xref: /XiangShan/src/main/scala/xiangshan/backend/rob/Rob.scala (revision 3d1a5c10d2fde8e6060376fb66514ec8346a9049)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.rob
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3._
21import chisel3.util._
22import difftest._
23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp}
24import utils._
25import utility._
26import xiangshan._
27import xiangshan.backend.exu.ExuConfig
28import xiangshan.frontend.FtqPtr
29
30class DebugMdpInfo(implicit p: Parameters) extends XSBundle{
31  val ssid = UInt(SSIDWidth.W)
32  val waitAllStore = Bool()
33}
34
35class DebugLsInfo(implicit p: Parameters) extends XSBundle{
36  val s1 = new Bundle{
37    val isTlbFirstMiss = Bool() // in s1
38    val isBankConflict = Bool() // in s1
39    val isLoadToLoadForward = Bool()
40    val isReplayFast = Bool()
41  }
42  val s2 = new Bundle{
43    val isDcacheFirstMiss = Bool() // in s2 (predicted result is in s1 when using WPU, real result is in s2)
44    val isForwardFail = Bool() // in s2
45    val isReplaySlow = Bool()
46    val isLoadReplayTLBMiss = Bool()
47    val isLoadReplayCacheMiss = Bool()
48  }
49  val replayCnt = UInt(XLEN.W)
50
51  def s1SignalEnable(ena: DebugLsInfo) = {
52    when(ena.s1.isTlbFirstMiss) { s1.isTlbFirstMiss := true.B }
53    when(ena.s1.isBankConflict) { s1.isBankConflict := true.B }
54    when(ena.s1.isLoadToLoadForward) { s1.isLoadToLoadForward := true.B }
55    when(ena.s1.isReplayFast) {
56      s1.isReplayFast := true.B
57      replayCnt := replayCnt + 1.U
58    }
59  }
60
61  def s2SignalEnable(ena: DebugLsInfo) = {
62    when(ena.s2.isDcacheFirstMiss) { s2.isDcacheFirstMiss := true.B }
63    when(ena.s2.isForwardFail) { s2.isForwardFail := true.B }
64    when(ena.s2.isLoadReplayTLBMiss) { s2.isLoadReplayTLBMiss := true.B }
65    when(ena.s2.isLoadReplayCacheMiss) { s2.isLoadReplayCacheMiss := true.B }
66    when(ena.s2.isReplaySlow) {
67      s2.isReplaySlow := true.B
68      replayCnt := replayCnt + 1.U
69    }
70  }
71
72}
73object DebugLsInfo{
74  def init(implicit p: Parameters): DebugLsInfo = {
75    val lsInfo = Wire(new DebugLsInfo)
76    lsInfo.s1.isTlbFirstMiss := false.B
77    lsInfo.s1.isBankConflict := false.B
78    lsInfo.s1.isLoadToLoadForward := false.B
79    lsInfo.s1.isReplayFast := false.B
80    lsInfo.s2.isDcacheFirstMiss := false.B
81    lsInfo.s2.isForwardFail := false.B
82    lsInfo.s2.isReplaySlow := false.B
83    lsInfo.s2.isLoadReplayTLBMiss := false.B
84    lsInfo.s2.isLoadReplayCacheMiss := false.B
85    lsInfo.replayCnt := 0.U
86    lsInfo
87  }
88
89}
90class DebugLsInfoBundle(implicit p: Parameters) extends DebugLsInfo {
91  // unified processing at the end stage of load/store  ==> s2  ==> bug that will write error robIdx data
92  val s1_robIdx = UInt(log2Ceil(RobSize).W)
93  val s2_robIdx = UInt(log2Ceil(RobSize).W)
94}
95class DebugLSIO(implicit p: Parameters) extends XSBundle {
96  val debugLsInfo = Vec(exuParameters.LduCnt + exuParameters.StuCnt, Output(new DebugLsInfoBundle))
97}
98
99class DebugInstDB(implicit p: Parameters) extends XSBundle{
100  val globalID = UInt(XLEN.W)
101  val robIdx = UInt(log2Ceil(RobSize).W)
102  val instType = FuType()
103  val exceptType = ExceptionVec()
104  val ivaddr = UInt(VAddrBits.W)
105  val dvaddr = UInt(VAddrBits.W) // the l/s access address
106  val dpaddr = UInt(VAddrBits.W) // need the physical address when the TLB is valid
107  val tlbLatency = UInt(XLEN.W)  // original requirements is L1toL2TlbLatency
108  // val levelTlbHit = UInt(2.W) // 01, 10, 11(memory)
109  // val otherPerfNoteThing // FIXME: how much?
110  val accessLatency = UInt(XLEN.W)  // RS out time --> write back time
111  val executeLatency = UInt(XLEN.W)
112  val issueLatency = UInt(XLEN.W)
113  val lsInfo = new DebugLsInfo
114  val mdpInfo = new DebugMdpInfo
115}
116
117class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr](
118  p => p(XSCoreParamsKey).RobSize
119) with HasCircularQueuePtrHelper {
120
121  def needFlush(redirect: Valid[Redirect]): Bool = {
122    val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx
123    redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx))
124  }
125
126  def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR
127}
128
129object RobPtr {
130  def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = {
131    val ptr = Wire(new RobPtr)
132    ptr.flag := f
133    ptr.value := v
134    ptr
135  }
136}
137
138class RobCSRIO(implicit p: Parameters) extends XSBundle {
139  val intrBitSet = Input(Bool())
140  val trapTarget = Input(UInt(VAddrBits.W))
141  val isXRet     = Input(Bool())
142  val wfiEvent   = Input(Bool())
143
144  val fflags     = Output(Valid(UInt(5.W)))
145  val vxsat      = Output(Valid(UInt(1.W)))
146  val dirty_fs   = Output(Bool())
147  val perfinfo   = new Bundle {
148    val retiredInstr = Output(UInt(3.W))
149  }
150
151  val vcsrFlag   = Output(Bool())
152}
153
154class RobLsqIO(implicit p: Parameters) extends XSBundle {
155  val lcommit = Output(UInt(log2Up(CommitWidth + 1).W))
156  val scommit = Output(UInt(log2Up(CommitWidth + 1).W))
157  val pendingld = Output(Bool())
158  val pendingst = Output(Bool())
159  val commit = Output(Bool())
160}
161
162class RobEnqIO(implicit p: Parameters) extends XSBundle {
163  val canAccept = Output(Bool())
164  val isEmpty = Output(Bool())
165  // valid vector, for robIdx gen and walk
166  val needAlloc = Vec(RenameWidth, Input(Bool()))
167  val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp)))
168  val resp = Vec(RenameWidth, Output(new RobPtr))
169}
170
171class RobDispatchData(implicit p: Parameters) extends RobCommitInfo
172
173class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
174  val io = IO(new Bundle {
175    // for commits/flush
176    val state = Input(UInt(2.W))
177    val deq_v = Vec(CommitWidth, Input(Bool()))
178    val deq_w = Vec(CommitWidth, Input(Bool()))
179    val exception_state = Flipped(ValidIO(new RobExceptionInfo))
180    // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth)
181    val intrBitSetReg = Input(Bool())
182    val hasNoSpecExec = Input(Bool())
183    val interrupt_safe = Input(Bool())
184    val blockCommit = Input(Bool())
185    // output: the CommitWidth deqPtr
186    val out = Vec(CommitWidth, Output(new RobPtr))
187    val next_out = Vec(CommitWidth, Output(new RobPtr))
188  })
189
190  val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr))))
191
192  // for exceptions (flushPipe included) and interrupts:
193  // only consider the first instruction
194  val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe
195  val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0)
196  val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable)
197
198  // for normal commits: only to consider when there're no exceptions
199  // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions.
