } 661 662 /** 663 * Writeback (from execution units) 664 */ 665 for (wb <- exuWBs) { 666 when (wb.valid) { 667 val wbIdx = wb.bits.robIdx.value 668 debug_exuData(wbIdx) := wb.bits.data 669 debug_exuDebug(wbIdx) := wb.bits.debug 670 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime 671 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime 672 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime 673 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime 674 675 // debug for lqidx and sqidx 676 debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr)) 677 debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr)) 678 679 val debug_Uop = debug_microOp(wbIdx) 680 XSInfo(true.B, 681 p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " + 682 p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " + 683 p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n" 684 ) 685 } 686 } 687 688 val writebackNum = PopCount(exuWBs.map(_.valid)) 689 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 690 691 for (i <- 0 until LoadPipelineWidth) { 692 when (RegNext(io.lsq.mmio(i))) { 693 mmio(RegNext(io.lsq.uop(i).robIdx).value) := true.B 694 } 695 } 696 697 /** 698 * RedirectOut: Interrupt and Exceptions 699 */ 700 val deqDispatchData = dispatchDataRead(0) 701 val debug_deqUop = debug_microOp(deqPtr.value) 702 703 val intrBitSetReg = RegNext(io.csr.intrBitSet) 704 val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safe(deqPtr.value) 705 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 706 val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR || 707 exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.canFire) 708 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 709 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 710 val exceptionEnable = isWritebacked(deqPtr.value) && deqHasException 711 712 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 713 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getFrontendCanFire, "Debug Mode: Deq has frontend trigger exception\n") 714 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getBackendCanFire, "Debug Mode: Deq has backend trigger exception\n") 715 716 val isFlushPipe = isWritebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 717 718 val isVsetFlushPipe = isWritebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset 719// val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush) 720 val needModifyFtqIdxOffset = false.B 721 io.isVsetFlushPipe := isVsetFlushPipe 722 io.vconfigPdest := rab.io.vconfigPdest 723 // io.flushOut will trigger redirect at the next cycle. 724 // Block any redirect or commit at the next cycle. 725 val lastCycleFlush = RegNext(io.flushOut.valid) 726 727 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 728 io.flushOut.bits := DontCare 729 io.flushOut.bits.isRVC := deqDispatchData.isRVC 730 io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr) 731 io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx) 732 io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset) 733 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 734 io.flushOut.bits.interrupt := true.B 735 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 736 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 737 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 738 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 739 740 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 741 io.exception.valid := RegNext(exceptionHappen) 742 io.exception.bits.pc := RegEnable(debug_deqUop.pc, exceptionHappen) 743 io.exception.bits.instr := RegEnable(debug_deqUop.instr, exceptionHappen) 744 io.exception.bits.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 745 io.exception.bits.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 746 io.exception.bits.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 747 io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 748 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 749 io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 750 io.csr.vstart.valid := RegEnable(exceptionDataRead.bits.vstartEn, false.B, exceptionHappen) 751 io.csr.vstart.bits := RegEnable(exceptionDataRead.bits.vstart, exceptionHappen) 752 753 XSDebug(io.flushOut.valid, 754 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " + 755 p"excp $exceptionEnable flushPipe $isFlushPipe " + 756 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 757 758 759 /** 760 * Commits (and walk) 761 * They share the same width. 