xref: /XiangShan/src/main/scala/xiangshan/backend/rob/Rob.scala (revision 1a0debc27041058fb54ba12d616d87f838663e7c)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.rob
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3._
21import chisel3.util._
22import difftest._
23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp}
24import utils._
25import utility._
26import xiangshan._
27import xiangshan.backend.exu.ExuConfig
28import xiangshan.frontend.FtqPtr
29
30class DebugMdpInfo(implicit p: Parameters) extends XSBundle{
31  val ssid = UInt(SSIDWidth.W)
32  val waitAllStore = Bool()
33}
34
35class DebugLsInfo(implicit p: Parameters) extends XSBundle{
36  val s1 = new Bundle{
37    val isTlbFirstMiss = Bool() // in s1
38    val isBankConflict = Bool() // in s1
39    val isLoadToLoadForward = Bool()
40    val isReplayFast = Bool()
41  }
42  val s2 = new Bundle{
43    val isDcacheFirstMiss = Bool() // in s2 (predicted result is in s1 when using WPU, real result is in s2)
44    val isForwardFail = Bool() // in s2
45    val isReplaySlow = Bool()
46    val isLoadReplayTLBMiss = Bool()
47    val isLoadReplayCacheMiss = Bool()
48  }
49  val replayCnt = UInt(XLEN.W)
50
51  def s1SignalEnable(ena: DebugLsInfo) = {
52    when(ena.s1.isTlbFirstMiss) { s1.isTlbFirstMiss := true.B }
53    when(ena.s1.isBankConflict) { s1.isBankConflict := true.B }
54    when(ena.s1.isLoadToLoadForward) { s1.isLoadToLoadForward := true.B }
55    when(ena.s1.isReplayFast) {
56      s1.isReplayFast := true.B
57      replayCnt := replayCnt + 1.U
58    }
59  }
60
61  def s2SignalEnable(ena: DebugLsInfo) = {
62    when(ena.s2.isDcacheFirstMiss) { s2.isDcacheFirstMiss := true.B }
63    when(ena.s2.isForwardFail) { s2.isForwardFail := true.B }
64    when(ena.s2.isLoadReplayTLBMiss) { s2.isLoadReplayTLBMiss := true.B }
65    when(ena.s2.isLoadReplayCacheMiss) { s2.isLoadReplayCacheMiss := true.B }
66    when(ena.s2.isReplaySlow) {
67      s2.isReplaySlow := true.B
68      replayCnt := replayCnt + 1.U
69    }
70  }
71
72}
73object DebugLsInfo{
74  def init(implicit p: Parameters): DebugLsInfo = {
75    val lsInfo = Wire(new DebugLsInfo)
76    lsInfo.s1.isTlbFirstMiss := false.B
77    lsInfo.s1.isBankConflict := false.B
78    lsInfo.s1.isLoadToLoadForward := false.B
79    lsInfo.s1.isReplayFast := false.B
80    lsInfo.s2.isDcacheFirstMiss := false.B
81    lsInfo.s2.isForwardFail := false.B
82    lsInfo.s2.isReplaySlow := false.B
83    lsInfo.s2.isLoadReplayTLBMiss := false.B
84    lsInfo.s2.isLoadReplayCacheMiss := false.B
85    lsInfo.replayCnt := 0.U
86    lsInfo
87  }
88
89}
90class DebugLsInfoBundle(implicit p: Parameters) extends DebugLsInfo {
91  // unified processing at the end stage of load/store  ==> s2  ==> bug that will write error robIdx data
92  val s1_robIdx = UInt(log2Ceil(RobSize).W)
93  val s2_robIdx = UInt(log2Ceil(RobSize).W)
94}
95class DebugLSIO(implicit p: Parameters) extends XSBundle {
96  val debugLsInfo = Vec(exuParameters.LduCnt + exuParameters.StuCnt, Output(new DebugLsInfoBundle))
97}
98
99class DebugInstDB(implicit p: Parameters) extends XSBundle{
100  val globalID = UInt(XLEN.W)
101  val robIdx = UInt(log2Ceil(RobSize).W)
102  val instType = FuType()
103  val exceptType = ExceptionVec()
104  val ivaddr = UInt(VAddrBits.W)
105  val dvaddr = UInt(VAddrBits.W) // the l/s access address
106  val dpaddr = UInt(VAddrBits.W) // need the physical address when the TLB is valid
107  val tlbLatency = UInt(XLEN.W)  // original requirements is L1toL2TlbLatency
108  // val levelTlbHit = UInt(2.W) // 01, 10, 11(memory)
109  // val otherPerfNoteThing // FIXME: how much?