200  val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last)
201  val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i)))
202  val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B)
203  // when io.intrBitSetReg or there're possible exceptions in these instructions,
204  // only one instruction is allowed to commit
205  val allowOnlyOne = commit_exception || io.intrBitSetReg
206  val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt)
207
208  val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt))
209  val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec)
210
211  deqPtrVec := deqPtrVec_next
212
213  io.next_out := deqPtrVec_next
214  io.out      := deqPtrVec
215
216  when (io.state === 0.U) {
217    XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt)
218  }
219
220}
221
222class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
223  val io = IO(new Bundle {
224    // for input redirect
225    val redirect = Input(Valid(new Redirect))
226    // for enqueue
227    val allowEnqueue = Input(Bool())
228    val hasBlockBackward = Input(Bool())
229    val enq = Vec(RenameWidth, Input(Bool()))
230    val out = Output(Vec(RenameWidth, new RobPtr))
231  })
232
233  val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr)))
234
235  // enqueue
236  val canAccept = io.allowEnqueue && !io.hasBlockBackward
237  val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U)
238
239  for ((ptr, i) <- enqPtrVec.zipWithIndex) {
240    when(io.redirect.valid) {
241      ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
242    }.otherwise {
243      ptr := ptr + dispatchNum
244    }
245  }
246
247  io.out := enqPtrVec
248
249}
250
251class RobExceptionInfo(implicit p: Parameters) extends XSBundle {
252  // val valid = Bool()
253  val robIdx = new RobPtr
254  val exceptionVec = ExceptionVec()
255  val flushPipe = Bool()
256  val isVset = Bool()
257  val replayInst = Bool() // redirect to that inst itself
258  val singleStep = Bool() // TODO add frontend hit beneath
259  val crossPageIPFFix = Bool()
260  val trigger = new TriggerCf
261
262//  def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend
263//  def trigger_after = trigger.getTimingBackend && trigger.getHitBackend
264  def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit
265  def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit
266  // only exceptions are allowed to writeback when enqueue
267  def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit
268}
269
270class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
271  val io = IO(new Bundle {
272    val redirect = Input(Valid(new Redirect))
273    val flush = Input(Bool())
274    val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo)))
275    val wb = Vec(1 + LoadPipelineWidth + StorePipelineWidth, Flipped(ValidIO(new RobExceptionInfo)))
276    val out = ValidIO(new RobExceptionInfo)
277    val state = ValidIO(new RobExceptionInfo)
278  })
279
280  def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = {
281    assert(valid.length == bits.length)
282    assert(isPow2(valid.length))
283    if (valid.length == 1) {
284      (valid, bits)
285    } else if (valid.length == 2) {
286      val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0)))))
287      for (i <- res.indices) {
288        res(i).valid := valid(i)
289        res(i).bits := bits(i)
290      }
291      val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1))
292      (Seq(oldest.valid), Seq(oldest.bits))
293    } else {
294      val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2))
295      val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2))
296      getOldest(left._1 ++ right._1, left._2 ++ right._2)
297    }
298  }
299
300  val currentValid = RegInit(false.B)
301  val current = Reg(new RobExceptionInfo)
302
303  // orR the exceptionVec
304  val lastCycleFlush = RegNext(io.flush)
305  val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush))
306  val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)
307
308  // s0: compare wb(1)~wb(LoadPipelineWidth) and wb(1 + LoadPipelineWidth)~wb(LoadPipelineWidth + StorePipelineWidth)
309  val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }
310  val csr_wb_bits = io.wb(0).bits
311  val load_wb_bits = getOldest(in_wb_valid.slice(1, 1 + LoadPipelineWidth), io.wb.map(_.bits).slice(1, 1 + LoadPipelineWidth))._2(0)
312  val store_wb_bits = getOldest(in_wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth), io.wb.map(_.bits).slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth))._2(0)
313  val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid.slice(1, 1 + LoadPipelineWidth).reduce(_ || _), wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth).reduce(_ || _))))
314  val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits)))
315
316  // s1: compare last four and current flush
317  val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) })
318  val compare_01_valid = s0_out_valid(0) || s0_out_valid(1)
319  val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0))
320  val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2))
321  val s1_out_bits = RegNext(compare_bits)
322  val s1_out_valid = RegNext(s1_valid.asUInt.orR)
323
324  val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
325  val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)))
326
327  // s2: compare the input exception with the current one
328  // priorities:
329  // (1) system reset
330  // (2) current is valid: flush, remain, merge, update
331  // (3) current is not valid: s1 or enq
332  val current_flush = current.robIdx.needFlush(io.redirect) || io.flush
333  val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush
334  when (currentValid) {
335    when (current_flush) {
336      currentValid := Mux(s1_flush, false.B, s1_out_valid)
337    }
338    when (s1_out_valid && !s1_flush) {
339      when (isAfter(current.robIdx, s1_out_bits.robIdx)) {
340        current := s1_out_bits
341      }.elsewhen (current.robIdx === s1_out_bits.robIdx) {
342        current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec())
343        current.flushPipe := s1_out_bits.flushPipe || current.flushPipe
344        current.replayInst := s1_out_bits.replayInst || current.replayInst
345        current.singleStep := s1_out_bits.singleStep || current.singleStep
346        current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf)
347      }
348    }
349  }.elsewhen (s1_out_valid && !s1_flush) {
350    currentValid := true.B
351    current := s1_out_bits
352  }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) {
353    currentValid := true.B
354    current := enq_bits
355  }
356
357  io.out.valid   := s1_out_valid || enq_valid && enq_bits.can_writeback
358  io.out.bits    := Mux(s1_out_valid, s1_out_bits, enq_bits)
359  io.state.valid := currentValid
360  io.state.bits  := current
361
362}
363
364class RobFlushInfo(implicit p: Parameters) extends XSBundle {
365  val ftqIdx = new FtqPtr
366  val robIdx = new RobPtr
367  val ftqOffset = UInt(log2Up(PredictWidth).W)
368  val replayInst = Bool()
369}
370
371class Rob(implicit p: Parameters) extends LazyModule with HasWritebackSink with HasXSParameter {
372
373  lazy val module = new RobImp(this)
374
375  override def generateWritebackIO(
376    thisMod: Option[HasWritebackSource] = None,
377    thisModImp: Option[HasWritebackSourceImp] = None
378  ): Unit = {
379    val sources = writebackSinksImp(thisMod, thisModImp)
380    module.io.writeback.zip(sources).foreach(x => x._1 := x._2)
381  }
382}
383
384class RobImp(outer: Rob)(implicit p: Parameters) extends LazyModuleImp(outer)
385  with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents {
386  val wbExuConfigs = outer.writebackSinksParams.map(_.exuConfigs)
387  val numWbPorts = wbExuConfigs.map(_.length)
388
389  val io = IO(new Bundle() {
390    val hartId = Input(UInt(8.W))
391    val redirect = Input(Valid(new Redirect))
392    val enq = new RobEnqIO
393    val flushOut = ValidIO(new Redirect)
394    val isVsetFlushPipe = Output(Bool())
395    val exception = ValidIO(new ExceptionInfo)
396    // exu + brq
397    val writeback = MixedVec(numWbPorts.map(num => Vec(num, Flipped(ValidIO(new ExuOutput)))))
398    val commits = Output(new RobCommitIO)
399    val rabCommits = Output(new RobCommitIO)
400    val diffCommits = Output(new DiffCommitIO)
401    val lsq = new RobLsqIO
402    val robDeqPtr = Output(new RobPtr)
403    val csr = new RobCSRIO
404    val robFull = Output(Bool())
405    val cpu_halt = Output(Bool())
406    val wfi_enable = Input(Bool())
407    val debug_ls = Flipped(new DebugLSIO)
408  })
409
410  def selectWb(index: Int, func: Seq[ExuConfig] => Boolean): Seq[(Seq[ExuConfig], ValidIO[ExuOutput])] = {
411    wbExuConfigs(index).zip(io.writeback(index)).filter(x => func(x._1))
412  }
413  val exeWbSel = outer.selWritebackSinks(_.exuConfigs.length)
414  val fflagsWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.writeFflags)))
415  val fflagsPorts = selectWb(fflagsWbSel, _.exists(_.writeFflags))
416  val vxsatWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.writeVxsat)))
417  val vxsatPorts = selectWb(vxsatWbSel, _.exists(_.writeVxsat))
418  val exceptionWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.needExceptionGen)))
419  val exceptionPorts = selectWb(exceptionWbSel, _.exists(_.needExceptionGen))
420  val exuWbPorts = selectWb(exeWbSel, _.forall(_ != StdExeUnitCfg))
421  val stdWbPorts = selectWb(exeWbSel, _.contains(StdExeUnitCfg))
422  println(s"Rob: size $RobSize, numWbPorts: $numWbPorts, commitwidth: $CommitWidth")
423  println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}")
424  println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}")
425  println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}")
426  println(s"vxsat: ${vxsatPorts.map(_._1.map(_.name))}")
427
428
429  val exuWriteback = exuWbPorts.map(_._2)
430  val stdWriteback = stdWbPorts.map(_._2)
431
432  // instvalid field
433  val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
434  // writeback status
435  val writebackedCounter = Mem(RobSize, UInt(log2Up(MaxUopSize * 2).W))
436  val realDestSize = Mem(RobSize, UInt(log2Up(MaxUopSize).W))
437//  val writebackedCounter = RegInit(VecInit(Seq.fill(RobSize)(0.U(4.W))))
438//  val realDestSize = RegInit(VecInit(Seq.fill(RobSize)(0.U(4.W))))
439
440  def isWritebacked(ptr: UInt): Bool = {
441    !writebackedCounter(ptr).orR
442  }
443
444  // data for redirect, exception, etc.
