1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import org.chipsalliance.cde.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 24import utility._ 25import utils._ 26import xiangshan._ 27import xiangshan.backend.BackendParams 28import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 29import xiangshan.backend.fu.{FuType, FuConfig} 30import xiangshan.frontend.FtqPtr 31import xiangshan.mem.{LqPtr, LsqEnqIO, SqPtr} 32import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 33import xiangshan.backend.ctrlblock.{DebugLSIO, DebugLsInfo, LsTopdownInfo} 34import xiangshan.backend.rename.SnapshotGenerator 35 36 37class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr]( 38 entries 39) with HasCircularQueuePtrHelper { 40 41 def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize) 42 43 def needFlush(redirect: Valid[Redirect]): Bool = { 44 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 45 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 46 } 47 48 def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR 49} 50 51object RobPtr { 52 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 53 val ptr = Wire(new RobPtr) 54 ptr.flag := f 55 ptr.value := v 56 ptr 57 } 58} 59 60class RobCSRIO(implicit p: Parameters) extends XSBundle { 61 val intrBitSet = Input(Bool()) 62 val trapTarget = Input(UInt(VAddrBits.W)) 63 val isXRet = Input(Bool()) 64 val wfiEvent = Input(Bool()) 65 66 val fflags = Output(Valid(UInt(5.W))) 67 val vxsat = Output(Valid(Bool())) 68 val dirty_fs = Output(Bool()) 69 val perfinfo = new Bundle { 70 val retiredInstr = Output(UInt(3.W)) 71 } 72 73 val vcsrFlag = Output(Bool()) 74} 75 76class RobLsqIO(implicit p: Parameters) extends XSBundle { 77 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 78 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 79 val pendingld = Output(Bool()) 80 val pendingst = Output(Bool()) 81 val commit = Output(Bool()) 82 val pendingPtr = Output(new RobPtr) 83 84 val mmio = Input(Vec(LoadPipelineWidth, Bool())) 85 // Todo: what's this? 86 val uop = Input(Vec(LoadPipelineWidth, new DynInst)) 87} 88 89class RobEnqIO(implicit p: Parameters) extends XSBundle { 90 val canAccept = Output(Bool()) 91 val isEmpty = Output(Bool()) 92 // valid vector, for robIdx gen and walk 93 val needAlloc = Vec(RenameWidth, Input(Bool())) 94 val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst))) 95 val resp = Vec(RenameWidth, Output(new RobPtr)) 96} 97 98class RobCoreTopDownIO(implicit p: Parameters) extends XSBundle { 99 val robHeadVaddr = Valid(UInt(VAddrBits.W)) 100 val robHeadPaddr = Valid(UInt(PAddrBits.W)) 101} 102 103class RobDispatchTopDownIO extends Bundle { 104 val robTrueCommit = Output(UInt(64.W)) 105 val robHeadLsIssue = Output(Bool()) 106} 107 108class RobDebugRollingIO extends Bundle { 109 val robTrueCommit = Output(UInt(64.W)) 110} 111 112class RobDispatchData(implicit p: Parameters) extends RobCommitInfo {} 113 114class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 115 val io = IO(new Bundle { 116 // for commits/flush 117 val state = Input(UInt(2.W)) 118 val deq_v = Vec(CommitWidth, Input(Bool())) 119 val deq_w = Vec(CommitWidth, Input(Bool())) 120 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 121 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 122 val intrBitSetReg = Input(Bool()) 123 val hasNoSpecExec = Input(Bool()) 124 val interrupt_safe = Input(Bool()) 125 val blockCommit = Input(Bool()) 126 // output: the CommitWidth deqPtr 127 val out = Vec(CommitWidth, Output(new RobPtr)) 128 val next_out = Vec(CommitWidth, Output(new RobPtr)) 129 }) 130 131 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 132 133 // for exceptions (flushPipe included) and interrupts: 134 // only consider the first instruction 135 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe 136 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0) 137 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 138 139 // for normal commits: only to consider when there're no exceptions 140 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 141 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 142 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i))) 143 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 144 // when io.intrBitSetReg or there're possible exceptions in these instructions, 145 // only one instruction is allowed to commit 146 val allowOnlyOne = commit_exception || io.intrBitSetReg 147 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 148 149 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 150 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec) 151 152 deqPtrVec := deqPtrVec_next 153 154 io.next_out := deqPtrVec_next 155 io.out := deqPtrVec 156 157 when (io.state === 0.U) { 158 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 159 } 160 161} 162 163class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 164 val io = IO(new Bundle { 165 // for input redirect 166 val redirect = Input(Valid(new Redirect)) 167 // for enqueue 168 val allowEnqueue = Input(Bool()) 169 val hasBlockBackward = Input(Bool()) 170 val enq = Vec(RenameWidth, Input(Bool())) 171 val out = Output(Vec(RenameWidth, new RobPtr)) 172 }) 173 174 val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr))) 175 176 // enqueue 177 val canAccept = io.allowEnqueue && !io.hasBlockBackward 178 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 179 180 for ((ptr, i) <- enqPtrVec.zipWithIndex) { 181 when(io.redirect.valid) { 182 ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 183 }.otherwise { 184 ptr := ptr + dispatchNum 185 } 186 } 187 188 io.out := enqPtrVec 189 190} 191 192class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 193 // val valid = Bool() 194 val robIdx = new RobPtr 195 val exceptionVec = ExceptionVec() 196 val flushPipe = Bool() 197 val isVset = Bool() 198 val replayInst = Bool() // redirect to that inst itself 199 val singleStep = Bool() // TODO add frontend hit beneath 200 val crossPageIPFFix = Bool() 201 val trigger = new TriggerCf 202 203// def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend 204// def trigger_after = trigger.getTimingBackend && trigger.getHitBackend 205 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit 206 def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit 207 // only exceptions are allowed to writeback when enqueue 208 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit 209} 210 211class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 212 val io = IO(new Bundle { 213 val redirect = Input(Valid(new Redirect)) 214 val flush = Input(Bool()) 215 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 216 // csr + load + store 217 val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo))) 218 val out = ValidIO(new RobExceptionInfo) 219 val state = ValidIO(new RobExceptionInfo) 220 }) 221 222 val wbExuParams = params.allExuParams.filter(_.exceptionOut.nonEmpty) 223 224 def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): RobExceptionInfo = { 225 def getOldest_recursion(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = { 226 assert(valid.length == bits.length) 227 if (valid.length == 1) { 228 (valid, bits) 229 } else if (valid.length == 2) { 230 val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) 231 for (i <- res.indices) { 232 res(i).valid := valid(i) 