110  val accessLatency = UInt(XLEN.W)  // RS out time --> write back time
111  val executeLatency = UInt(XLEN.W)
112  val issueLatency = UInt(XLEN.W)
113  val lsInfo = new DebugLsInfo
114  val mdpInfo = new DebugMdpInfo
115}
116
117class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr](
118  p => p(XSCoreParamsKey).RobSize
119) with HasCircularQueuePtrHelper {
120
121  def needFlush(redirect: Valid[Redirect]): Bool = {
122    val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx
123    redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx))
124  }
125
126  def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR
127}
128
129object RobPtr {
130  def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = {
131    val ptr = Wire(new RobPtr)
132    ptr.flag := f
133    ptr.value := v
134    ptr
135  }
136}
137
138class RobCSRIO(implicit p: Parameters) extends XSBundle {
139  val intrBitSet = Input(Bool())
140  val trapTarget = Input(UInt(VAddrBits.W))
141  val isXRet     = Input(Bool())
142  val wfiEvent   = Input(Bool())
143
144  val fflags     = Output(Valid(UInt(5.W)))
145  val dirty_fs   = Output(Bool())
146  val perfinfo   = new Bundle {
147    val retiredInstr = Output(UInt(3.W))
148  }
149
150  val vcsrFlag   = Output(Bool())
151}
152
153class RobLsqIO(implicit p: Parameters) extends XSBundle {
154  val lcommit = Output(UInt(log2Up(CommitWidth + 1).W))
155  val scommit = Output(UInt(log2Up(CommitWidth + 1).W))
156  val pendingld = Output(Bool())
157  val pendingst = Output(Bool())
158  val commit = Output(Bool())
159}
160
161class RobEnqIO(implicit p: Parameters) extends XSBundle {
162  val canAccept = Output(Bool())
163  val isEmpty = Output(Bool())
164  // valid vector, for robIdx gen and walk
165  val needAlloc = Vec(RenameWidth, Input(Bool()))
166  val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp)))
167  val resp = Vec(RenameWidth, Output(new RobPtr))
168}
169
170class RobDispatchData(implicit p: Parameters) extends RobCommitInfo
171
172class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
173  val io = IO(new Bundle {
174    // for commits/flush
175    val state = Input(UInt(2.W))
176    val deq_v = Vec(CommitWidth, Input(Bool()))
177    val deq_w = Vec(CommitWidth, Input(Bool()))
178    val exception_state = Flipped(ValidIO(new RobExceptionInfo))
179    // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth)
180    val intrBitSetReg = Input(Bool())
181    val hasNoSpecExec = Input(Bool())
182    val interrupt_safe = Input(Bool())
183    val blockCommit = Input(Bool())
184    // output: the CommitWidth deqPtr
185    val out = Vec(CommitWidth, Output(new RobPtr))
186    val next_out = Vec(CommitWidth, Output(new RobPtr))
187  })
188
189  val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr))))
190
191  // for exceptions (flushPipe included) and interrupts:
192  // only consider the first instruction
193  val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe
194  val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0)
195  val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable)
196
197  // for normal commits: only to consider when there're no exceptions
198  // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions.