445  val flagBkup = Mem(RobSize, Bool())
446  // some instructions are not allowed to trigger interrupts
447  // They have side effects on the states of the processor before they write back
448  val interrupt_safe = Mem(RobSize, Bool())
449
450  // data for debug
451  // Warn: debug_* prefix should not exist in generated verilog.
452  val debug_microOp = Mem(RobSize, new MicroOp)
453  val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug
454  val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug
455  val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init)))
456
457  // pointers
458  // For enqueue ptr, we don't duplicate it since only enqueue needs it.
459  val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr))
460  val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr))
461
462  val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr))
463  val allowEnqueue = RegInit(true.B)
464
465  val enqPtr = enqPtrVec.head
466  val deqPtr = deqPtrVec(0)
467  val walkPtr = walkPtrVec(0)
468
469  val isEmpty = enqPtr === deqPtr
470  val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level)
471
472  /**
473    * states of Rob
474    */
475  val s_idle :: s_walk :: Nil = Enum(2)
476  val state = RegInit(s_idle)
477
478  /**
479    * Data Modules
480    *
481    * CommitDataModule: data from dispatch
482    * (1) read: commits/walk/exception
483    * (2) write: enqueue
484    *
485    * WritebackData: data from writeback
486    * (1) read: commits/walk/exception
487    * (2) write: write back from exe units
488    */
489  val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth))
490  val dispatchDataRead = dispatchData.io.rdata
491
492  val exceptionGen = Module(new ExceptionGen)
493  val exceptionDataRead = exceptionGen.io.state
494  val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W)))
495  val vxsatDataRead = Wire(Vec(CommitWidth, UInt(1.W)))
496
497  io.robDeqPtr := deqPtr
498
499  val rab = Module(new RenameBuffer(RabSize))
500  rab.io.redirectValid := io.redirect.valid
501  rab.io.req.zip(io.enq.req).map{ case(dest, src) =>
502    dest.bits := src.bits
503    dest.valid := src.valid && io.enq.canAccept
504  }
505
506  val realDestSizeCandidates = (0 until CommitWidth).map(i => realDestSize(Mux(state === s_idle, deqPtrVec(i).value, walkPtrVec(i).value)))
507  val wbSizeSeq = io.commits.commitValid.zip(io.commits.walkValid).zip(realDestSizeCandidates).map{ case((commitValid, walkValid), realDestSize) =>
508    Mux(io.commits.isCommit, Mux(commitValid, realDestSize, 0.U), Mux(walkValid, realDestSize, 0.U))
509  }
510  val wbSizeSum = wbSizeSeq.reduce(_ + _)
511  rab.io.commitSize := wbSizeSum
512  rab.io.walkSize := wbSizeSum
513
514  io.rabCommits := rab.io.commits
515  io.diffCommits := rab.io.diffCommits
516  /**
517    * Enqueue (from dispatch)
518    */
519  // special cases
520  val hasBlockBackward = RegInit(false.B)
521  val hasNoSpecExec = RegInit(false.B)
522  val doingSvinval = RegInit(false.B)
523  // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B
524  // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty.
525  when (isEmpty) { hasBlockBackward:= false.B }
526  // When any instruction commits, hasNoSpecExec should be set to false.B
527  when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasNoSpecExec:= false.B }
528
529  // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing.
530  // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle.
531  // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts.
532  val hasWFI = RegInit(false.B)
533  io.cpu_halt := hasWFI
534  // WFI Timeout: 2^20 = 1M cycles
535  val wfi_cycles = RegInit(0.U(20.W))
536  when (hasWFI) {
537    wfi_cycles := wfi_cycles + 1.U
538  }.elsewhen (!hasWFI && RegNext(hasWFI)) {
539    wfi_cycles := 0.U
540  }
541  val wfi_timeout = wfi_cycles.andR
542  when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) {
543    hasWFI := false.B
544  }
545
546  // inst allocate
547  val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.ctrl.firstUop)))))
548  io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq
549  io.enq.resp      := allocatePtrVec
550  val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.ctrl.firstUop && io.enq.canAccept))
551  val timer = GTimer()
552  for (i <- 0 until RenameWidth) {
553    // we don't check whether io.redirect is valid here since redirect has higher priority
554    when (canEnqueue(i)) {
555      val enqUop = io.enq.req(i).bits
556      val enqIndex = allocatePtrVec(i).value
557      // store uop in data module and debug_microOp Vec
558      debug_microOp(enqIndex) := enqUop
559      debug_microOp(enqIndex).debugInfo.dispatchTime := timer
560      debug_microOp(enqIndex).debugInfo.enqRsTime := timer
561      debug_microOp(enqIndex).debugInfo.selectTime := timer
562      debug_microOp(enqIndex).debugInfo.issueTime := timer
563      debug_microOp(enqIndex).debugInfo.writebackTime := timer
564      debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer
565      debug_microOp(enqIndex).debugInfo.tlbRespTime := timer
566      debug_lsInfo(enqIndex) := DebugLsInfo.init
567      when (enqUop.ctrl.blockBackward) {
568        hasBlockBackward := true.B
569      }
570      when (enqUop.ctrl.noSpecExec) {
571        hasNoSpecExec := true.B
572      }
573      val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend
574      val enqHasException = ExceptionNO.selectFrontend(enqUop.cf.exceptionVec).asUInt.orR
575      // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process
576      when(!enqHasTriggerHit && !enqHasException && FuType.isSvinvalBegin(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))
577      {
578        doingSvinval := true.B
579      }
580      // the end instruction of Svinval enqs so clear doingSvinval
581      when(!enqHasTriggerHit && !enqHasException && FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))
582      {
583        doingSvinval := false.B
584      }
585      // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear
586      assert(!doingSvinval || (FuType.isSvinval(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe) ||
587        FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)))
588      when (enqUop.ctrl.isWFI && !enqHasException && !enqHasTriggerHit) {
589        hasWFI := true.B
590      }
591    }
592  }
593  val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.ctrl.firstUop)), 0.U)
594  io.enq.isEmpty   := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR)
595
596  when (!io.wfi_enable) {
597    hasWFI := false.B
598  }
599  // sel vsetvl's flush position
600  val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3)
601  val vsetvlState = RegInit(vs_idle)
602
603  val firstVInstrFtqPtr    = RegInit(0.U.asTypeOf(new FtqPtr))
604  val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W)))
605  val firstVInstrRobIdx    = RegInit(0.U.asTypeOf(new RobPtr))
606
607  val enq0            = io.enq.req(0)
608  val enq0IsVset      = FuType.isIntExu(enq0.bits.ctrl.fuType) && ALUOpType.isVset(enq0.bits.ctrl.fuOpType) && enq0.bits.ctrl.lastUop && canEnqueue(0)
609  val enq0IsVsetFlush = enq0IsVset && enq0.bits.ctrl.flushPipe
610  val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVecExu(req.bits.ctrl.fuType) && fire}
611  // for vs_idle
612  val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType)))
613  // for vs_waitVinstr
614  val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1)
615  val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req)
616  when(vsetvlState === vs_idle){
617    firstVInstrFtqPtr    := firstVInstrIdle.bits.cf.ftqPtr
618    firstVInstrFtqOffset := firstVInstrIdle.bits.cf.ftqOffset
619    firstVInstrRobIdx    := firstVInstrIdle.bits.robIdx
620  }.elsewhen(vsetvlState === vs_waitVinstr){
621    firstVInstrFtqPtr    := firstVInstrWait.bits.cf.ftqPtr
622    firstVInstrFtqOffset := firstVInstrWait.bits.cf.ftqOffset
623    firstVInstrRobIdx    := firstVInstrWait.bits.robIdx
624  }
625
626  val hasVInstrAfterI = Cat(enqIsVInstrVec.drop(1)).orR
627  when(vsetvlState === vs_idle){
628    when(enq0IsVsetFlush){
629      vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr)
630    }
631  }.elsewhen(vsetvlState === vs_waitVinstr){
632    when(io.redirect.valid){
633      vsetvlState := vs_idle
634    }.elsewhen(Cat(enqIsVInstrOrVset).orR){
635      vsetvlState := vs_waitFlush
636    }
637  }.elsewhen(vsetvlState === vs_waitFlush){
638    when(io.redirect.valid){
639      vsetvlState := vs_idle
640    }
641  }
642
643  /**
644    * Writeback (from execution units)
645    */
646  for (wb <- exuWriteback) {
647    when (wb.valid) {
648      val wbIdx = wb.bits.uop.robIdx.value
649      debug_exuData(wbIdx) := wb.bits.data
650      debug_exuDebug(wbIdx) := wb.bits.debug
651      debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.uop.debugInfo.enqRsTime
652      debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.uop.debugInfo.selectTime
653      debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.uop.debugInfo.issueTime
654      debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.uop.debugInfo.writebackTime
655      debug_microOp(wbIdx).debugInfo.tlbFirstReqTime := wb.bits.uop.debugInfo.tlbFirstReqTime
656      debug_microOp(wbIdx).debugInfo.tlbRespTime := wb.bits.uop.debugInfo.tlbRespTime
657
658      // debug for lqidx and sqidx
659      debug_microOp(wbIdx).lqIdx := wb.bits.uop.lqIdx
660      debug_microOp(wbIdx).sqIdx := wb.bits.uop.sqIdx
661
662      val debug_Uop = debug_microOp(wbIdx)
663      XSInfo(true.B,
664        p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " +
665        p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " +
666        p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.uop.robIdx}\n"
667      )
668    }
669  }
670  val writebackNum = PopCount(exuWriteback.map(_.valid))
671  XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum)
672
673
674  /**
675    * RedirectOut: Interrupt and Exceptions
676    */
677  val deqDispatchData = dispatchDataRead(0)
678  val debug_deqUop = debug_microOp(deqPtr.value)
679
680  val intrBitSetReg = RegNext(io.csr.intrBitSet)
681  val intrEnable = intrBitSetReg && !hasNoSpecExec && interrupt_safe(deqPtr.value)
682  val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr
683  val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR ||
684    exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit)
685  val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe
686  val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst
687  val exceptionEnable = isWritebacked(deqPtr.value) && deqHasException
688
689  XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n")
690  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n")
691  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n")
692
693  val isFlushPipe = isWritebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst)
694
695  val isVsetFlushPipe = isWritebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset
696  val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush)
697  io.isVsetFlushPipe := RegNext(isVsetFlushPipe)
698  // io.flushOut will trigger redirect at the next cycle.
699  // Block any redirect or commit at the next cycle.
700  val lastCycleFlush = RegNext(io.flushOut.valid)
701
702  io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush
703  io.flushOut.bits := DontCare
704  io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr)
705  io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx)
706  io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset)
707  io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next"
708  io.flushOut.bits.interrupt := true.B
709  XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable)
710  XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable)
711  XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe)
712  XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst)
713
714  val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush
715  io.exception.valid := RegNext(exceptionHappen)
716  io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen)
717  io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen)
718  io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen)
719  io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen)
720  io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen)
721  io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen)
722  io.exception.bits.uop.cf.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen)
723
724  XSDebug(io.flushOut.valid,
725    p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " +
726    p"excp $exceptionEnable flushPipe $isFlushPipe " +
727    p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n")
728
729
730  /**
731    * Commits (and walk)
732    * They share the same width.