233 res(i).bits := bits(i) 234 } 235 val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1)) 236 (Seq(oldest.valid), Seq(oldest.bits)) 237 } else { 238 val left = getOldest_recursion(valid.take(valid.length / 2), bits.take(valid.length / 2)) 239 val right = getOldest_recursion(valid.drop(valid.length / 2), bits.drop(valid.length / 2)) 240 getOldest_recursion(left._1 ++ right._1, left._2 ++ right._2) 241 } 242 } 243 getOldest_recursion(valid, bits)._2.head 244 } 245 246 247 val currentValid = RegInit(false.B) 248 val current = Reg(new RobExceptionInfo) 249 250 // orR the exceptionVec 251 val lastCycleFlush = RegNext(io.flush) 252 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 253 254 // s0: compare wb in 4 groups 255 val csrvldu_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isCsr || t.fuType == FuType.vldu).nonEmpty).map(_._1) 256 val load_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.ldu).nonEmpty).map(_._1) 257 val store_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isSta || t.fuType == FuType.mou).nonEmpty).map(_._1) 258 val varith_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.isVecArith).nonEmpty).map(_._1) 259 // TODO: vsta_wb = ??? 260 261 val writebacks = Seq(csrvldu_wb, load_wb, store_wb, varith_wb) 262 val in_wb_valids = writebacks.map(_.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)) 263 val wb_valid = in_wb_valids.zip(writebacks).map { case (valid, wb) => 264 valid.zip(wb.map(_.bits)).map { case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }.reduce(_ || _) 265 } 266 val wb_bits = in_wb_valids.zip(writebacks).map { case (valid, wb) => getOldest(valid, wb.map(_.bits))} 267 268 val s0_out_valid = wb_valid.map(x => RegNext(x)) 269 val s0_out_bits = wb_bits.map(x => RegNext(x)) 270 271 // s1: compare last four and current flush 272 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 273 val s1_out_bits = RegNext(getOldest(s0_out_valid, s0_out_bits)) 274 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 275 276 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 277 val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits))) 278 279 // s2: compare the input exception with the current one 280 // priorities: 281 // (1) system reset 282 // (2) current is valid: flush, remain, merge, update 283 // (3) current is not valid: s1 or enq 284 val current_flush = current.robIdx.needFlush(io.redirect) || io.flush 285 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 286 when (currentValid) { 287 when (current_flush) { 288 currentValid := Mux(s1_flush, false.B, s1_out_valid) 289 } 290 when (s1_out_valid && !s1_flush) { 291 when (isAfter(current.robIdx, s1_out_bits.robIdx)) { 292 current := s1_out_bits 293 }.elsewhen (current.robIdx === s1_out_bits.robIdx) { 294 current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 295 current.flushPipe := s1_out_bits.flushPipe || current.flushPipe 296 current.replayInst := s1_out_bits.replayInst || current.replayInst 297 current.singleStep := s1_out_bits.singleStep || current.singleStep 298 current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf) 299 } 300 } 301 }.elsewhen (s1_out_valid && !s1_flush) { 302 currentValid := true.B 303 current := s1_out_bits 304 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 305 currentValid := true.B 306 current := enq_bits 307 } 308 309 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 310 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 311 io.state.valid := currentValid 312 io.state.bits := current 313 314} 315 316class RobFlushInfo(implicit p: Parameters) extends XSBundle { 317 val ftqIdx = new FtqPtr 318 val robIdx = new RobPtr 319 val ftqOffset = UInt(log2Up(PredictWidth).W) 320 val replayInst = Bool() 321} 322 323class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter { 324 override def shouldBeInlined: Boolean = false 325 326 lazy val module = new RobImp(this)(p, params) 327} 328 329class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper) 330 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents { 331 332 private val LduCnt = params.LduCnt 333 private val StaCnt = params.StaCnt 334 private val HyuCnt = params.HyuCnt 335 336 val io = IO(new Bundle() { 337 val hartId = Input(UInt(8.W)) 338 val redirect = Input(Valid(new Redirect)) 339 val enq = new RobEnqIO 340 val flushOut = ValidIO(new Redirect) 341 val exception = ValidIO(new ExceptionInfo) 342 // exu + brq 343 val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles) 344 val commits = Output(new RobCommitIO) 345 val rabCommits = Output(new RobCommitIO) 346 val diffCommits = Output(new DiffCommitIO) 347 val isVsetFlushPipe = Output(Bool()) 348 val vconfigPdest = Output(UInt(PhyRegIdxWidth.W)) 349 val lsq = new RobLsqIO 350 val robDeqPtr = Output(new RobPtr) 351 val csr = new RobCSRIO 352 val snpt = Input(new SnapshotPort) 353 val robFull = Output(Bool()) 354 val headNotReady = Output(Bool()) 355 val cpu_halt = Output(Bool()) 356 val wfi_enable = Input(Bool()) 357 358 val debug_ls = Flipped(new DebugLSIO) 359 val debugRobHead = Output(new DynInst) 360 val debugEnqLsq = Input(new LsqEnqIO) 361 val debugHeadLsIssue = Input(Bool()) 362 val lsTopdownInfo = Vec(LduCnt + HyuCnt, Input(new LsTopdownInfo)) 363 val debugTopDown = new Bundle { 364 val toCore = new RobCoreTopDownIO 365 val toDispatch = new RobDispatchTopDownIO 366 val robHeadLqIdx = Valid(new LqPtr) 367 } 368 val debugRolling = new RobDebugRollingIO 369 }) 370 371 val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu).toSeq 372 val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu).toSeq 373 val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty) 374 val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 375 val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty) 376 377 val exuWbPorts = io.writeback.filter(!_.bits.params.hasStdFu) 378 val stdWbPorts = io.writeback.filter(_.bits.params.hasStdFu) 379 val fflagsPorts = io.writeback.filter(x => x.bits.fflags.nonEmpty) 380 val vxsatPorts = io.writeback.filter(x => x.bits.vxsat.nonEmpty) 381 val exceptionPorts = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 382 val numExuWbPorts = exuWBs.length 383 val numStdWbPorts = stdWBs.length 384 385 386 println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth") 387// println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}") 388// println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}") 389// println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}") 390 391 392 // instvalid field 393 val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 394 // writeback status 395 396 val stdWritebacked = Reg(Vec(RobSize, Bool())) 397 val uopNumVec = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W)))) 398 val realDestSize = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W)))) 399 val fflagsDataModule = RegInit(VecInit(Seq.fill(RobSize)(0.U(5.W)))) 400 val vxsatDataModule = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 401 402 def isWritebacked(ptr: UInt): Bool = { 403 !uopNumVec(ptr).orR && stdWritebacked(ptr) 404 } 405 406 def isUopWritebacked(ptr: UInt): Bool = { 407 !uopNumVec(ptr).orR 408 } 409 410 val mmio = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 411 412 // data for redirect, exception, etc. 413 val flagBkup = Mem(RobSize, Bool()) 414 // some instructions are not allowed to trigger interrupts 415 // They have side effects on the states of the processor before they write back 416 val interrupt_safe = Mem(RobSize, Bool()) 417 418 // data for debug 419 // Warn: debug_* prefix should not exist in generated verilog. 