762 */ 763 val shouldWalkVec = VecInit(walkPtrVec.map(_ <= lastWalkPtr)) 764 val walkFinished = VecInit(walkPtrVec.map(_ >= lastWalkPtr)).asUInt.orR 765 rab.io.fromRob.walkEnd := state === s_walk && walkFinished 766 767 require(RenameWidth <= CommitWidth) 768 769 // wiring to csr 770 val (wflags, dirtyFs) = (0 until CommitWidth).map(i => { 771 val v = io.commits.commitValid(i) 772 val info = io.commits.info(i) 773 (v & info.wflags, v & info.dirtyFs) 774 }).unzip 775 val fflags = Wire(Valid(UInt(5.W))) 776 fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR 777 fflags.bits := wflags.zip(fflagsDataRead).map({ 778 case (w, f) => Mux(w, f, 0.U) 779 }).reduce(_|_) 780 val dirty_fs = io.commits.isCommit && VecInit(dirtyFs).asUInt.orR 781 782 val vxsat = Wire(Valid(Bool())) 783 vxsat.valid := io.commits.isCommit && vxsat.bits 784 vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map { 785 case (valid, vxsat) => valid & vxsat 786 }.reduce(_ | _) 787 788 // when mispredict branches writeback, stop commit in the next 2 cycles 789 // TODO: don't check all exu write back 790 val misPredWb = Cat(VecInit(redirectWBs.map(wb => 791 wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid 792 ).toSeq)).orR 793 val misPredBlockCounter = Reg(UInt(3.W)) 794 misPredBlockCounter := Mux(misPredWb, 795 "b111".U, 796 misPredBlockCounter >> 1.U 797 ) 798 val misPredBlock = misPredBlockCounter(0) 799 val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI || io.redirect.valid 800 801 io.commits.isWalk := state === s_walk 802 io.commits.isCommit := state === s_idle && !blockCommit 803 val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value))) 804 val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value))) 805 // store will be commited iff both sta & std have been writebacked 806 val commit_w = VecInit(deqPtrVec.map(ptr => isWritebacked(ptr.value) && commitTrigger(ptr.value))) 807 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 808 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 809 val allowOnlyOneCommit = commit_exception || intrBitSetReg 810 // for instructions that may block others, we don't allow them to commit 811 for (i <- 0 until CommitWidth) { 812 // defaults: state === s_idle and instructions commit 813 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 814 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 815 io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked 816 io.commits.info(i) := dispatchDataRead(i) 817 io.commits.robIdx(i) := deqPtrVec(i) 818 819 io.commits.walkValid(i) := shouldWalkVec(i) 820 when (state === s_walk) { 821 when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) { 822 XSError(!walk_v(i), s"The walking entry($i) should be valid\n") 823 } 824 } 825 826 XSInfo(io.commits.isCommit && io.commits.commitValid(i), 827 "retired pc %x wen %d ldest %d pdest %x data %x fflags: %b vxsat: %b\n", 828 debug_microOp(deqPtrVec(i).value).pc, 829 io.commits.info(i).rfWen, 830 io.commits.info(i).ldest, 831 io.commits.info(i).pdest, 832 debug_exuData(deqPtrVec(i).value), 833 fflagsDataRead(i), 834 vxsatDataRead(i) 835 ) 836 XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n", 837 debug_microOp(walkPtrVec(i).value).pc, 838 io.commits.info(i).rfWen, 839 io.commits.info(i).ldest, 840 debug_exuData(walkPtrVec(i).value) 841 ) 842 } 843 if (env.EnableDifftest) { 844 io.commits.info.map(info => dontTouch(info.pc)) 845 } 846 847 // sync fflags/dirty_fs/vxsat to csr 848 io.csr.fflags := RegNext(fflags) 849 io.csr.dirty_fs := RegNext(dirty_fs) 850 io.csr.vxsat := RegNext(vxsat) 851 852 // sync v csr to csr 853 // for difftest 854 if(env.AlwaysBasicDiff || env.EnableDifftest) { 855 val isDiffWriteVconfigVec = io.diffCommits.commitValid.zip(io.diffCommits.info).map { case (valid, info) => valid && info.ldest === VCONFIG_IDX.U && info.vecWen }.reverse 856 io.csr.vcsrFlag := RegNext(io.diffCommits.isCommit && Cat(isDiffWriteVconfigVec).orR) 857 } 858 else{ 859 io.csr.vcsrFlag := false.B 860 } 861 862 // commit load/store to lsq 863 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 864 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE)) 865 val deqPtrVec_next = Wire(Vec(CommitWidth, Output(new RobPtr))) 866 io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U)) 867 io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U)) 868 // indicate a pending load or store 869 io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value) && mmio(deqPtr.value)) 870 io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 871 io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0)) 872 io.lsq.pendingPtr := RegNext(deqPtr) 873 io.lsq.pendingPtrNext := RegNext(deqPtrVec_next.head) 874 875 /** 876 * state changes 877 * (1) redirect: switch to s_walk 878 * (2) walk: when