733    */
734  val walkCounter = Reg(UInt(log2Up(RobSize + 1).W))
735  val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter))
736  val walkFinished = walkCounter <= CommitWidth.U
737  rab.io.robWalkEnd := state === s_walk && walkFinished
738  require(RenameWidth <= CommitWidth)
739
740  // wiring to csr
741  val (wflags, fpWen) = (0 until CommitWidth).map(i => {
742    val v = io.commits.commitValid(i)
743    val info = io.commits.info(i)
744    (v & info.wflags, v & info.fpWen)
745  }).unzip
746  val fflags = Wire(Valid(UInt(5.W)))
747  fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR
748  fflags.bits := wflags.zip(fflagsDataRead).map({
749    case (w, f) => Mux(w, f, 0.U)
750  }).reduce(_|_)
751  val vxsat = Wire(Valid(UInt(1.W)))
752  vxsat.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR
753  vxsat.bits := wflags.zip(vxsatDataRead).map({
754    case (w, f) => Mux(w, f, 0.U)
755  }).reduce(_|_)
756  val dirty_fs = io.commits.isCommit && VecInit(fpWen).asUInt.orR
757
758  // when mispredict branches writeback, stop commit in the next 2 cycles
759  // TODO: don't check all exu write back
760  val misPredWb = Cat(VecInit(exuWriteback.map(wb =>
761    wb.bits.redirect.cfiUpdate.isMisPred && wb.bits.redirectValid
762  ))).orR
763  val misPredBlockCounter = Reg(UInt(3.W))
764  misPredBlockCounter := Mux(misPredWb,
765    "b111".U,
766    misPredBlockCounter >> 1.U
767  )
768  val misPredBlock = misPredBlockCounter(0)
769  val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI
770
771  io.commits.isWalk := state === s_walk
772  io.commits.isCommit := state === s_idle && !blockCommit
773  val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value)))
774  val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value)))
775  // store will be commited iff both sta & std have been writebacked
776  val commit_w = VecInit(deqPtrVec.map(ptr => isWritebacked(ptr.value)))
777  val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last)
778  val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i)))
779  val allowOnlyOneCommit = commit_exception || intrBitSetReg
780  // for instructions that may block others, we don't allow them to commit
781  for (i <- 0 until CommitWidth) {
782    // defaults: state === s_idle and instructions commit
783    // when intrBitSetReg, allow only one instruction to commit at each clock cycle
784    val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst
785    io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked
786    io.commits.info(i)  := dispatchDataRead(i)
787
788    when (state === s_walk) {
789      io.commits.walkValid(i) := shouldWalkVec(i)
790      when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) {
791        XSError(!walk_v(i), s"why not $i???\n")
792      }
793    }
794
795    XSInfo(io.commits.isCommit && io.commits.commitValid(i),
796      "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b vxsat: %b\n",
797      debug_microOp(deqPtrVec(i).value).cf.pc,
798      io.commits.info(i).rfWen,
799      io.commits.info(i).ldest,
800      io.commits.info(i).pdest,
801      io.commits.info(i).old_pdest,
802      debug_exuData(deqPtrVec(i).value),
803      fflagsDataRead(i),
804      vxsatDataRead(i)
805    )
806    XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n",
807      debug_microOp(walkPtrVec(i).value).cf.pc,
808      io.commits.info(i).rfWen,
809      io.commits.info(i).ldest,
810      debug_exuData(walkPtrVec(i).value)
811    )
812  }
813  if (env.EnableDifftest) {
814    io.commits.info.map(info => dontTouch(info.pc))
815  }
816
817  // sync fflags/dirty_fs/vxsat to csr
818  io.csr.fflags := RegNext(fflags)
819  io.csr.dirty_fs := RegNext(dirty_fs)
820  io.csr.vxsat := RegNext(vxsat)
821
822  // sync v csr to csr
823//  io.csr.vcsrFlag := RegNext(isVsetFlushPipe)
824
825  // commit load/store to lsq
826  val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD))
827  val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE))
828  io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U))
829  io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U))
830  // indicate a pending load or store
831  io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value))
832  io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value))
833  io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0))
834
835  /**
836    * state changes
837    * (1) redirect: switch to s_walk
838    * (2) walk: when walking comes to the end, switch to s_idle
839    */
840  val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished && rab.io.rabWalkEnd, s_idle, state))
841  XSPerfAccumulate("s_idle_to_idle",            state === s_idle && state_next === s_idle)
842  XSPerfAccumulate("s_idle_to_walk",            state === s_idle && state_next === s_walk)
843  XSPerfAccumulate("s_walk_to_idle",            state === s_walk && state_next === s_idle)
844  XSPerfAccumulate("s_walk_to_walk",            state === s_walk && state_next === s_walk)
845  state := state_next
846
847  /**
848    * pointers and counters
849    */
850  val deqPtrGenModule = Module(new RobDeqPtrWrapper)
851  deqPtrGenModule.io.state := state
852  deqPtrGenModule.io.deq_v := commit_v
853  deqPtrGenModule.io.deq_w := commit_w
854  deqPtrGenModule.io.exception_state := exceptionDataRead
855  deqPtrGenModule.io.intrBitSetReg := intrBitSetReg
856  deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec
857  deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value)
858  deqPtrGenModule.io.blockCommit := blockCommit
859  deqPtrVec := deqPtrGenModule.io.out
860  val deqPtrVec_next = deqPtrGenModule.io.next_out
861
862  val enqPtrGenModule = Module(new RobEnqPtrWrapper)
863  enqPtrGenModule.io.redirect := io.redirect
864  enqPtrGenModule.io.allowEnqueue := allowEnqueue
865  enqPtrGenModule.io.hasBlockBackward := hasBlockBackward
866  enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.ctrl.firstUop))
867  enqPtrVec := enqPtrGenModule.io.out
868
869  val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U)
870  // next walkPtrVec:
871  // (1) redirect occurs: update according to state
872  // (2) walk: move forwards
873  val walkPtrVec_next = Mux(io.redirect.valid,
874    deqPtrVec_next,
875    Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec)
876  )
877  walkPtrVec := walkPtrVec_next
878
879  val numValidEntries = distanceBetween(enqPtr, deqPtr)
880  val commitCnt = PopCount(io.commits.commitValid)
881
882  allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U
883
884  val currentWalkPtr = Mux(state === s_walk, walkPtr, deqPtrVec_next(0))
885  val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0))
886  when (io.redirect.valid) {
887    // full condition:
888    // +& is used here because:
889    // When rob is full and the tail instruction causes a misprediction,
890    // the redirect robIdx is the deqPtr - 1. In this case, redirectWalkDistance
891    // is RobSize - 1.
892    // Since misprediction does not flush the instruction itself, flushItSelf is false.B.
893    // Previously we use `+` to count the walk distance and it causes overflows
894    // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize.