199  val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last)
200  val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i)))
201  val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B)
202  // when io.intrBitSetReg or there're possible exceptions in these instructions,
203  // only one instruction is allowed to commit
204  val allowOnlyOne = commit_exception || io.intrBitSetReg
205  val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt)
206
207  val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt))
208  val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec)
209
210  deqPtrVec := deqPtrVec_next
211
212  io.next_out := deqPtrVec_next
213  io.out      := deqPtrVec
214
215  when (io.state === 0.U) {
216    XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt)
217  }
218
219}
220
221class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
222  val io = IO(new Bundle {
223    // for input redirect
224    val redirect = Input(Valid(new Redirect))
225    // for enqueue
226    val allowEnqueue = Input(Bool())
227    val hasBlockBackward = Input(Bool())
228    val enq = Vec(RenameWidth, Input(Bool()))
229    val out = Output(Vec(RenameWidth, new RobPtr))
230  })
231
232  val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr)))
233
234  // enqueue
235  val canAccept = io.allowEnqueue && !io.hasBlockBackward
236  val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U)
237
238  for ((ptr, i) <- enqPtrVec.zipWithIndex) {
239    when(io.redirect.valid) {
240      ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
241    }.otherwise {
242      ptr := ptr + dispatchNum
243    }
244  }
245
246  io.out := enqPtrVec
247
248}
249
250class RobExceptionInfo(implicit p: Parameters) extends XSBundle {
251  // val valid = Bool()
252  val robIdx = new RobPtr
253  val exceptionVec = ExceptionVec()
254  val flushPipe = Bool()
255  val isVset = Bool()
256  val replayInst = Bool() // redirect to that inst itself
257  val singleStep = Bool() // TODO add frontend hit beneath
258  val crossPageIPFFix = Bool()
259  val trigger = new TriggerCf
260
261//  def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend
262//  def trigger_after = trigger.getTimingBackend && trigger.getHitBackend
263  def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit
264  def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit
265  // only exceptions are allowed to writeback when enqueue
266  def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit
267}
268
269class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
270  val io = IO(new Bundle {
271    val redirect = Input(Valid(new Redirect))
272    val flush = Input(Bool())
273    val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo)))
274    val wb = Vec(1 + LoadPipelineWidth + StorePipelineWidth, Flipped(ValidIO(new RobExceptionInfo)))
275    val out = ValidIO(new RobExceptionInfo)
276    val state = ValidIO(new RobExceptionInfo)
277  })
278
279  def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = {
280    assert(valid.length == bits.length)
281    assert(isPow2(valid.length))
282    if (valid.length == 1) {
283      (valid, bits)
284    } else if (valid.length == 2) {
285      val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0)))))
286      for (i <- res.indices) {
287        res(i).valid := valid(i)
288        res(i).bits := bits(i)
289      }
290      val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1))
291      (Seq(oldest.valid), Seq(oldest.bits))
292    } else {
293      val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2))
294      val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2))
295      getOldest(left._1 ++ right._1, left._2 ++ right._2)
296    }
297  }
298
299  val currentValid = RegInit(false.B)
300  val current = Reg(new RobExceptionInfo)
301
302  // orR the exceptionVec
303  val lastCycleFlush = RegNext(io.flush)
304  val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush))
305  val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)
306
307  // s0: compare wb(1)~wb(LoadPipelineWidth) and wb(1 + LoadPipelineWidth)~wb(LoadPipelineWidth + StorePipelineWidth)
308  val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }
309  val csr_wb_bits = io.wb(0).bits
310  val load_wb_bits = getOldest(in_wb_valid.slice(1, 1 + LoadPipelineWidth), io.wb.map(_.bits).slice(1, 1 + LoadPipelineWidth))._2(0)
311  val store_wb_bits = getOldest(in_wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth), io.wb.map(_.bits).slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth))._2(0)
312  val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid.slice(1, 1 + LoadPipelineWidth).reduce(_ || _), wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth).reduce(_ || _))))
313  val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits)))
314
315  // s1: compare last four and current flush
316  val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) })
317  val compare_01_valid = s0_out_valid(0) || s0_out_valid(1)
318  val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0))
319  val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2))
320  val s1_out_bits = RegNext(compare_bits)
321  val s1_out_valid = RegNext(s1_valid.asUInt.orR)
322
323  val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