walking comes to the end, switch to s_idle 879 */ 880 val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished && rab.io.status.walkEnd, s_idle, state)) 881 XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle) 882 XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk) 883 XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle) 884 XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk) 885 state := state_next 886 887 /** 888 * pointers and counters 889 */ 890 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 891 deqPtrGenModule.io.state := state 892 deqPtrGenModule.io.deq_v := commit_v 893 deqPtrGenModule.io.deq_w := commit_w 894 deqPtrGenModule.io.exception_state := exceptionDataRead 895 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 896 deqPtrGenModule.io.hasNoSpecExec := hasWaitForward 897 deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value) 898 deqPtrGenModule.io.blockCommit := blockCommit 899 deqPtrVec := deqPtrGenModule.io.out 900 deqPtrVec_next := deqPtrGenModule.io.next_out 901 902 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 903 enqPtrGenModule.io.redirect := io.redirect 904 enqPtrGenModule.io.allowEnqueue := allowEnqueue && rab.io.canEnq 905 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 906 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop)) 907 enqPtrVec := enqPtrGenModule.io.out 908 909 // next walkPtrVec: 910 // (1) redirect occurs: update according to state 911 // (2) walk: move forwards 912 val walkPtrVec_next = Mux(io.redirect.valid, 913 Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect), deqPtrVec_next), 914 Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec) 915 ) 916 walkPtrVec := walkPtrVec_next 917 918 val numValidEntries = distanceBetween(enqPtr, deqPtr) 919 val commitCnt = PopCount(io.commits.commitValid) 920 921 allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U 922 923 val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0)) 924 when (io.redirect.valid) { 925 lastWalkPtr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx - 1.U, io.redirect.bits.robIdx) 926 } 927 928 929 /** 930 * States 931 * We put all the stage bits changes here. 932 933 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 934 * All states: (1) valid; (2) writebacked; (3) flagBkup 935 */ 936 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 937 938 // redirect logic writes 6 valid 939 val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr)) 940 val redirectTail = Reg(new RobPtr) 941 val redirectIdle :: redirectBusy :: Nil = Enum(2) 942 val redirectState = RegInit(redirectIdle) 943 val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail)) 944 when(redirectState === redirectBusy) { 945 redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U) 946 redirectHeadVec zip invMask foreach { 947 case (redirectHead, inv) => when(inv) { 948 valid(redirectHead.value) := false.B 949 } 950 } 951 when(!invMask.last) { 952 redirectState := redirectIdle 953 } 954 } 955 when(io.redirect.valid) { 956 redirectState := redirectBusy 957 when(redirectState === redirectIdle) { 958 redirectTail := enqPtr 959 } 960 redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) => 961 redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 962 } 963 } 964 // enqueue logic writes 6 valid 965 for (i <- 0 until RenameWidth) { 966 when (canEnqueue(i) && !io.redirect.valid) { 967 valid(allocatePtrVec(i).value) := true.B 968 } 969 } 970 // dequeue logic writes 6 valid 971 for (i <- 0 until CommitWidth) { 972 val commitValid = io.commits.isCommit && io.commits.commitValid(i) 973 when (commitValid) { 974 valid(commitReadAddr(i)) := false.B 975 } 976 } 977 978 // debug_inst update 979 for(i <- 0 until (LduCnt + StaCnt)) { 980 debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i)) 981 debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i)) 982 } 983 for (i <- 0 until LduCnt) { 984 debug_lsTopdownInfo(io.lsTopdownInfo(i).s1.robIdx).s1SignalEnable(io.lsTopdownInfo(i)) 985 debug_lsTopdownInfo(io.lsTopdownInfo(i).s2.robIdx).s2SignalEnable(io.lsTopdownInfo(i)) 986 } 987 988 // status field: writebacked 989 // enqueue logic set 6 writebacked to false 990 for (i <- 0 until RenameWidth) { 991 when(canEnqueue(i)) { 992 val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec).asUInt.orR 993 val enqHasTriggerCanFire = io.enq.req(i).bits.trigger.getFrontendCanFire 994 val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove 995 val isStu = FuType.isStore(io.enq.req(i).bits.fuType) 996 commitTrigger(allocatePtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerCanFire && !isStu 997 } 998 } 999 