895    // The width of walkCounter also needs to be changed.
896    // empty condition:
897    // When the last instruction in ROB commits and causes a flush, a redirect
898    // will be raised later. In such circumstances, the redirect robIdx is before
899    // the deqPtrVec_next(0) and will cause underflow.
900    walkCounter := Mux(isBefore(io.redirect.bits.robIdx, deqPtrVec_next(0)), 0.U,
901                       redirectWalkDistance +& !io.redirect.bits.flushItself())
902  }.elsewhen (state === s_walk) {
903    walkCounter := walkCounter - thisCycleWalkCount
904    XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n")
905  }
906
907
908  /**
909    * States
910    * We put all the stage bits changes here.
911
912    * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit);
913    * All states: (1) valid; (2) writebacked; (3) flagBkup
914    */
915  val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value)))
916
917  // redirect logic writes 6 valid
918  val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr))
919  val redirectTail = Reg(new RobPtr)
920  val redirectIdle :: redirectBusy :: Nil = Enum(2)
921  val redirectState = RegInit(redirectIdle)
922  val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail))
923  when(redirectState === redirectBusy) {
924    redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U)
925    redirectHeadVec zip invMask foreach {
926      case (redirectHead, inv) => when(inv) {
927        valid(redirectHead.value) := false.B
928      }
929    }
930    when(!invMask.last) {
931      redirectState := redirectIdle
932    }
933  }
934  when(io.redirect.valid) {
935    redirectState := redirectBusy
936    when(redirectState === redirectIdle) {
937      redirectTail := enqPtr
938    }
939    redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) =>
940      redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
941    }
942  }
943  // enqueue logic writes 6 valid
944  for (i <- 0 until RenameWidth) {
945    when (canEnqueue(i) && !io.redirect.valid) {
946      valid(allocatePtrVec(i).value) := true.B
947    }
948  }
949  // dequeue logic writes 6 valid
950  for (i <- 0 until CommitWidth) {
951    val commitValid = io.commits.isCommit && io.commits.commitValid(i)
952    when (commitValid) {
953      valid(commitReadAddr(i)) := false.B
954    }
955  }
956
957  // debug_inst update
958  for(i <- 0 until (exuParameters.LduCnt + exuParameters.StuCnt)) {
959    debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i))
960    debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i))
961  }
962
963  // writeback logic set numWbPorts writebacked to true
964  val blockWbSeq = Wire(Vec(exuWriteback.length, Bool()))
965  blockWbSeq.map(_ := false.B)
966  for (((wb, cfgs), blockWb) <- exuWriteback.zip(wbExuConfigs(exeWbSel)).zip(blockWbSeq)) {
967    when(wb.valid) {
968      val wbHasException = ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, cfgs).asUInt.orR
969      val wbHasTriggerHit = wb.bits.uop.cf.trigger.getHitBackend
970      val wbHasFlushPipe = cfgs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe
971      val wbHasReplayInst = cfgs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst
972      blockWb := wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit
973    }
974  }
975
976  // if the first uop of an instruction is valid , write writebackedCounter
977  val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid)
978  val instEnqValidSeq = io.enq.req.map (req => io.enq.canAccept && req.valid && req.bits.ctrl.firstUop)
979  val enqNeedWriteRFSeq = io.enq.req.map(_.bits.ctrl.needWriteRf)
980  val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value)
981
982  val enqWbSizeSeq = io.enq.req.map { req =>
983    val enqHasException = ExceptionNO.selectFrontend(req.bits.cf.exceptionVec).asUInt.orR
984    val enqHasTriggerHit = req.bits.cf.trigger.getHitFrontend
985    Mux(req.bits.eliminatedMove, Mux(enqHasException || enqHasTriggerHit, 1.U, 0.U),
986      Mux(FuType.isMemExu(req.bits.ctrl.fuType) && FuType.isAMO(req.bits.ctrl.fuType), 3.U,
987        Mux(FuType.isStoreExu(req.bits.ctrl.fuType), 2.U, 1.U)))
988  }
989  val enqWbSizeSumSeq = enqRobIdxSeq.zipWithIndex.map { case (robIdx, idx) =>
990    val addend = enqRobIdxSeq.zip(enqWbSizeSeq).take(idx + 1).map { case (uopRobIdx, uopWbSize) => Mux(robIdx === uopRobIdx, uopWbSize, 0.U) }
991    addend.reduce(_ +& _)
992  }
993  for(i <- 0 until RobSize){
994
995    val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U)
996    val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch }
997    val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch }
998    val instCanEnqFlag = Cat(instCanEnqSeq).orR
999
1000    realDestSize(i) := Mux(!valid(i) && instCanEnqFlag || valid(i), realDestSize(i) + PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map{ case(writeFlag, valid) => writeFlag && valid }), 0.U)
1001
1002
1003    val enqCnt = ParallelPriorityMux(uopCanEnqSeq.reverse :+ true.B, enqWbSizeSumSeq.reverse :+ 0.U)
1004
1005    val canWbSeq = exuWriteback.map(writeback => writeback.valid && writeback.bits.uop.robIdx.value === i.U)
1006    val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map{ case(canWb, blockWb) => canWb && !blockWb }
1007    val canStuWbSeq = stdWriteback.map(writeback => writeback.valid && writeback.bits.uop.robIdx.value === i.U)
1008    val wbCnt = PopCount(canWbNoBlockSeq ++ canStuWbSeq)
1009
1010    writebackedCounter(i) := Mux(!valid(i) && instCanEnqFlag || valid(i), Mux(exceptionGen.io.out.valid && exceptionGen.io.out.bits.robIdx.value === i.U, 0.U, writebackedCounter(i) + enqCnt - wbCnt), 0.U)
1011  }
1012
1013  // flagBkup
1014  // enqueue logic set 6 flagBkup at most
1015  for (i <- 0 until RenameWidth) {
1016    when (canEnqueue(i)) {
1017      flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag
1018    }
1019  }
1020
1021  // interrupt_safe
1022  for (i <- 0 until RenameWidth) {
1023    // We RegNext the updates for better timing.
1024    // Note that instructions won't change the system's states in this cycle.
1025    when (RegNext(canEnqueue(i))) {
1026      // For now, we allow non-load-store instructions to trigger interrupts
1027      // For MMIO instructions, they should not trigger interrupts since they may
1028      // be sent to lower level before it writes back.
1029      // However, we cannot determine whether a load/store instruction is MMIO.
1030      // Thus, we don't allow load/store instructions to trigger an interrupt.
1031      // TODO: support non-MMIO load-store instructions to trigger interrupts
1032      val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.ctrl.commitType)
1033      interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts)
1034    }
1035  }
1036
1037  /**
1038    * read and write of data modules
1039    */
1040  val commitReadAddr_next = Mux(state_next === s_idle,
1041    VecInit(deqPtrVec_next.map(_.value)),
1042    VecInit(walkPtrVec_next.map(_.value))
1043  )
1044  // NOTE: dispatch info will record the uop of inst
1045  dispatchData.io.wen := canEnqueue