420 val debug_microOp = DebugMem(RobSize, new DynInst) 421 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 422 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 423 val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init))) 424 val debug_lsTopdownInfo = RegInit(VecInit(Seq.fill(RobSize)(LsTopdownInfo.init))) 425 val debug_lqIdxValid = RegInit(VecInit.fill(RobSize)(false.B)) 426 val debug_lsIssued = RegInit(VecInit.fill(RobSize)(false.B)) 427 428 // pointers 429 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 430 val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr)) 431 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 432 433 dontTouch(enqPtrVec) 434 dontTouch(deqPtrVec) 435 436 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 437 val lastWalkPtr = Reg(new RobPtr) 438 val allowEnqueue = RegInit(true.B) 439 440 val enqPtr = enqPtrVec.head 441 val deqPtr = deqPtrVec(0) 442 val walkPtr = walkPtrVec(0) 443 444 val isEmpty = enqPtr === deqPtr 445 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 446 447 val snptEnq = io.enq.canAccept && io.enq.req.head.valid && io.enq.req.head.bits.snapshot 448 val snapshots = SnapshotGenerator(enqPtrVec, snptEnq, io.snpt.snptDeq, io.redirect.valid, io.snpt.flushVec) 449 val debug_lsIssue = WireDefault(debug_lsIssued) 450 debug_lsIssue(deqPtr.value) := io.debugHeadLsIssue 451 452 /** 453 * states of Rob 454 */ 455 val s_idle :: s_walk :: Nil = Enum(2) 456 val state = RegInit(s_idle) 457 458 /** 459 * Data Modules 460 * 461 * CommitDataModule: data from dispatch 462 * (1) read: commits/walk/exception 463 * (2) write: enqueue 464 * 465 * WritebackData: data from writeback 466 * (1) read: commits/walk/exception 467 * (2) write: write back from exe units 468 */ 469 val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth)) 470 val dispatchDataRead = dispatchData.io.rdata 471 472 val exceptionGen = Module(new ExceptionGen(params)) 473 val exceptionDataRead = exceptionGen.io.state 474 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 475 val vxsatDataRead = Wire(Vec(CommitWidth, Bool())) 476 477 io.robDeqPtr := deqPtr 478 io.debugRobHead := debug_microOp(deqPtr.value) 479 480 val rab = Module(new RenameBuffer(RabSize)) 481 482 rab.io.redirect.valid := io.redirect.valid 483 484 rab.io.req.zip(io.enq.req).map { case (dest, src) => 485 dest.bits := src.bits 486 dest.valid := src.valid && io.enq.canAccept 487 } 488 489 val commitDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(deqPtrVec(i).value)) 490 val walkDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(walkPtrVec(i).value)) 491 492 val commitSizeSum = io.commits.commitValid.zip(commitDestSizeSeq).map { case (commitValid, destSize) => 493 Mux(io.commits.isCommit && commitValid, destSize, 0.U) 494 }.reduce(_ +& _) 495 val walkSizeSum = io.commits.walkValid.zip(walkDestSizeSeq).map { case (walkValid, destSize) => 496 Mux(io.commits.isWalk && walkValid, destSize, 0.U) 497 }.reduce(_ +& _) 498 499 rab.io.fromRob.commitSize := commitSizeSum 500 rab.io.fromRob.walkSize := walkSizeSum 501 rab.io.snpt := io.snpt 502 rab.io.snpt.snptEnq := snptEnq 503 504 io.rabCommits := rab.io.commits 505 io.diffCommits := rab.io.diffCommits 506 507 /** 508 * Enqueue (from dispatch) 509 */ 510 // special cases 511 val hasBlockBackward = RegInit(false.B) 512 val hasWaitForward = RegInit(false.B) 513 val doingSvinval = RegInit(false.B) 514 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 515 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 516 when (isEmpty) { hasBlockBackward:= false.B } 517 // When any instruction commits, hasNoSpecExec should be set to false.B 518 when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B } 519 520 // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. 521 // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. 522 // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. 523 val hasWFI = RegInit(false.B) 524 io.cpu_halt := hasWFI 525 // WFI Timeout: 2^20 = 1M cycles 526 val wfi_cycles = RegInit(0.U(20.W)) 527 when (hasWFI) { 528 wfi_cycles := wfi_cycles + 1.U 529 }.elsewhen (!hasWFI && RegNext(hasWFI)) { 530 wfi_cycles := 0.U 531 } 532 val wfi_timeout = wfi_cycles.andR 533 when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) { 534 hasWFI := false.B 535 } 536 537 val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.firstUop))))) 538 io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq 539 io.enq.resp := allocatePtrVec 540 val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop && io.enq.canAccept)) 541 val timer = GTimer() 542 for (i <- 0 until RenameWidth) { 543 // we don't check whether io.redirect is valid here since redirect has higher priority 544 when (canEnqueue(i)) { 545 val enqUop = io.enq.req(i).bits 546 val enqIndex = allocatePtrVec(i).value 547 // store uop in data module and debug_microOp Vec 548 debug_microOp(enqIndex) := enqUop 549 debug_microOp(enqIndex).debugInfo.dispatchTime := timer 550 debug_microOp(enqIndex).debugInfo.enqRsTime := timer 551 debug_microOp(enqIndex).debugInfo.selectTime := timer 552 debug_microOp(enqIndex).debugInfo.issueTime := timer 553 debug_microOp(enqIndex).debugInfo.writebackTime := timer 554 debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer 555 debug_microOp(enqIndex).debugInfo.tlbRespTime := timer 556 debug_lsInfo(enqIndex) := DebugLsInfo.init 557 debug_lsTopdownInfo(enqIndex) := LsTopdownInfo.init 558 debug_lqIdxValid(enqIndex) := false.B 559 debug_lsIssued(enqIndex) := false.B 560 561 when (enqUop.blockBackward) { 562 hasBlockBackward := true.B 563 } 564 when (enqUop.waitForward) { 565 hasWaitForward := true.B 566 } 567 val enqHasTriggerHit = false.B // io.enq.req(i).bits.cf.trigger.getHitFrontend 568 val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR 569 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 570 when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe)) 571 { 572 doingSvinval := true.B 573 } 574 // the end instruction of Svinval enqs so clear doingSvinval 575 when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe)) 576 { 577 doingSvinval := false.B 578 } 579 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 580 assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe))) 581 when (enqUop.isWFI && !enqHasException && !enqHasTriggerHit) { 582 hasWFI := true.B 583 } 584 585 mmio(enqIndex) := false.B 586 } 587 } 588 val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.firstUop)), 0.U) 589 io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR) 590 591 when (!io.wfi_enable) { 592 hasWFI := false.B 593 } 594 // sel vsetvl's flush position 595 val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3) 596 val vsetvlState = RegInit(vs_idle) 597 598 val firstVInstrFtqPtr = RegInit(0.U.asTypeOf(new FtqPtr)) 599 val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W))) 600 val firstVInstrRobIdx = RegInit(0.U.asTypeOf(new RobPtr)) 601 602 val enq0 = io.enq.req(0) 603 val enq0IsVset = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0) 604 val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe 605 val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVArith(req.bits.fuType) && fire} 606 // for vs_idle 607 val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType))) 608 // for vs_waitVinstr 609 val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1) 610 val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req) 611 when(vsetvlState === vs_idle){ 612 firstVInstrFtqPtr := firstVInstrIdle.bits.ftqPtr 613 firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset 614 firstVInstrRobIdx := firstVInstrIdle.bits.robIdx 615 }.elsewhen(vsetvlState === vs_waitVinstr){ 616 when(Cat(enqIsVInstrOrVset).orR){ 617 firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr 618 firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset 619 firstVInstrRobIdx := firstVInstrWait.bits.robIdx 620 } 621 } 622 623 val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR 624 when(vsetvlState === vs_idle && !io.redirect.valid){ 625 when(enq0IsVsetFlush){ 626 vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr) 627 } 628 }.elsewhen(vsetvlState === vs_waitVinstr){ 629 when(io.redirect.valid){ 630 vsetvlState := vs_idle 631 }.elsewhen(Cat(enqIsVInstrOrVset).orR){ 632 vsetvlState := vs_waitFlush 633 } 634 }.elsewhen(vsetvlState === vs_waitFlush){ 635 when(io.redirect.valid){ 636 vsetvlState := vs_idle 637 } 638 } 639 640 // lqEnq 641 io.debugEnqLsq.needAlloc.map(_(0)).zip(io.debugEnqLsq.req).foreach { case (alloc, req) => 642 when(io.debugEnqLsq.canAccept && alloc && req.valid) { 643 debug_microOp(req.bits.robIdx.value).lqIdx := req.bits.lqIdx 644 debug_lqIdxValid(req.bits.robIdx.value) := true.B 645 } 646 } 647 648 // lsIssue 649 when(io.debugHeadLsIssue) { 650 debug_lsIssued(deqPtr.value) := true.B 651 } 652 653 /** 654 * Writeback (from execution units) 655 */ 656 for (wb <- exuWBs) { 657 when (wb.valid) { 658 val wbIdx = wb.bits.robIdx.value 659 debug_exuData(wbIdx) := wb.bits.data 660 debug_exuDebug(wbIdx) := wb.bits.debug 661 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime 662 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime 663 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime 664 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime 665 666 // debug for lqidx and sqidx 667 debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr)) 668 debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr)) 669 670 val debug_Uop = debug_microOp(wbIdx) 671 XSInfo(true.B, 672 p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " + 673 p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " + 674 p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n" 675 ) 676 } 677 } 678 679 val writebackNum = PopCount(exuWBs.map(_.valid)) 680 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 681 682 for (i <- 0 until LoadPipelineWidth) { 683 when (RegNext(io.lsq.mmio(i))) { 684 mmio(RegNext(io.lsq.uop(i).robIdx).value) := true.B 685 } 686 } 687 688 /** 689 * RedirectOut: Interrupt and Exceptions 690 */ 691 val deqDispatchData = dispatchDataRead(0) 692 val debug_deqUop = debug_microOp(deqPtr.value) 693 694 val intrBitSetReg = RegNext(io.csr.intrBitSet) 695 val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safe(deqPtr.value) 696 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 697 val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR || 698 exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit) 699 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 700 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 701 val exceptionEnable = isWritebacked(deqPtr.value) && deqHasException 702 703 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 704 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n") 705 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n") 706 707 val isFlushPipe = isWritebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 708 709 val isVsetFlushPipe = isWritebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset 710// val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush) 711 val needModifyFtqIdxOffset = false.B 712 io.isVsetFlushPipe := isVsetFlushPipe 713 io.vconfigPdest := rab.io.vconfigPdest 714 // io.flushOut will trigger redirect at the next cycle. 715 // Block any redirect or commit at the next cycle. 716 val lastCycleFlush = RegNext(io.flushOut.valid) 717 718 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 719 io.flushOut.bits := DontCare 720 io.flushOut.bits.isRVC := deqDispatchData.isRVC 721 io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr) 722 io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx) 723 io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset) 724 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 725 io.flushOut.bits.interrupt := true.B 726 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 727 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 728 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 729 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 730 731 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 732 io.exception.valid := RegNext(exceptionHappen) 733 io.exception.bits.pc := RegEnable(debug_deqUop.pc, exceptionHappen) 734 io.exception.bits.instr := RegEnable(debug_deqUop.instr, exceptionHappen) 735 io.exception.bits.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 736 io.exception.bits.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 737 io.exception.bits.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 738 io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 739 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 740// io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 741 742 XSDebug(io.flushOut.valid, 743 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " + 744 p"excp $exceptionEnable flushPipe $isFlushPipe " + 745 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 746 747 748 /** 749 * Commits (and walk) 750 * They share the same width. 751 */ 752 val shouldWalkVec = VecInit(walkPtrVec.map(_ <= lastWalkPtr)) 753 val walkFinished = VecInit(walkPtrVec.map(_ >= lastWalkPtr)).asUInt.orR 754 rab.io.fromRob.walkEnd := state === s_walk && walkFinished 755 756 require(RenameWidth <= CommitWidth) 757 758 // wiring to csr 759 val (wflags, dirtyFs) = (0 until CommitWidth).map(i => { 760 val v = io.commits.commitValid(i) 761 val info = io.commits.info(i) 762 (v & info.wflags, v & info.dirtyFs) 763 }).unzip 764 val fflags = Wire(Valid(UInt(5.W))) 765 fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR 766 fflags.bits := wflags.zip(fflagsDataRead).map({ 767 case (w, f) => Mux(w, f, 0.U) 768 }).reduce(_|_) 769 val dirty_fs = io.commits.isCommit && VecInit(dirtyFs).asUInt.orR 770 771 val vxsat = Wire(Valid(Bool())) 772 vxsat.valid := io.commits.isCommit && vxsat.bits 773 vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map { 774 case (valid, vxsat) => valid & vxsat 775 }.reduce(_ | _) 776 777 // when mispredict branches writeback, stop commit in the next 2 cycles 778 // TODO: don't check all exu write back 779 val misPredWb = Cat(VecInit(redirectWBs.map(wb => 780 wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid 781 ).toSeq)).orR 782 val misPredBlockCounter = Reg(UInt(3.W)) 783 misPredBlockCounter := Mux(misPredWb, 784 "b111".U, 785 misPredBlockCounter >> 1.U 786 ) 787 val misPredBlock = misPredBlockCounter(0) 788 