324  val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)))
325
326  // s2: compare the input exception with the current one
327  // priorities:
328  // (1) system reset
329  // (2) current is valid: flush, remain, merge, update
330  // (3) current is not valid: s1 or enq
331  val current_flush = current.robIdx.needFlush(io.redirect) || io.flush
332  val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush
333  when (currentValid) {
334    when (current_flush) {
335      currentValid := Mux(s1_flush, false.B, s1_out_valid)
336    }
337    when (s1_out_valid && !s1_flush) {
338      when (isAfter(current.robIdx, s1_out_bits.robIdx)) {
339        current := s1_out_bits
340      }.elsewhen (current.robIdx === s1_out_bits.robIdx) {
341        current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec())
342        current.flushPipe := s1_out_bits.flushPipe || current.flushPipe
343        current.replayInst := s1_out_bits.replayInst || current.replayInst
344        current.singleStep := s1_out_bits.singleStep || current.singleStep
345        current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf)
346      }
347    }
348  }.elsewhen (s1_out_valid && !s1_flush) {
349    currentValid := true.B
350    current := s1_out_bits
351  }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) {
352    currentValid := true.B
353    current := enq_bits
354  }
355
356  io.out.valid   := s1_out_valid || enq_valid && enq_bits.can_writeback
357  io.out.bits    := Mux(s1_out_valid, s1_out_bits, enq_bits)
358  io.state.valid := currentValid
359  io.state.bits  := current
360
361}
362
363class RobFlushInfo(implicit p: Parameters) extends XSBundle {
364  val ftqIdx = new FtqPtr
365  val robIdx = new RobPtr
366  val ftqOffset = UInt(log2Up(PredictWidth).W)
367  val replayInst = Bool()
368}
369
370class Rob(implicit p: Parameters) extends LazyModule with HasWritebackSink with HasXSParameter {
371
372  lazy val module = new RobImp(this)
373
374  override def generateWritebackIO(
375    thisMod: Option[HasWritebackSource] = None,
376    thisModImp: Option[HasWritebackSourceImp] = None
377  ): Unit = {
378    val sources = writebackSinksImp(thisMod, thisModImp)
379    module.io.writeback.zip(sources).foreach(x => x._1 := x._2)
380  }
381}
382
383class RobImp(outer: Rob)(implicit p: Parameters) extends LazyModuleImp(outer)
384  with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents {
385  val wbExuConfigs = outer.writebackSinksParams.map(_.exuConfigs)
386  val numWbPorts = wbExuConfigs.map(_.length)
387
388  val io = IO(new Bundle() {
389    val hartId = Input(UInt(8.W))
390    val redirect = Input(Valid(new Redirect))
391    val enq = new RobEnqIO
392    val flushOut = ValidIO(new Redirect)
393    val isVsetFlushPipe = Output(Bool())
394    val exception = ValidIO(new ExceptionInfo)
395    // exu + brq
396    val writeback = MixedVec(numWbPorts.map(num => Vec(num, Flipped(ValidIO(new ExuOutput)))))
397    val commits = Output(new RobCommitIO)
398    val lsq = new RobLsqIO
399    val robDeqPtr = Output(new RobPtr)
400    val csr = new RobCSRIO
401    val robFull = Output(Bool())
402    val cpu_halt = Output(Bool())
403    val wfi_enable = Input(Bool())
404    val debug_ls = Flipped(new DebugLSIO)
405  })
406
407  def selectWb(index: Int, func: Seq[ExuConfig] => Boolean): Seq[(Seq[ExuConfig], ValidIO[ExuOutput])] = {
408    wbExuConfigs(index).zip(io.writeback(index)).filter(x => func(x._1))
409  }
410  val exeWbSel = outer.selWritebackSinks(_.exuConfigs.length)
411  val fflagsWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.writeFflags)))
412  val fflagsPorts = selectWb(fflagsWbSel, _.exists(_.writeFflags))
413  val exceptionWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.needExceptionGen)))
414  val exceptionPorts = selectWb(exceptionWbSel, _.exists(_.needExceptionGen))
415  val exuWbPorts = selectWb(exeWbSel, _.forall(_ != StdExeUnitCfg))
416  val stdWbPorts = selectWb(exeWbSel, _.contains(StdExeUnitCfg))
417  println(s"Rob: size $RobSize, numWbPorts: $numWbPorts, commitwidth: $CommitWidth")
418  println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}")
419  println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}")
420  println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}")
421
422
423  val exuWriteback = exuWbPorts.map(_._2)
424  val stdWriteback = stdWbPorts.map(_._2)
425
426  // instvalid field
427  val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
428  // writeback status
429  val writebacked = Mem(RobSize, Bool())
430  val store_data_writebacked = Mem(RobSize, Bool())
431  // data for redirect, exception, etc.
432  val flagBkup = Mem(RobSize, Bool())
433  // some instructions are not allowed to trigger interrupts
434  // They have side effects on the states of the processor before they write back
435  val interrupt_safe = Mem(RobSize, Bool())
436
437  // data for debug
438  // Warn: debug_* prefix should not exist in generated verilog.
439  val debug_microOp = Mem(RobSize, new MicroOp)
440  val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug
441  val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug
442  val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init)))
443
444  // pointers
445  // For enqueue ptr, we don't duplicate it since only enqueue needs it.