when(exceptionGen.io.out.valid) { 1000 val wbIdx = exceptionGen.io.out.bits.robIdx.value 1001 commitTrigger(wbIdx) := true.B 1002 } 1003 1004 // writeback logic set numWbPorts writebacked to true 1005 val blockWbSeq = Wire(Vec(exuWBs.length, Bool())) 1006 blockWbSeq.map(_ := false.B) 1007 for ((wb, blockWb) <- exuWBs.zip(blockWbSeq)) { 1008 when(wb.valid) { 1009 val wbIdx = wb.bits.robIdx.value 1010 val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR 1011 val wbHasTriggerCanFire = wb.bits.trigger.getOrElse(0.U).asTypeOf(io.enq.req(0).bits.trigger).getBackendCanFire //Todo: wb.bits.trigger.getHitBackend 1012 val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B) 1013 val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst 1014 blockWb := wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerCanFire 1015 commitTrigger(wbIdx) := !blockWb 1016 } 1017 } 1018 1019 // if the first uop of an instruction is valid , write writebackedCounter 1020 val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid) 1021 val instEnqValidSeq = io.enq.req.map (req => io.enq.canAccept && req.valid && req.bits.firstUop) 1022 val enqNeedWriteRFSeq = io.enq.req.map(_.bits.needWriteRf) 1023 val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value) 1024 val enqUopNumVec = VecInit(io.enq.req.map(req => req.bits.numUops)) 1025 val enqWBNumVec = VecInit(io.enq.req.map(req => req.bits.numWB)) 1026 val enqEliminatedMoveVec = VecInit(io.enq.req.map(req => req.bits.eliminatedMove)) 1027 1028 private val enqWriteStdVec: Vec[Bool] = VecInit(io.enq.req.map { 1029 req => FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType) 1030 }) 1031 val fflags_wb = fflagsPorts 1032 val vxsat_wb = vxsatPorts 1033 for(i <- 0 until RobSize){ 1034 1035 val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U) 1036 val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch } 1037 val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch } 1038 val instCanEnqFlag = Cat(instCanEnqSeq).orR 1039 1040 realDestSize(i) := Mux(!valid(i) && instCanEnqFlag || valid(i), realDestSize(i) + PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map{ case(writeFlag, valid) => writeFlag && valid }), 0.U) 1041 1042 val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec) 1043 val enqWBNum = PriorityMux(instCanEnqSeq, enqWBNumVec) 1044 val enqEliminatedMove = PriorityMux(instCanEnqSeq, enqEliminatedMoveVec) 1045 val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec) 1046 1047 val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 1048 val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map{ case(canWb, blockWb) => canWb && !blockWb } 1049 val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)) 1050 val wbCnt = PopCount(canWbNoBlockSeq) 1051 1052 val exceptionHas = RegInit(false.B) 1053 val exceptionHasWire = Wire(Bool()) 1054 exceptionHasWire := MuxCase(exceptionHas, Seq( 1055 (valid(i) && exceptionGen.io.out.valid && exceptionGen.io.out.bits.robIdx.value === i.U) -> true.B, 1056 !valid(i) -> false.B 1057 )) 1058 exceptionHas := exceptionHasWire 1059 1060 when (exceptionHas || exceptionHasWire) { 1061 // exception flush 1062 uopNumVec(i) := 0.U 1063 stdWritebacked(i) := true.B 1064 }.elsewhen(!valid(i) && instCanEnqFlag) { 1065 // enq set num of uops 1066 uopNumVec(i) := enqWBNum 1067 stdWritebacked(i) := Mux(enqWriteStd, false.B, true.B) 1068 }.elsewhen(valid(i)) { 1069 // update by writing back 1070 uopNumVec(i) := uopNumVec(i) - wbCnt 1071 assert(!(uopNumVec(i) - wbCnt > uopNumVec(i)), "Overflow!") 1072 when (canStdWbSeq.asUInt.orR) { 1073 stdWritebacked(i) := true.B 1074 } 1075 }.otherwise { 1076 uopNumVec(i) := 0.U 1077 } 1078 1079 val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && writeback.bits.wflags.getOrElse(false.B)) 1080 val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _) 1081 fflagsDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, fflagsDataModule(i) | fflagsRes) 1082 1083 val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 1084 val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _) 1085 vxsatDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, vxsatDataModule(i) | vxsatRes) 1086 } 1087 1088 // flagBkup 1089 // enqueue logic set 6 flagBkup at most 1090 for (i <- 0 until RenameWidth) { 1091 when (canEnqueue(i)) { 1092 flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag 1093 } 1094 } 1095 1096 // interrupt_safe 1097 for (i <- 0 until RenameWidth) { 1098 // We RegNext the updates for better timing. 1099 // Note that instructions won't change the system's states in this cycle. 