1046  dispatchData.io.waddr := allocatePtrVec.map(_.value)
1047  dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) =>
1048    wdata.ldest := req.ctrl.ldest
1049    wdata.rfWen := req.ctrl.rfWen
1050    wdata.fpWen := req.ctrl.fpWen
1051    wdata.vecWen := req.ctrl.vecWen
1052    wdata.wflags := req.ctrl.fpu.wflags
1053    wdata.commitType := req.ctrl.commitType
1054    wdata.pdest := req.pdest
1055    wdata.old_pdest := req.old_pdest
1056    wdata.ftqIdx := req.cf.ftqPtr
1057    wdata.ftqOffset := req.cf.ftqOffset
1058    wdata.isMove := req.eliminatedMove
1059    wdata.pc := req.cf.pc
1060    wdata.uopIdx := req.ctrl.uopIdx
1061    wdata.vconfig := req.ctrl.vconfig
1062  }
1063  dispatchData.io.raddr := commitReadAddr_next
1064
1065  exceptionGen.io.redirect <> io.redirect
1066  exceptionGen.io.flush := io.flushOut.valid
1067  for (i <- 0 until RenameWidth) {
1068    exceptionGen.io.enq(i).valid := canEnqueue(i)
1069    exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx
1070    exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec)
1071    exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe
1072    exceptionGen.io.enq(i).bits.isVset := FuType.isIntExu(io.enq.req(i).bits.ctrl.fuType) && ALUOpType.isVset(io.enq.req(i).bits.ctrl.fuOpType)
1073    exceptionGen.io.enq(i).bits.replayInst := false.B
1074    XSError(canEnqueue(i) && io.enq.req(i).bits.ctrl.replayInst, "enq should not set replayInst")
1075    exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep
1076    exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.cf.crossPageIPFFix
1077    exceptionGen.io.enq(i).bits.trigger.clear()
1078    exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.cf.trigger.frontendHit
1079  }
1080
1081  println(s"ExceptionGen:")
1082  val exceptionCases = exceptionPorts.map(_._1.flatMap(_.exceptionOut).distinct.sorted)
1083  require(exceptionCases.length == exceptionGen.io.wb.length)
1084  for ((((configs, wb), exc_wb), i) <- exceptionPorts.zip(exceptionGen.io.wb).zipWithIndex) {
1085    exc_wb.valid                := wb.valid
1086    exc_wb.bits.robIdx          := wb.bits.uop.robIdx
1087    exc_wb.bits.exceptionVec    := ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, configs)
1088    exc_wb.bits.flushPipe       := configs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe
1089    exc_wb.bits.isVset          := false.B
1090    exc_wb.bits.replayInst      := configs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst
1091    exc_wb.bits.singleStep      := false.B
1092    exc_wb.bits.crossPageIPFFix := false.B
1093    // TODO: make trigger configurable
1094    exc_wb.bits.trigger.clear()
1095    exc_wb.bits.trigger.backendHit := wb.bits.uop.cf.trigger.backendHit
1096    println(s"  [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " +
1097      s"flushPipe ${configs.exists(_.flushPipe)}, " +
1098      s"replayInst ${configs.exists(_.replayInst)}")
1099  }
1100
1101  val fflags_wb = fflagsPorts.map(_._2)
1102  val fflagsDataModule = Module(new SyncDataModuleTemplate(
1103    UInt(5.W), RobSize, CommitWidth, fflags_wb.size)
1104  )
1105  for(i <- fflags_wb.indices){
1106    fflagsDataModule.io.wen  (i) := fflags_wb(i).valid
1107    fflagsDataModule.io.waddr(i) := fflags_wb(i).bits.uop.robIdx.value
1108    fflagsDataModule.io.wdata(i) := fflags_wb(i).bits.fflags
1109  }
1110  fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value))
1111  fflagsDataRead := fflagsDataModule.io.rdata
1112
1113  val vxsat_wb = vxsatPorts.map(_._2)
1114  val vxsatDataModule = Module(new SyncDataModuleTemplate(
1115    UInt(1.W), RobSize, CommitWidth, vxsat_wb.size)
1116  )
1117  for(i <- vxsat_wb.indices){
1118    vxsatDataModule.io.wen  (i) := vxsat_wb(i).valid
1119    vxsatDataModule.io.waddr(i) := vxsat_wb(i).bits.uop.robIdx.value
1120    vxsatDataModule.io.wdata(i) := vxsat_wb(i).bits.vxsat
1121  }
1122  vxsatDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value))
1123  vxsatDataRead := vxsatDataModule.io.rdata
1124
1125  val instrCntReg = RegInit(0.U(64.W))
1126  val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) })
1127  val trueCommitCnt = RegNext(commitCnt) +& fuseCommitCnt
1128  val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U)
1129  val instrCnt = instrCntReg + retireCounter
1130  instrCntReg := instrCnt
1131  io.csr.perfinfo.retiredInstr := retireCounter
1132  io.robFull := !allowEnqueue
1133
1134  /**
1135    * debug info
1136    */
1137  XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n")
1138  XSDebug("")
1139  for(i <- 0 until RobSize){
1140    XSDebug(false, !valid(i), "-")
1141//    XSDebug(false, valid(i) && writebacked(i), "w")
1142//    XSDebug(false, valid(i) && !writebacked(i), "v")
1143  }
1144  XSDebug(false, true.B, "\n")
1145
1146  for(i <- 0 until RobSize) {
1147    if(i % 4 == 0) XSDebug("")
1148    XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc)
1149    XSDebug(false, !valid(i), "- ")
1150//    XSDebug(false, valid(i) && writebacked(i), "w ")
1151//    XSDebug(false, valid(i) && !writebacked(i), "v ")
1152    if(i % 4 == 3) XSDebug(false, true.B, "\n")
1153  }
1154
1155  def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U)
1156  def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U)
1157
1158  val commitDebugExu = deqPtrVec.map(_.value).map(debug_exuDebug(_))
1159  val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_))
1160  val commitDebugLsInfo = deqPtrVec.map(_.value).map(debug_lsInfo(_))
1161  XSPerfAccumulate("clock_cycle", 1.U)
1162  QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue)
1163  XSPerfAccumulate("commitUop", ifCommit(commitCnt))
1164  XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt))
1165  val commitIsMove = commitDebugUop.map(_.ctrl.isMove)
1166  XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })))
1167  val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove)
1168  XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e })))
1169  XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt))
1170  val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD)
1171  val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t }
1172  XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid)))
1173  val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH)
1174  val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t }
1175  XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid)))
1176  val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit)
1177  XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })))
1178  val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE)
1179  XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })))
1180//  XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i))))
1181  // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire)))
1182  // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready)))
1183  XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U))
1184  XSPerfAccumulate("walkCycle", state === s_walk)
1185//  val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value)
1186  val deqUopCommitType = io.commits.info(0).commitType
1187//  XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL)