val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI || io.redirect.valid 789 790 io.commits.isWalk := state === s_walk 791 io.commits.isCommit := state === s_idle && !blockCommit 792 val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value))) 793 val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value))) 794 // store will be commited iff both sta & std have been writebacked 795 val commit_w = VecInit(deqPtrVec.map(ptr => isWritebacked(ptr.value))) 796 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 797 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 798 val allowOnlyOneCommit = commit_exception || intrBitSetReg 799 // for instructions that may block others, we don't allow them to commit 800 for (i <- 0 until CommitWidth) { 801 // defaults: state === s_idle and instructions commit 802 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 803 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 804 io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked 805 io.commits.info(i) := dispatchDataRead(i) 806 io.commits.robIdx(i) := deqPtrVec(i) 807 808 io.commits.walkValid(i) := shouldWalkVec(i) 809 when (state === s_walk) { 810 when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) { 811 XSError(!walk_v(i), s"The walking entry($i) should be valid\n") 812 } 813 } 814 815 XSInfo(io.commits.isCommit && io.commits.commitValid(i), 816 "retired pc %x wen %d ldest %d pdest %x data %x fflags: %b vxsat: %b\n", 817 debug_microOp(deqPtrVec(i).value).pc, 818 io.commits.info(i).rfWen, 819 io.commits.info(i).ldest, 820 io.commits.info(i).pdest, 821 debug_exuData(deqPtrVec(i).value), 822 fflagsDataRead(i), 823 vxsatDataRead(i) 824 ) 825 XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n", 826 debug_microOp(walkPtrVec(i).value).pc, 827 io.commits.info(i).rfWen, 828 io.commits.info(i).ldest, 829 debug_exuData(walkPtrVec(i).value) 830 ) 831 } 832 if (env.EnableDifftest) { 833 io.commits.info.map(info => dontTouch(info.pc)) 834 } 835 836 // sync fflags/dirty_fs/vxsat to csr 837 io.csr.fflags := RegNext(fflags) 838 io.csr.dirty_fs := RegNext(dirty_fs) 839 io.csr.vxsat := RegNext(vxsat) 840 841 // sync v csr to csr 842 // for difftest 843 if(env.AlwaysBasicDiff || env.EnableDifftest) { 844 val isDiffWriteVconfigVec = io.diffCommits.commitValid.zip(io.diffCommits.info).map { case (valid, info) => valid && info.ldest === VCONFIG_IDX.U && info.vecWen }.reverse 845 io.csr.vcsrFlag := RegNext(io.diffCommits.isCommit && Cat(isDiffWriteVconfigVec).orR) 846 } 847 else{ 848 io.csr.vcsrFlag := false.B 849 } 850 851 // commit load/store to lsq 852 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 853 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE)) 854 io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U)) 855 io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U)) 856 // indicate a pending load or store 857 io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value) && mmio(deqPtr.value)) 858 io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 859 io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0)) 860 io.lsq.pendingPtr := RegNext(deqPtr) 861 862 /** 863 * state changes 864 * (1) redirect: switch to s_walk 865 * (2) walk: when walking comes to the end, switch to s_idle 866 */ 867 val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished && rab.io.status.walkEnd, s_idle, state)) 868 XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle) 869 XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk) 870 XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle) 871 XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk) 872 state := state_next 873 874 /** 875 * pointers and counters 876 */ 877 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 878 deqPtrGenModule.io.state := state 879 deqPtrGenModule.io.deq_v := commit_v 880 deqPtrGenModule.io.deq_w := commit_w 881 deqPtrGenModule.io.exception_state := exceptionDataRead 882 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 883 deqPtrGenModule.io.hasNoSpecExec := hasWaitForward 884 deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value) 885 deqPtrGenModule.io.blockCommit := blockCommit 886 deqPtrVec := deqPtrGenModule.io.out 887 val deqPtrVec_next = deqPtrGenModule.io.next_out 888 889 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 890 enqPtrGenModule.io.redirect := io.redirect 891 enqPtrGenModule.io.allowEnqueue := allowEnqueue && rab.io.canEnq 892 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 893 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop)) 894 enqPtrVec := enqPtrGenModule.io.out 895 896 // next walkPtrVec: 897 // (1) redirect occurs: update according to state 898 // (2) walk: move forwards 899 val walkPtrVec_next = Mux(io.redirect.valid, 900 Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect), deqPtrVec_next), 901 Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec) 902 ) 903 walkPtrVec := walkPtrVec_next 904 905 val numValidEntries = distanceBetween(enqPtr, deqPtr) 906 val commitCnt = PopCount(io.commits.commitValid) 907 908 allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U 909 910 val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0)) 911 when (io.redirect.valid) { 912 lastWalkPtr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx - 1.U, io.redirect.bits.robIdx) 913 } 914 915 916 /** 917 * States 918 * We put all the stage bits changes here. 919 920 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 921 * All states: (1) valid; (2) writebacked; (3) flagBkup 922 */ 923 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 924 925 // redirect logic writes 6 valid 926 val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr)) 927 val redirectTail = Reg(new RobPtr) 928 val redirectIdle :: redirectBusy :: Nil = Enum(2) 929 val redirectState = RegInit(redirectIdle) 930 val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail)) 931 when(redirectState === redirectBusy) { 932 redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U) 933 redirectHeadVec zip invMask foreach { 934 case (redirectHead, inv) => when(inv) { 935 valid(redirectHead.value) := false.B 936 } 937 } 938 when(!invMask.last) { 939 redirectState := redirectIdle 940 } 941 } 942 when(io.redirect.valid) { 943 redirectState := redirectBusy 944 when(redirectState === redirectIdle) { 945 redirectTail := enqPtr 946 } 947 redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) => 948 redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 949 } 950 } 951 // enqueue logic writes 6 valid 952 for (i <- 0 until RenameWidth) { 953 when (canEnqueue(i) && !io.redirect.valid) { 954 valid(allocatePtrVec(i).value) := true.B 955 } 956 } 957 // dequeue logic writes 6 valid 958 for (i <- 0 until CommitWidth) { 959 val commitValid = io.commits.isCommit && io.commits.commitValid(i) 960 when (commitValid) { 961 valid(commitReadAddr(i)) := false.B 962 } 963 } 964 965 // debug_inst update 966 for(i <- 0 until (LduCnt + StaCnt)) { 967 debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i)) 968 debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i)) 969 } 970 for (i <- 0 until LduCnt) { 971 debug_lsTopdownInfo(io.lsTopdownInfo(i).s1.robIdx).s1SignalEnable(io.lsTopdownInfo(i)) 972 debug_lsTopdownInfo(io.lsTopdownInfo(i).s2.robIdx).s2SignalEnable(io.lsTopdownInfo(i)) 973 } 974 975 // writeback logic set