1100 when (RegNext(canEnqueue(i))) { 1101 // For now, we allow non-load-store instructions to trigger interrupts 1102 // For MMIO instructions, they should not trigger interrupts since they may 1103 // be sent to lower level before it writes back. 1104 // However, we cannot determine whether a load/store instruction is MMIO. 1105 // Thus, we don't allow load/store instructions to trigger an interrupt. 1106 // TODO: support non-MMIO load-store instructions to trigger interrupts 1107 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType) 1108 interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts) 1109 } 1110 } 1111 1112 /** 1113 * read and write of data modules 1114 */ 1115 val commitReadAddr_next = Mux(state_next === s_idle, 1116 VecInit(deqPtrVec_next.map(_.value)), 1117 VecInit(walkPtrVec_next.map(_.value)) 1118 ) 1119 dispatchData.io.wen := canEnqueue 1120 dispatchData.io.waddr := allocatePtrVec.map(_.value) 1121 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).zipWithIndex.foreach { case ((wdata, req), portIdx) => 1122 wdata.ldest := req.ldest 1123 wdata.rfWen := req.rfWen 1124 wdata.dirtyFs := req.dirtyFs 1125 wdata.vecWen := req.vecWen 1126 wdata.wflags := req.wfflags 1127 wdata.commitType := req.commitType 1128 wdata.pdest := req.pdest 1129 wdata.ftqIdx := req.ftqPtr 1130 wdata.ftqOffset := req.ftqOffset 1131 wdata.isMove := req.eliminatedMove 1132 wdata.isRVC := req.preDecodeInfo.isRVC 1133 wdata.pc := req.pc 1134 wdata.vtype := req.vpu.vtype 1135 wdata.isVset := req.isVset 1136 wdata.instrSize := req.instrSize 1137 } 1138 dispatchData.io.raddr := commitReadAddr_next 1139 1140 exceptionGen.io.redirect <> io.redirect 1141 exceptionGen.io.flush := io.flushOut.valid 1142 1143 val canEnqueueEG = VecInit(io.enq.req.map(req => req.valid && io.enq.canAccept)) 1144 for (i <- 0 until RenameWidth) { 1145 exceptionGen.io.enq(i).valid := canEnqueueEG(i) 1146 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 1147 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec) 1148 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe 1149 exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset 1150 exceptionGen.io.enq(i).bits.replayInst := false.B 1151 XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst") 1152 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep 1153 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix 1154 exceptionGen.io.enq(i).bits.trigger.clear() 1155 exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit 1156 exceptionGen.io.enq(i).bits.trigger.frontendCanFire := io.enq.req(i).bits.trigger.frontendCanFire 1157 exceptionGen.io.enq(i).bits.vstartEn := false.B //DontCare 1158 exceptionGen.io.enq(i).bits.vstart := 0.U //DontCare 1159 } 1160 1161 println(s"ExceptionGen:") 1162 println(s"num of exceptions: ${params.numException}") 1163 require(exceptionWBs.length == exceptionGen.io.wb.length, 1164 f"exceptionWBs.length: ${exceptionWBs.length}, " + 1165 f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}") 1166 for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) { 1167 exc_wb.valid := wb.valid 1168 exc_wb.bits.robIdx := wb.bits.robIdx 1169 exc_wb.bits.exceptionVec := wb.bits.exceptionVec.get 1170 exc_wb.bits.flushPipe := wb.bits.flushPipe.getOrElse(false.B) 1171 exc_wb.bits.isVset := false.B 1172 exc_wb.bits.replayInst := wb.bits.replay.getOrElse(false.B) 1173 exc_wb.bits.singleStep := false.B 1174 exc_wb.bits.crossPageIPFFix := false.B 1175 // TODO: make trigger configurable 1176 val trigger = wb.bits.trigger.getOrElse(0.U).asTypeOf(exc_wb.bits.trigger) 1177 exc_wb.bits.trigger.clear() // Don't care frontend timing, chain, hit and canFire 1178 exc_wb.bits.trigger.backendHit := trigger.backendHit 1179 exc_wb.bits.trigger.backendCanFire := trigger.backendCanFire 1180 exc_wb.bits.vstartEn := false.B //wb.bits.vstartEn.getOrElse(false.B) // todo need add vstart in ExuOutput 1181 exc_wb.bits.vstart := 0.U //wb.bits.vstart.getOrElse(0.U) 1182// println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + 1183// s"flushPipe ${configs.exists(_.flushPipe)}, " + 1184// s"replayInst ${configs.exists(_.replayInst)}") 1185 } 1186 1187 fflagsDataRead := (0 until CommitWidth).map(i => fflagsDataModule(deqPtrVec(i).value)) 1188 vxsatDataRead := (0 until CommitWidth).map(i => vxsatDataModule(deqPtrVec(i).value)) 1189 1190 val instrCntReg = RegInit(0.U(64.W)) 1191 val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) }) 1192 val trueCommitCnt = RegNext(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => Mux(v, i.instrSize, 0.U) }.reduce(_ +& _)) +& fuseCommitCnt 1193 val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U) 1194 val instrCnt = instrCntReg + retireCounter 1195 instrCntReg := instrCnt 1196 io.csr.perfinfo.retiredInstr := retireCounter 1197 io.robFull := !allowEnqueue 1198 io.headNotReady := commit_v.head && !commit_w.head 1199 1200 /** 1201 * debug info 1202 */ 1203 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 1204 XSDebug("") 1205 XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n") 1206 for(i <- 0 until RobSize) { 1207 XSDebug(false, !valid(i), "-") 1208 XSDebug(false, valid(i) && isWritebacked(i.U), "w") 1209 XSDebug(false, valid(i) && !isWritebacked(i.U), "v") 1210 } 1211 XSDebug(false, true.B, "\n") 1212 1213 for(i <- 0 until RobSize) { 1214 if (i % 4 == 0) XSDebug("") 1215 XSDebug(false, true.B, "%x ", debug_microOp(i).pc) 1216 XSDebug(false, !valid(i), "- ") 1217 XSDebug(false, valid(i) && isWritebacked(i.U), "w ") 1218 XSDebug(false, valid(i) && !isWritebacked(i.U), "v ") 1219 if (i % 4 == 3) XSDebug(false, true.B, "\n") 1220 } 1221 1222 def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U) 1223 def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U) 1224 1225 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 1226 XSPerfAccumulate("clock_cycle", 1.U) 1227 QueuePerf(RobSize, numValidEntries, numValidEntries === RobSize.U) 1228 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 1229 XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt)) 1230 XSPerfRolling("ipc", ifCommitReg(trueCommitCnt), 1000, clock, reset) 1231 XSPerfRolling("cpi", perfCnt = 1.U/*Cycle*/, eventTrigger = ifCommitReg(trueCommitCnt), granularity = 1000, clock, reset) 1232 val commitIsMove = commitDebugUop.map(_.isMove) 1233 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }))) 1234 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 1235 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e }))) 1236 XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt)) 1237 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 1238 val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t } 1239 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 1240 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 1241 val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t } 1242 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 1243 val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit) 1244 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 1245 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 1246 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }))) 1247 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && isWritebacked(i.U)))) 1248 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) 1249 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 1250 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)) 1251 XSPerfAccumulate("walkCycleTotal", state === s_walk) 1252 XSPerfAccumulate("waitRabWalkEnd", state === s_walk && walkFinished && !rab.io.status.walkEnd) 1253 private val walkCycle = RegInit(0.U(8.W)) 1254 private val waitRabWalkCycle = RegInit(0.U(8.W)) 1255 walkCycle := Mux(io.redirect.valid, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) 1256 waitRabWalkCycle := Mux(state === s_walk && walkFinished, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) 1257 1258 XSPerfHistogram("walkRobCycleHist", walkCycle, state === s_walk && walkFinished, 0, 32) 1259 XSPerfHistogram("walkRabExtraCycleHist", waitRabWalkCycle, state === s_walk && walkFinished && rab.io.status.walkEnd, 0, 32) 1260 XSPerfHistogram("walkTotalCycleHist", walkCycle, state === s_walk && state_next === s_idle, 0, 32) 1261 1262 private val deqNotWritebacked = valid(deqPtr.value) && !isWritebacked(deqPtr.value) 1263 private val deqStdNotWritebacked = valid(deqPtr.value) && !stdWritebacked(deqPtr.value) 1264 private val deqUopNotWritebacked = valid(deqPtr.value) && !isUopWritebacked(deqPtr.value) 1265 private val deqHeadInfo = debug_microOp(deqPtr.value) 1266 val deqUopCommitType = io.commits.info(0).commitType 1267 1268 XSPerfAccumulate("waitAluCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.alu.U) 1269 XSPerfAccumulate("waitMulCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.mul.U) 1270 XSPerfAccumulate("waitDivCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.div.U) 1271 XSPerfAccumulate("waitBrhCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.brh.U) 1272 XSPerfAccumulate("waitJmpCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.jmp.U) 1273 XSPerfAccumulate("waitCsrCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.csr.U) 1274 XSPerfAccumulate("waitFenCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.fence.U) 1275 XSPerfAccumulate("waitBkuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.bku.U) 