1188//  XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH)
1189//  XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD)
1190//  XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE)
1191  XSPerfAccumulate("robHeadPC", io.commits.info(0).pc)
1192  val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime)
1193  val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime)
1194  val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime)
1195  val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime)
1196  val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
1197  val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime)
1198  val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime)
1199  val accessLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
1200  val tlbLatency = commitDebugUop.map(uop => uop.debugInfo.tlbRespTime - uop.debugInfo.tlbFirstReqTime)
1201  def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = {
1202    cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _)
1203  }
1204  for (fuType <- FuType.functionNameMap.keys) {
1205    val fuName = FuType.functionNameMap(fuType)
1206    val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U )
1207    XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType)))
1208    XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency)))
1209    XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency)))
1210    XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency)))
1211    XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency)))
1212    XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency)))
1213    XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency)))
1214    XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency)))
1215    if (fuType == FuType.fmac.litValue) {
1216      val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 )
1217      XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma)))
1218      XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency)))
1219      XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency)))
1220    }
1221  }
1222
1223  /**
1224    * DataBase info:
1225    * log trigger is at writeback valid
1226    * */
1227  if(!env.FPGAPlatform){
1228    val instTableName = "InstDB" + p(XSCoreParamsKey).HartId.toString
1229    val instSiteName = "Rob" + p(XSCoreParamsKey).HartId.toString
1230    val debug_instTable = ChiselDB.createTable(instTableName, new DebugInstDB)
1231    // FIXME lyq: only get inst (alu, bj, ls) in exuWriteback
1232    for (wb <- exuWriteback) {
1233      when(wb.valid) {
1234        val debug_instData = Wire(new DebugInstDB)
1235        val idx = wb.bits.uop.robIdx.value
1236        debug_instData.globalID := wb.bits.uop.ctrl.debug_globalID
1237        debug_instData.robIdx := idx
1238        debug_instData.instType := wb.bits.uop.ctrl.fuType
1239        debug_instData.ivaddr := wb.bits.uop.cf.pc
1240        debug_instData.dvaddr := wb.bits.debug.vaddr
1241        debug_instData.dpaddr := wb.bits.debug.paddr
1242        debug_instData.tlbLatency := wb.bits.uop.debugInfo.tlbRespTime - wb.bits.uop.debugInfo.tlbFirstReqTime
1243        debug_instData.accessLatency := wb.bits.uop.debugInfo.writebackTime - wb.bits.uop.debugInfo.issueTime
1244        debug_instData.executeLatency := wb.bits.uop.debugInfo.writebackTime - wb.bits.uop.debugInfo.issueTime
1245        debug_instData.issueLatency := wb.bits.uop.debugInfo.issueTime - wb.bits.uop.debugInfo.selectTime
1246        debug_instData.exceptType := wb.bits.uop.cf.exceptionVec
1247        debug_instData.lsInfo := debug_lsInfo(idx)
1248        debug_instData.mdpInfo.ssid := wb.bits.uop.cf.ssid
1249        debug_instData.mdpInfo.waitAllStore := wb.bits.uop.cf.loadWaitStrict && wb.bits.uop.cf.loadWaitBit
1250        debug_instTable.log(
1251          data = debug_instData,
1252          en = wb.valid,
1253          site = instSiteName,
1254          clock = clock,
1255          reset = reset
1256        )
1257      }
1258    }
1259  }
1260
1261
1262  //difftest signals
1263  val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value
1264
1265  val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1266  val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1267
1268  for(i <- 0 until CommitWidth) {
1269    val idx = deqPtrVec(i).value
1270    wdata(i) := debug_exuData(idx)
1271    wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN)
1272  }
1273
1274  if (env.EnableDifftest) {
1275    for (i <- 0 until CommitWidth) {
1276      val difftest = Module(new DifftestInstrCommit)
1277      // assgin default value
1278      difftest.io := DontCare
1279
1280      difftest.io.clock    := clock
1281      difftest.io.coreid   := io.hartId
1282      difftest.io.index    := i.U
1283
1284      val ptr = deqPtrVec(i).value
1285      val uop = commitDebugUop(i)
1286      val exuOut = debug_exuDebug(ptr)
1287      val exuData = debug_exuData(ptr)
1288      difftest.io.valid    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1289      difftest.io.pc       := RegNext(RegNext(RegNext(SignExt(uop.cf.pc, XLEN))))
1290      difftest.io.instr    := RegNext(RegNext(RegNext(uop.cf.instr)))
1291      difftest.io.robIdx   := RegNext(RegNext(RegNext(ZeroExt(ptr, 10))))
1292      difftest.io.lqIdx    := RegNext(RegNext(RegNext(ZeroExt(uop.lqIdx.value, 7))))
1293      difftest.io.sqIdx    := RegNext(RegNext(RegNext(ZeroExt(uop.sqIdx.value, 7))))
1294      difftest.io.isLoad   := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.LOAD)))
1295      difftest.io.isStore  := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.STORE)))
1296      difftest.io.special  := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType))))
1297      // when committing an eliminated move instruction,
1298      // we must make sure that skip is properly set to false (output from EXU is random value)
1299      difftest.io.skip     := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1300      difftest.io.isRVC    := RegNext(RegNext(RegNext(uop.cf.pd.isRVC)))
1301      difftest.io.rfwen    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U)))
1302      difftest.io.fpwen    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).fpWen)))
1303      difftest.io.vecwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).vecWen)))
1304      difftest.io.wpdest   := RegNext(RegNext(RegNext(io.commits.info(i).pdest)))
1305      difftest.io.wdest    := RegNext(RegNext(RegNext(io.commits.info(i).ldest)))
1306      // // runahead commit hint
1307      // val runahead_commit = Module(new DifftestRunaheadCommitEvent)
1308      // runahead_commit.io.clock := clock
1309      // runahead_commit.io.coreid := io.hartId
1310      // runahead_commit.io.index := i.U
1311      // runahead_commit.io.valid := difftest.io.valid &&
1312      //   (commitBranchValid(i) || commitIsStore(i))
1313      // // TODO: is branch or store
1314      // runahead_commit.io.pc    := difftest.io.pc
1315    }
1316  }
1317  else if (env.AlwaysBasicDiff) {
1318    // These are the structures used by difftest only and should be optimized after synthesis.