446  val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr))
447  val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr))
448
449  val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr))
450  val allowEnqueue = RegInit(true.B)
451
452  val enqPtr = enqPtrVec.head
453  val deqPtr = deqPtrVec(0)
454  val walkPtr = walkPtrVec(0)
455
456  val isEmpty = enqPtr === deqPtr
457  val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level)
458
459  /**
460    * states of Rob
461    */
462  val s_idle :: s_walk :: Nil = Enum(2)
463  val state = RegInit(s_idle)
464
465  /**
466    * Data Modules
467    *
468    * CommitDataModule: data from dispatch
469    * (1) read: commits/walk/exception
470    * (2) write: enqueue
471    *
472    * WritebackData: data from writeback
473    * (1) read: commits/walk/exception
474    * (2) write: write back from exe units
475    */
476  val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth))
477  val dispatchDataRead = dispatchData.io.rdata
478
479  val exceptionGen = Module(new ExceptionGen)
480  val exceptionDataRead = exceptionGen.io.state
481  val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W)))
482
483  io.robDeqPtr := deqPtr
484
485  /**
486    * Enqueue (from dispatch)
487    */
488  // special cases
489  val hasBlockBackward = RegInit(false.B)
490  val hasNoSpecExec = RegInit(false.B)
491  val doingSvinval = RegInit(false.B)
492  // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B
493  // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty.
494  when (isEmpty) { hasBlockBackward:= false.B }
495  // When any instruction commits, hasNoSpecExec should be set to false.B
496  when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasNoSpecExec:= false.B }
497
498  // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing.
499  // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle.
500  // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts.
501  val hasWFI = RegInit(false.B)
502  io.cpu_halt := hasWFI
503  // WFI Timeout: 2^20 = 1M cycles
504  val wfi_cycles = RegInit(0.U(20.W))
505  when (hasWFI) {
506    wfi_cycles := wfi_cycles + 1.U
507  }.elsewhen (!hasWFI && RegNext(hasWFI)) {
508    wfi_cycles := 0.U
509  }
510  val wfi_timeout = wfi_cycles.andR
511  when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) {
512    hasWFI := false.B
513  }
514
515  val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.needAlloc.take(i)))))
516  io.enq.canAccept := allowEnqueue && !hasBlockBackward
517  io.enq.resp      := allocatePtrVec
518  val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept))
519  val timer = GTimer()
520  for (i <- 0 until RenameWidth) {
521    // we don't check whether io.redirect is valid here since redirect has higher priority
522    when (canEnqueue(i)) {
523      val enqUop = io.enq.req(i).bits
524      val enqIndex = allocatePtrVec(i).value
525      // store uop in data module and debug_microOp Vec
526      debug_microOp(enqIndex) := enqUop
527      debug_microOp(enqIndex).debugInfo.dispatchTime := timer
528      debug_microOp(enqIndex).debugInfo.enqRsTime := timer
529      debug_microOp(enqIndex).debugInfo.selectTime := timer
530      debug_microOp(enqIndex).debugInfo.issueTime := timer
531      debug_microOp(enqIndex).debugInfo.writebackTime := timer
532      debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer
533      debug_microOp(enqIndex).debugInfo.tlbRespTime := timer
534      debug_lsInfo(enqIndex) := DebugLsInfo.init
535      when (enqUop.ctrl.blockBackward) {
536        hasBlockBackward := true.B
537      }
538      when (enqUop.ctrl.noSpecExec) {
539        hasNoSpecExec := true.B
540      }
541      val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend
542      val enqHasException = ExceptionNO.selectFrontend(enqUop.cf.exceptionVec).asUInt.orR
543      // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process
544      when(!enqHasTriggerHit && !enqHasException && FuType.isSvinvalBegin(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))
545      {
546        doingSvinval := true.B
547      }
548      // the end instruction of Svinval enqs so clear doingSvinval
549      when(!enqHasTriggerHit && !enqHasException && FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))
550      {
551        doingSvinval := false.B
552      }
553      // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear
554      assert(!doingSvinval || (FuType.isSvinval(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe) ||
555        FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)))
556      when (enqUop.ctrl.isWFI && !enqHasException && !enqHasTriggerHit) {
557        hasWFI := true.B
558      }
559    }
560  }
561  val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(_.valid)), 0.U)
562  io.enq.isEmpty   := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR)
563
564  when (!io.wfi_enable) {
565    hasWFI := false.B
566  }
567  // sel vsetvl's flush position
568  val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3)
569  val vsetvlState = RegInit(vs_idle)
570