numWbPorts writebacked to true 976 val blockWbSeq = Wire(Vec(exuWBs.length, Bool())) 977 blockWbSeq.map(_ := false.B) 978 for ((wb, blockWb) <- exuWBs.zip(blockWbSeq)) { 979 when(wb.valid) { 980 val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR 981 val wbHasTriggerHit = false.B //Todo: wb.bits.trigger.getHitBackend 982 val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B) 983 val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst 984 blockWb := wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit 985 } 986 } 987 988 // if the first uop of an instruction is valid , write writebackedCounter 989 val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid) 990 val instEnqValidSeq = io.enq.req.map (req => io.enq.canAccept && req.valid && req.bits.firstUop) 991 val enqNeedWriteRFSeq = io.enq.req.map(_.bits.needWriteRf) 992 val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value) 993 val enqUopNumVec = VecInit(io.enq.req.map(req => req.bits.numUops)) 994 val enqEliminatedMoveVec = VecInit(io.enq.req.map(req => req.bits.eliminatedMove)) 995 996 private val enqWriteStdVec: Vec[Bool] = VecInit(io.enq.req.map { 997 req => FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType) 998 }) 999 val fflags_wb = fflagsPorts 1000 val vxsat_wb = vxsatPorts 1001 for(i <- 0 until RobSize){ 1002 1003 val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U) 1004 val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch } 1005 val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch } 1006 val instCanEnqFlag = Cat(instCanEnqSeq).orR 1007 1008 realDestSize(i) := Mux(!valid(i) && instCanEnqFlag || valid(i), realDestSize(i) + PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map{ case(writeFlag, valid) => writeFlag && valid }), 0.U) 1009 1010 val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec) 1011 val enqEliminatedMove = PriorityMux(instCanEnqSeq, enqEliminatedMoveVec) 1012 val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec) 1013 1014 val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 1015 val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map{ case(canWb, blockWb) => canWb && !blockWb } 1016 val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)) 1017 val wbCnt = PopCount(canWbNoBlockSeq) 1018 1019 val exceptionHas = RegInit(false.B) 1020 val exceptionHasWire = Wire(Bool()) 1021 exceptionHasWire := MuxCase(exceptionHas, Seq( 1022 (valid(i) && exceptionGen.io.out.valid && exceptionGen.io.out.bits.robIdx.value === i.U) -> true.B, 1023 !valid(i) -> false.B 1024 )) 1025 exceptionHas := exceptionHasWire 1026 1027 when (exceptionHas || exceptionHasWire) { 1028 // exception flush 1029 uopNumVec(i) := 0.U 1030 stdWritebacked(i) := true.B 1031 }.elsewhen(!valid(i) && instCanEnqFlag) { 1032 // enq set num of uops 1033 uopNumVec(i) := enqUopNum 1034 stdWritebacked(i) := Mux(enqWriteStd, false.B, true.B) 1035 }.elsewhen(valid(i)) { 1036 // update by writing back 1037 uopNumVec(i) := uopNumVec(i) - wbCnt 1038 when (canStdWbSeq.asUInt.orR) { 1039 stdWritebacked(i) := true.B 1040 } 1041 }.otherwise { 1042 uopNumVec(i) := 0.U 1043 } 1044 1045 val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && writeback.bits.wflags.getOrElse(false.B)) 1046 val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _) 1047 fflagsDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, fflagsDataModule(i) | fflagsRes) 1048 1049 val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 1050 val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _) 1051 vxsatDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, vxsatDataModule(i) | vxsatRes) 1052 } 1053 1054 // flagBkup 1055 // enqueue logic set 6 flagBkup at most 1056 for (i <- 0 until RenameWidth) { 1057 when (canEnqueue(i)) { 1058 flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag 1059 } 1060 } 1061 1062 // interrupt_safe 1063 for (i <- 0 until RenameWidth) { 1064 // We RegNext the updates for better timing. 1065 // Note that instructions won't change the system's states in this cycle. 1066 when (RegNext(canEnqueue(i))) { 1067 // For now, we allow non-load-store instructions to trigger interrupts 1068 // For MMIO instructions, they should not trigger interrupts since they may 1069 // be sent to lower level before it writes back. 1070 // However, we cannot determine whether a load/store instruction is MMIO. 1071 // Thus, we don't allow load/store instructions to trigger an interrupt. 1072 // TODO: support non-MMIO load-store instructions to trigger interrupts 1073 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType) 1074 interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts) 1075 } 1076 } 1077 1078 /** 1079 * read and write of data modules 1080 */ 1081 val commitReadAddr_next = Mux(state_next === s_idle, 1082 VecInit(deqPtrVec_next.map(_.value)), 1083 VecInit(walkPtrVec_next.map(_.value)) 1084 ) 1085 dispatchData.io.wen := canEnqueue 1086 dispatchData.io.waddr := allocatePtrVec.map(_.value) 1087 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).zipWithIndex.foreach { case ((wdata, req), portIdx) => 1088 wdata.ldest := req.ldest 1089 wdata.rfWen := req.rfWen 1090 wdata.dirtyFs := req.dirtyFs 1091 wdata.vecWen := req.vecWen 1092 wdata.wflags := req.wfflags 1093 wdata.commitType := req.commitType 1094 wdata.pdest := req.pdest 1095 wdata.ftqIdx := req.ftqPtr 1096 wdata.ftqOffset := req.ftqOffset 1097 wdata.isMove := req.eliminatedMove 1098 wdata.isRVC := req.preDecodeInfo.isRVC 1099 wdata.pc := req.pc 1100 wdata.vtype := req.vpu.vtype 1101 wdata.isVset := req.isVset 1102 wdata.instrSize := req.instrSize 1103 } 1104 dispatchData.io.raddr := commitReadAddr_next 1105 1106 exceptionGen.io.redirect <> io.redirect 1107 exceptionGen.io.flush := io.flushOut.valid 1108 1109 val canEnqueueEG = VecInit(io.enq.req.map(req => req.valid && io.enq.canAccept)) 1110 for (i <- 0 until RenameWidth) { 1111 exceptionGen.io.enq(i).valid := canEnqueueEG(i) 1112 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 1113 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec) 1114 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe 1115 exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset 1116 exceptionGen.io.enq(i).bits.replayInst := false.B 1117 XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst") 1118 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep 1119 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix 1120 exceptionGen.io.enq(i).bits.trigger.clear() 1121 exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit 1122 } 1123 1124 println(s"ExceptionGen:") 1125 println(s"num of exceptions: ${params.numException}") 1126 require(exceptionWBs.length == exceptionGen.io.wb.length, 1127 f"exceptionWBs.length: ${exceptionWBs.length}, " + 1128 f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}") 1129 for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) { 1130 exc_wb.valid := wb.valid 1131 exc_wb.bits.robIdx := wb.bits.robIdx 1132 exc_wb.bits.exceptionVec := wb.bits.exceptionVec.get 1133 exc_wb.bits.flushPipe := wb.bits.flushPipe.getOrElse(false.B) 1134 exc_wb.bits.isVset := false.B 1135 exc_wb.bits.replayInst := wb.bits.replay.getOrElse(false.B) 1136 exc_wb.bits.singleStep := false.B 1137 exc_wb.bits.crossPageIPFFix := false.B 1138 exc_wb.bits.trigger := 0.U.asTypeOf(exc_wb.bits.trigger) // Todo 