1276 XSPerfAccumulate("waitLduCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.ldu.U) 1277 XSPerfAccumulate("waitStuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1278 XSPerfAccumulate("waitStaCycle", deqUopNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1279 XSPerfAccumulate("waitStdCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1280 XSPerfAccumulate("waitAtmCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.mou.U) 1281 1282 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 1283 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 1284 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 1285 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 1286 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 1287 XSPerfAccumulate("commitCompressCntAll", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize > 1.U})) 1288 (2 to RenameWidth).foreach(i => 1289 XSPerfAccumulate(s"commitCompressCnt${i}", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize === i.U})) 1290 ) 1291 XSPerfAccumulate("compressSize", io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => Mux(io.commits.isCommit && valid && info.instrSize > 1.U, info.instrSize, 0.U) }.reduce(_ +& _)) 1292 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 1293 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 1294 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 1295 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 1296 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1297 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 1298 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 1299 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 1300 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 1301 } 1302 for (fuType <- FuType.functionNameMap.keys) { 1303 val fuName = FuType.functionNameMap(fuType) 1304 val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U ) 1305 XSPerfRolling(s"ipc_futype_${fuName}", ifCommit(PopCount(commitIsFuType)), 1000, clock, reset) 1306 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 1307 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 1308 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 1309 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 1310 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 1311 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 1312 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 1313 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 1314 } 1315 XSPerfAccumulate(s"redirect_use_snapshot", io.redirect.valid && io.snpt.useSnpt) 1316 1317 // top-down info 1318 io.debugTopDown.toCore.robHeadVaddr.valid := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_valid 1319 io.debugTopDown.toCore.robHeadVaddr.bits := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_bits 1320 io.debugTopDown.toCore.robHeadPaddr.valid := debug_lsTopdownInfo(deqPtr.value).s2.paddr_valid 1321 io.debugTopDown.toCore.robHeadPaddr.bits := debug_lsTopdownInfo(deqPtr.value).s2.paddr_bits 1322 io.debugTopDown.toDispatch.robTrueCommit := ifCommitReg(trueCommitCnt) 1323 io.debugTopDown.toDispatch.robHeadLsIssue := debug_lsIssue(deqPtr.value) 1324 io.debugTopDown.robHeadLqIdx.valid := debug_lqIdxValid(deqPtr.value) 1325 io.debugTopDown.robHeadLqIdx.bits := debug_microOp(deqPtr.value).lqIdx 1326 1327 // rolling 1328 io.debugRolling.robTrueCommit := ifCommitReg(trueCommitCnt) 1329 1330 /** 1331 * DataBase info: 1332 * log trigger is at writeback valid 1333 * */ 1334 1335 /** 1336 * @todo add InstInfoEntry back 1337 * @author Maxpicca-Li 1338 */ 1339 1340 //difftest signals 1341 val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value 1342 1343 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1344 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1345 1346 for(i <- 0 until CommitWidth) { 1347 val idx = deqPtrVec(i).value 1348 wdata(i) := debug_exuData(idx) 1349 wpc(i) := SignExt(commitDebugUop(i).pc, XLEN) 1350 } 1351 1352 if (env.EnableDifftest || env.AlwaysBasicDiff) { 1353 // These are the structures used by difftest only and should be optimized after synthesis. 1354 val dt_eliminatedMove = Mem(RobSize, Bool()) 1355 val dt_isRVC = Mem(RobSize, Bool()) 1356 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1357 for (i <- 0 until RenameWidth) { 1358 when (canEnqueue(i)) { 1359 dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1360 dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC 1361 } 1362 } 1363 for (wb <- exuWBs) { 1364 when (wb.valid) { 1365 val wbIdx = wb.bits.robIdx.value 1366 dt_exuDebug(wbIdx) := wb.bits.debug 1367 } 1368 } 1369 // Always instantiate basic difftest modules. 