1319    val dt_eliminatedMove = Mem(RobSize, Bool())
1320    val dt_isRVC = Mem(RobSize, Bool())
1321    val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle))
1322    for (i <- 0 until RenameWidth) {
1323      when (canEnqueue(i)) {
1324        dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove
1325        dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.cf.pd.isRVC
1326      }
1327    }
1328    for (wb <- exuWriteback) {
1329      when (wb.valid) {
1330        val wbIdx = wb.bits.uop.robIdx.value
1331        dt_exuDebug(wbIdx) := wb.bits.debug
1332      }
1333    }
1334    // Always instantiate basic difftest modules.
1335    for (i <- 0 until CommitWidth) {
1336      val commitInfo = io.commits.info(i)
1337      val ptr = deqPtrVec(i).value
1338      val exuOut = dt_exuDebug(ptr)
1339      val eliminatedMove = dt_eliminatedMove(ptr)
1340      val isRVC = dt_isRVC(ptr)
1341
1342      val difftest = Module(new DifftestBasicInstrCommit)
1343      difftest.io.clock   := clock
1344      difftest.io.coreid  := io.hartId
1345      difftest.io.index   := i.U
1346      difftest.io.valid   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1347      difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType))))
1348      difftest.io.skip    := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1349      difftest.io.isRVC   := RegNext(RegNext(RegNext(isRVC)))
1350      difftest.io.rfwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U)))
1351      difftest.io.fpwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.fpWen)))
1352      difftest.io.vecwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).vecWen)))
1353      difftest.io.wpdest  := RegNext(RegNext(RegNext(commitInfo.pdest)))
1354      difftest.io.wdest   := RegNext(RegNext(RegNext(commitInfo.ldest)))
1355    }
1356  }
1357
1358  if (env.EnableDifftest) {
1359    for (i <- 0 until CommitWidth) {
1360      val difftest = Module(new DifftestLoadEvent)
1361      difftest.io.clock  := clock
1362      difftest.io.coreid := io.hartId
1363      difftest.io.index  := i.U
1364
1365      val ptr = deqPtrVec(i).value
1366      val uop = commitDebugUop(i)
1367      val exuOut = debug_exuDebug(ptr)
1368      difftest.io.valid  := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1369      difftest.io.paddr  := RegNext(RegNext(RegNext(exuOut.paddr)))
1370      difftest.io.opType := RegNext(RegNext(RegNext(uop.ctrl.fuOpType)))
1371      difftest.io.fuType := RegNext(RegNext(RegNext(uop.ctrl.fuType)))
1372    }
1373  }
1374
1375  // Always instantiate basic difftest modules.
1376  if (env.EnableDifftest) {
1377    val dt_isXSTrap = Mem(RobSize, Bool())
1378    for (i <- 0 until RenameWidth) {
1379      when (canEnqueue(i)) {
1380        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap
1381      }
1382    }
1383    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) }
1384    val hitTrap = trapVec.reduce(_||_)
1385    val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1))
1386    val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN)
1387    val difftest = Module(new DifftestTrapEvent)
1388    difftest.io.clock    := clock
1389    difftest.io.coreid   := io.hartId
1390    difftest.io.valid    := hitTrap
1391    difftest.io.code     := trapCode
1392    difftest.io.pc       := trapPC
1393    difftest.io.cycleCnt := timer
1394    difftest.io.instrCnt := instrCnt
1395    difftest.io.hasWFI   := hasWFI
1396  }
1397  else if (env.AlwaysBasicDiff) {
1398    val dt_isXSTrap = Mem(RobSize, Bool())
1399    for (i <- 0 until RenameWidth) {
1400      when (canEnqueue(i)) {
1401        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap
1402      }
1403    }
1404    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) }
1405    val hitTrap = trapVec.reduce(_||_)
1406    val difftest = Module(new DifftestBasicTrapEvent)
1407    difftest.io.clock    := clock
1408    difftest.io.coreid   := io.hartId
1409    difftest.io.valid    := hitTrap
1410    difftest.io.cycleCnt := timer
1411    difftest.io.instrCnt := instrCnt
1412  }
1413
1414  val validEntriesBanks = (0 until (RobSize + 63) / 64).map(i => RegNext(PopCount(valid.drop(i * 64).take(64))))
1415  val validEntries = RegNext(ParallelOperation(validEntriesBanks, (a: UInt, b: UInt) => a +& b))
1416  val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })
1417  val commitLoadVec = VecInit(commitLoadValid)
1418  val commitBranchVec = VecInit(commitBranchValid)
1419  val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })
1420  val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })
1421  val perfEvents = Seq(
1422    ("rob_interrupt_num      ", io.flushOut.valid && intrEnable                                       ),
1423    ("rob_exception_num      ", io.flushOut.valid && exceptionEnable                                  ),
1424    ("rob_flush_pipe_num     ", io.flushOut.valid && isFlushPipe                                      ),
1425    ("rob_replay_inst_num    ", io.flushOut.valid && isFlushPipe && deqHasReplayInst                  ),
1426    ("rob_commitUop          ", ifCommit(commitCnt)                                                   ),
1427    ("rob_commitInstr        ", ifCommitReg(trueCommitCnt)                                            ),
1428    ("rob_commitInstrMove    ", ifCommitReg(PopCount(RegNext(commitMoveVec)))                         ),
1429    ("rob_commitInstrFused   ", ifCommitReg(fuseCommitCnt)                                            ),
1430    ("rob_commitInstrLoad    ", ifCommitReg(PopCount(RegNext(commitLoadVec)))                         ),
1431    ("rob_commitInstrBranch  ", ifCommitReg(PopCount(RegNext(commitBranchVec)))                       ),
1432    ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec)))                     ),
1433    ("rob_commitInstrStore   ", ifCommitReg(PopCount(RegNext(commitStoreVec)))                        ),
1434    ("rob_walkInstr          ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)           ),
1435    ("rob_walkCycle          ", (state === s_walk)                                                    ),
1436    ("rob_1_4_valid          ", validEntries <= (RobSize / 4).U                                       ),
1437    ("rob_2_4_valid          ", validEntries >  (RobSize / 4).U && validEntries <= (RobSize / 2).U    ),
1438    ("rob_3_4_valid          ", validEntries >  (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U),
1439    ("rob_4_4_valid          ", validEntries >  (RobSize * 3 / 4).U                                   ),
1440  )
1441  generatePerfEvent()
1442}
1443