1139// println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + 1140// s"flushPipe ${configs.exists(_.flushPipe)}, " + 1141// s"replayInst ${configs.exists(_.replayInst)}") 1142 } 1143 1144 fflagsDataRead := (0 until CommitWidth).map(i => fflagsDataModule(deqPtrVec(i).value)) 1145 vxsatDataRead := (0 until CommitWidth).map(i => vxsatDataModule(deqPtrVec(i).value)) 1146 1147 val instrCntReg = RegInit(0.U(64.W)) 1148 val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) }) 1149 val trueCommitCnt = RegNext(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => Mux(v, i.instrSize, 0.U) }.reduce(_ +& _)) +& fuseCommitCnt 1150 val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U) 1151 val instrCnt = instrCntReg + retireCounter 1152 instrCntReg := instrCnt 1153 io.csr.perfinfo.retiredInstr := retireCounter 1154 io.robFull := !allowEnqueue 1155 io.headNotReady := commit_v.head && !commit_w.head 1156 1157 /** 1158 * debug info 1159 */ 1160 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 1161 XSDebug("") 1162 XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n") 1163 for(i <- 0 until RobSize) { 1164 XSDebug(false, !valid(i), "-") 1165 XSDebug(false, valid(i) && isWritebacked(i.U), "w") 1166 XSDebug(false, valid(i) && !isWritebacked(i.U), "v") 1167 } 1168 XSDebug(false, true.B, "\n") 1169 1170 for(i <- 0 until RobSize) { 1171 if (i % 4 == 0) XSDebug("") 1172 XSDebug(false, true.B, "%x ", debug_microOp(i).pc) 1173 XSDebug(false, !valid(i), "- ") 1174 XSDebug(false, valid(i) && isWritebacked(i.U), "w ") 1175 XSDebug(false, valid(i) && !isWritebacked(i.U), "v ") 1176 if (i % 4 == 3) XSDebug(false, true.B, "\n") 1177 } 1178 1179 def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U) 1180 def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U) 1181 1182 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 1183 XSPerfAccumulate("clock_cycle", 1.U) 1184 QueuePerf(RobSize, numValidEntries, numValidEntries === RobSize.U) 1185 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 1186 XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt)) 1187 XSPerfRolling("ipc", ifCommitReg(trueCommitCnt), 1000, clock, reset) 1188 XSPerfRolling("cpi", perfCnt = 1.U/*Cycle*/, eventTrigger = ifCommitReg(trueCommitCnt), granularity = 1000, clock, reset) 1189 val commitIsMove = commitDebugUop.map(_.isMove) 1190 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }))) 1191 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 1192 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e }))) 1193 XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt)) 1194 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 1195 val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t } 1196 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 1197 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 1198 val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t } 1199 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 1200 val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit) 1201 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 1202 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 1203 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }))) 1204 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && isWritebacked(i.U)))) 1205 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) 1206 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 1207 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)) 1208 XSPerfAccumulate("walkCycleTotal", state === s_walk) 1209 XSPerfAccumulate("waitRabWalkEnd", state === s_walk && walkFinished && !rab.io.status.walkEnd) 1210 private val walkCycle = RegInit(0.U(8.W)) 1211 private val waitRabWalkCycle = RegInit(0.U(8.W)) 1212 walkCycle := Mux(io.redirect.valid, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) 1213 waitRabWalkCycle := Mux(state === s_walk && walkFinished, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) 1214 1215 XSPerfHistogram("walkRobCycleHist", walkCycle, state === s_walk && walkFinished, 0, 32) 1216 XSPerfHistogram("walkRabExtraCycleHist", waitRabWalkCycle, state === s_walk && walkFinished && rab.io.status.walkEnd, 0, 32) 1217 XSPerfHistogram("walkTotalCycleHist", walkCycle, state === s_walk && state_next === s_idle, 0, 32) 1218 1219 private val deqNotWritebacked = valid(deqPtr.value) && !isWritebacked(deqPtr.value) 1220 private val deqStdNotWritebacked = valid(deqPtr.value) && !stdWritebacked(deqPtr.value) 1221 private val deqUopNotWritebacked = valid(deqPtr.value) && !isUopWritebacked(deqPtr.value) 1222 private val deqHeadInfo = debug_microOp(deqPtr.value) 1223 val deqUopCommitType = io.commits.info(0).commitType 1224 1225 XSPerfAccumulate("waitAluCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.alu.U) 1226 XSPerfAccumulate("waitMulCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.mul.U) 1227 XSPerfAccumulate("waitDivCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.div.U) 1228 XSPerfAccumulate("waitBrhCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.brh.U) 1229 XSPerfAccumulate("waitJmpCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.jmp.U) 1230 XSPerfAccumulate("waitCsrCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.csr.U) 1231 XSPerfAccumulate("waitFenCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.fence.U) 1232 XSPerfAccumulate("waitBkuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.bku.U) 1233 XSPerfAccumulate("waitLduCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.ldu.U) 1234 XSPerfAccumulate("waitStuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1235 XSPerfAccumulate("waitStaCycle", deqUopNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1236 XSPerfAccumulate("waitStdCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1237 XSPerfAccumulate("waitAtmCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.mou.U) 1238 1239 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 1240 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 1241 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 1242 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 1243 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 1244 XSPerfAccumulate("commitCompressCntAll", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize > 1.U})) 1245 (2 to RenameWidth).foreach(i => 1246 XSPerfAccumulate(s"commitCompressCnt${i}", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize === i.U})) 1247 ) 1248 XSPerfAccumulate("compressSize", io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => Mux(io.commits.isCommit && valid && info.instrSize > 1.U, info.instrSize, 0.U) }.reduce(_ +& _)) 1249 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 1250 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 1251 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 1252 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 1253 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1254 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 1255 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 1256 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 1257 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 1258 } 1259 for (fuType <- FuType.functionNameMap.keys) { 1260 val fuName = FuType.functionNameMap(fuType) 1261 val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U ) 1262 