1370 for (i <- 0 until CommitWidth) { 1371 val uop = commitDebugUop(i) 1372 val commitInfo = io.commits.info(i) 1373 val ptr = deqPtrVec(i).value 1374 val exuOut = dt_exuDebug(ptr) 1375 val eliminatedMove = dt_eliminatedMove(ptr) 1376 val isRVC = dt_isRVC(ptr) 1377 1378 val difftest = DifftestModule(new DiffInstrCommit(MaxPhyPregs), delay = 3, dontCare = true) 1379 difftest.coreid := io.hartId 1380 difftest.index := i.U 1381 difftest.valid := io.commits.commitValid(i) && io.commits.isCommit 1382 difftest.skip := Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt) 1383 difftest.isRVC := isRVC 1384 difftest.rfwen := io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U 1385 difftest.fpwen := io.commits.commitValid(i) && uop.fpWen 1386 difftest.wpdest := commitInfo.pdest 1387 difftest.wdest := commitInfo.ldest 1388 difftest.nFused := CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize - 1.U 1389 when(difftest.valid) { 1390 assert(CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize >= 1.U) 1391 } 1392 if (env.EnableDifftest) { 1393 val uop = commitDebugUop(i) 1394 difftest.pc := SignExt(uop.pc, XLEN) 1395 difftest.instr := uop.instr 1396 difftest.robIdx := ZeroExt(ptr, 10) 1397 difftest.lqIdx := ZeroExt(uop.lqIdx.value, 7) 1398 difftest.sqIdx := ZeroExt(uop.sqIdx.value, 7) 1399 difftest.isLoad := io.commits.info(i).commitType === CommitType.LOAD 1400 difftest.isStore := io.commits.info(i).commitType === CommitType.STORE 1401 } 1402 } 1403 } 1404 1405 if (env.EnableDifftest) { 1406 for (i <- 0 until CommitWidth) { 1407 val difftest = DifftestModule(new DiffLoadEvent, delay = 3) 1408 difftest.coreid := io.hartId 1409 difftest.index := i.U 1410 1411 val ptr = deqPtrVec(i).value 1412 val uop = commitDebugUop(i) 1413 val exuOut = debug_exuDebug(ptr) 1414 difftest.valid := io.commits.commitValid(i) && io.commits.isCommit 1415 difftest.paddr := exuOut.paddr 1416 difftest.opType := uop.fuOpType 1417 difftest.fuType := uop.fuType 1418 } 1419 } 1420 1421 if (env.EnableDifftest || env.AlwaysBasicDiff) { 1422 val dt_isXSTrap = Mem(RobSize, Bool()) 1423 for (i <- 0 until RenameWidth) { 1424 when (canEnqueue(i)) { 1425 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap 1426 } 1427 } 1428 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => 1429 io.commits.isCommit && v && dt_isXSTrap(d.value) 1430 } 1431 val hitTrap = trapVec.reduce(_||_) 1432 val difftest = DifftestModule(new DiffTrapEvent, dontCare = true) 1433 difftest.coreid := io.hartId 1434 difftest.hasTrap := hitTrap 1435 difftest.cycleCnt := timer 1436 difftest.instrCnt := instrCnt 1437 difftest.hasWFI := hasWFI 1438 1439 if (env.EnableDifftest) { 1440 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1441 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1442 difftest.code := trapCode 1443 difftest.pc := trapPC 1444 } 1445 } 1446 1447 val validEntriesBanks = (0 until (RobSize + 31) / 32).map(i => RegNext(PopCount(valid.drop(i * 32).take(32)))) 1448 val validEntries = RegNext(VecInit(validEntriesBanks).reduceTree(_ +& _)) 1449 val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }) 1450 val commitLoadVec = VecInit(commitLoadValid) 1451 val commitBranchVec = VecInit(commitBranchValid) 1452 val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }) 1453 val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }) 1454 val perfEvents = Seq( 1455 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1456 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1457 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1458 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1459 ("rob_commitUop ", ifCommit(commitCnt) ), 1460 ("rob_commitInstr ", ifCommitReg(trueCommitCnt) ), 1461 ("rob_commitInstrMove ", ifCommitReg(PopCount(RegNext(commitMoveVec))) ), 1462 ("rob_commitInstrFused ", ifCommitReg(fuseCommitCnt) ), 1463 ("rob_commitInstrLoad ", ifCommitReg(PopCount(RegNext(commitLoadVec))) ), 1464 ("rob_commitInstrBranch ", ifCommitReg(PopCount(RegNext(commitBranchVec))) ), 1465 ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec))) ), 1466 ("rob_commitInstrStore ", ifCommitReg(PopCount(RegNext(commitStoreVec))) ), 1467 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U) ), 1468 ("rob_walkCycle ", (state === s_walk) ), 1469 ("rob_1_4_valid ", validEntries <= (RobSize / 4).U ), 1470 ("rob_2_4_valid ", validEntries > (RobSize / 4).U && validEntries <= (RobSize / 2).U ), 1471 ("rob_3_4_valid ", validEntries > (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U), 1472 ("rob_4_4_valid ", validEntries > (RobSize * 3 / 4).U ), 1473 ) 1474 generatePerfEvent() 1475} 1476