XSPerfRolling(s"ipc_futype_${fuName}", ifCommit(PopCount(commitIsFuType)), 1000, clock, reset) 1263 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 1264 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 1265 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 1266 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 1267 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 1268 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 1269 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 1270 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 1271 } 1272 XSPerfAccumulate(s"redirect_use_snapshot", io.redirect.valid && io.snpt.useSnpt) 1273 1274 // top-down info 1275 io.debugTopDown.toCore.robHeadVaddr.valid := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_valid 1276 io.debugTopDown.toCore.robHeadVaddr.bits := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_bits 1277 io.debugTopDown.toCore.robHeadPaddr.valid := debug_lsTopdownInfo(deqPtr.value).s2.paddr_valid 1278 io.debugTopDown.toCore.robHeadPaddr.bits := debug_lsTopdownInfo(deqPtr.value).s2.paddr_bits 1279 io.debugTopDown.toDispatch.robTrueCommit := ifCommitReg(trueCommitCnt) 1280 io.debugTopDown.toDispatch.robHeadLsIssue := debug_lsIssue(deqPtr.value) 1281 io.debugTopDown.robHeadLqIdx.valid := debug_lqIdxValid(deqPtr.value) 1282 io.debugTopDown.robHeadLqIdx.bits := debug_microOp(deqPtr.value).lqIdx 1283 1284 // rolling 1285 io.debugRolling.robTrueCommit := ifCommitReg(trueCommitCnt) 1286 1287 /** 1288 * DataBase info: 1289 * log trigger is at writeback valid 1290 * */ 1291 1292 /** 1293 * @todo add InstInfoEntry back 1294 * @author Maxpicca-Li 1295 */ 1296 1297 //difftest signals 1298 val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value 1299 1300 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1301 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1302 1303 for(i <- 0 until CommitWidth) { 1304 val idx = deqPtrVec(i).value 1305 wdata(i) := debug_exuData(idx) 1306 wpc(i) := SignExt(commitDebugUop(i).pc, XLEN) 1307 } 1308 1309 if (env.EnableDifftest || env.AlwaysBasicDiff) { 1310 // These are the structures used by difftest only and should be optimized after synthesis. 1311 val dt_eliminatedMove = Mem(RobSize, Bool()) 1312 val dt_isRVC = Mem(RobSize, Bool()) 1313 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1314 for (i <- 0 until RenameWidth) { 1315 when (canEnqueue(i)) { 1316 dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1317 dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC 1318 } 1319 } 1320 for (wb <- exuWBs) { 1321 when (wb.valid) { 1322 val wbIdx = wb.bits.robIdx.value 1323 dt_exuDebug(wbIdx) := wb.bits.debug 1324 } 1325 } 1326 // Always instantiate basic difftest modules. 1327 for (i <- 0 until CommitWidth) { 1328 val uop = commitDebugUop(i) 1329 val commitInfo = io.commits.info(i) 1330 val ptr = deqPtrVec(i).value 1331 val exuOut = dt_exuDebug(ptr) 1332 val eliminatedMove = dt_eliminatedMove(ptr) 1333 val isRVC = dt_isRVC(ptr) 1334 1335 val difftest = DifftestModule(new DiffInstrCommit(MaxPhyPregs), delay = 3, dontCare = true) 1336 difftest.coreid := io.hartId 1337 difftest.index := i.U 1338 difftest.valid := io.commits.commitValid(i) && io.commits.isCommit 1339 difftest.skip := Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt) 1340 difftest.isRVC := isRVC 1341 difftest.rfwen := io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U 1342 difftest.fpwen := io.commits.commitValid(i) && uop.fpWen 1343 difftest.wpdest := commitInfo.pdest 1344 difftest.wdest := commitInfo.ldest 1345 difftest.nFused := CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize - 1.U 1346 when(difftest.valid) { 1347 assert(CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize >= 1.U) 1348 } 1349 if (env.EnableDifftest) { 1350 val uop = commitDebugUop(i) 1351 difftest.pc := SignExt(uop.pc, XLEN) 1352 difftest.instr := uop.instr 1353 difftest.robIdx := ZeroExt(ptr, 10) 1354 difftest.lqIdx := ZeroExt(uop.lqIdx.value, 7) 1355 difftest.sqIdx := ZeroExt(uop.sqIdx.value, 7) 1356 difftest.isLoad := io.commits.info(i).commitType === CommitType.LOAD 1357 difftest.isStore := io.commits.info(i).commitType === CommitType.STORE 1358 } 1359 } 1360 } 1361 1362 if (env.EnableDifftest) { 1363 for (i <- 0 until CommitWidth) { 1364 val difftest = DifftestModule(new DiffLoadEvent, delay = 3) 1365 difftest.coreid := io.hartId 1366 difftest.index := i.U 1367 1368 val ptr = deqPtrVec(i).value 1369 val uop = commitDebugUop(i) 1370 val exuOut = debug_exuDebug(ptr) 1371 difftest.valid := io.commits.commitValid(i) && io.commits.isCommit 1372 difftest.paddr := exuOut.paddr 1373 difftest.opType := uop.fuOpType 1374 difftest.fuType := uop.fuType 1375 } 1376 } 1377 1378 if (env.EnableDifftest || env.AlwaysBasicDiff) { 1379 val dt_isXSTrap = Mem(RobSize, Bool()) 1380 for (i <- 0 until RenameWidth) { 1381 when (canEnqueue(i)) { 1382 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap 1383 } 1384 } 1385 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => 1386 io.commits.isCommit && v && dt_isXSTrap(d.value) 1387 } 1388 val hitTrap = trapVec.reduce(_||_) 1389 val difftest = DifftestModule(new DiffTrapEvent, dontCare = true) 1390 difftest.coreid := io.hartId 1391 difftest.hasTrap := hitTrap 1392 difftest.cycleCnt := timer 1393 difftest.instrCnt := instrCnt 1394 difftest.hasWFI := hasWFI 1395 1396 if (env.EnableDifftest) { 1397 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1398 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1399 difftest.code := trapCode 1400 difftest.pc := trapPC 1401 } 1402 } 1403 1404 val validEntriesBanks = (0 until (RobSize + 31) / 32).map(i => RegNext(PopCount(valid.drop(i * 32).take(32)))) 1405 val validEntries = RegNext(VecInit(validEntriesBanks).reduceTree(_ +& _)) 1406 val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }) 1407 val commitLoadVec = VecInit(commitLoadValid) 1408 val commitBranchVec = VecInit(commitBranchValid) 1409 val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }) 1410 val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }) 1411 val perfEvents = Seq( 1412 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1413 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1414 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1415 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1416 ("rob_commitUop ", ifCommit(commitCnt) ), 1417 ("rob_commitInstr ", ifCommitReg(trueCommitCnt) ), 1418 ("rob_commitInstrMove ", ifCommitReg(PopCount(RegNext(commitMoveVec))) ), 1419 ("rob_commitInstrFused ", ifCommitReg(fuseCommitCnt) ), 1420 ("rob_commitInstrLoad ", ifCommitReg(PopCount(RegNext(commitLoadVec))) ), 1421 ("rob_commitInstrBranch ", ifCommitReg(PopCount(RegNext(commitBranchVec))) ), 1422 ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec))) ), 1423 ("rob_commitInstrStore ", ifCommitReg(PopCount(RegNext(commitStoreVec))) ), 1424 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U) ), 1425 ("rob_walkCycle ", (state === s_walk) ), 1426 ("rob_1_4_valid ", validEntries <= (RobSize / 4).U ), 1427 ("rob_2_4_valid ", validEntries > (RobSize / 4).U && validEntries <= (RobSize / 2).U ), 1428 ("rob_3_4_valid ", validEntries > (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U), 1429 ("rob_4_4_valid ", validEntries > (RobSize * 3 / 4).U ), 1430 ) 1431 generatePerfEvent() 1432} 1433