571  val firstVInstrFtqPtr    = RegInit(0.U.asTypeOf(new FtqPtr))
572  val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W)))
573  val firstVInstrRobIdx    = RegInit(0.U.asTypeOf(new RobPtr))
574
575  val enq0            = io.enq.req(0)
576  val enq0IsVset      = FuType.isIntExu(enq0.bits.ctrl.fuType) && ALUOpType.isVset(enq0.bits.ctrl.fuOpType) && enq0.bits.ctrl.uopIdx.andR && canEnqueue(0)
577  val enq0IsVsetFlush = enq0IsVset && enq0.bits.ctrl.flushPipe
578  val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVecExu(req.bits.ctrl.fuType) && fire}
579  // for vs_idle
580  val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType)))
581  // for vs_waitVinstr
582  val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1)
583  val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req)
584  when(vsetvlState === vs_idle){
585    firstVInstrFtqPtr    := firstVInstrIdle.bits.cf.ftqPtr
586    firstVInstrFtqOffset := firstVInstrIdle.bits.cf.ftqOffset
587    firstVInstrRobIdx    := firstVInstrIdle.bits.robIdx
588  }.elsewhen(vsetvlState === vs_waitVinstr){
589    firstVInstrFtqPtr    := firstVInstrWait.bits.cf.ftqPtr
590    firstVInstrFtqOffset := firstVInstrWait.bits.cf.ftqOffset
591    firstVInstrRobIdx    := firstVInstrWait.bits.robIdx
592  }
593
594  val hasVInstrAfterI = Cat(enqIsVInstrVec.drop(1)).orR
595  when(vsetvlState === vs_idle){
596    when(enq0IsVsetFlush){
597      vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr)
598    }
599  }.elsewhen(vsetvlState === vs_waitVinstr){
600    when(io.redirect.valid){
601      vsetvlState := vs_idle
602    }.elsewhen(Cat(enqIsVInstrOrVset).orR){
603      vsetvlState := vs_waitFlush
604    }
605  }.elsewhen(vsetvlState === vs_waitFlush){
606    when(io.redirect.valid){
607      vsetvlState := vs_idle
608    }
609  }
610
611  /**
612    * Writeback (from execution units)
613    */
614  for (wb <- exuWriteback) {
615    when (wb.valid) {
616      val wbIdx = wb.bits.uop.robIdx.value
617      debug_exuData(wbIdx) := wb.bits.data
618      debug_exuDebug(wbIdx) := wb.bits.debug
619      debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.uop.debugInfo.enqRsTime
620      debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.uop.debugInfo.selectTime
621      debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.uop.debugInfo.issueTime
622      debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.uop.debugInfo.writebackTime
623      debug_microOp(wbIdx).debugInfo.tlbFirstReqTime := wb.bits.uop.debugInfo.tlbFirstReqTime
624      debug_microOp(wbIdx).debugInfo.tlbRespTime := wb.bits.uop.debugInfo.tlbRespTime
625
626      // debug for lqidx and sqidx
627      debug_microOp(wbIdx).lqIdx := wb.bits.uop.lqIdx
628      debug_microOp(wbIdx).sqIdx := wb.bits.uop.sqIdx
629
630      val debug_Uop = debug_microOp(wbIdx)
631      XSInfo(true.B,
632        p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " +
633        p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " +
634        p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.uop.robIdx}\n"
635      )
636    }
637  }
638  val writebackNum = PopCount(exuWriteback.map(_.valid))
639  XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum)
640
641
642  /**
643    * RedirectOut: Interrupt and Exceptions
644    */
645  val deqDispatchData = dispatchDataRead(0)
646  val debug_deqUop = debug_microOp(deqPtr.value)
647
648  val intrBitSetReg = RegNext(io.csr.intrBitSet)
649  val intrEnable = intrBitSetReg && !hasNoSpecExec && interrupt_safe(deqPtr.value)
650  val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr
651  val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR ||
652    exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit)
653  val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe
654  val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst
655  val exceptionEnable = writebacked(deqPtr.value) && deqHasException
656
657  XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n")
658  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n")
659  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n")
660
661  val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst)
662
663  val isVsetFlushPipe = writebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset
664  val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush)
665  io.isVsetFlushPipe := RegNext(isVsetFlushPipe)
666  // io.flushOut will trigger redirect at the next cycle.
667  // Block any redirect or commit at the next cycle.
668  val lastCycleFlush = RegNext(io.flushOut.valid)
669
670  io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush
671  io.flushOut.bits := DontCare
672  io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr)
673  io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx)
674  io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset)
675  io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next"
676  io.flushOut.bits.interrupt := true.B
677  XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable)
678  XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable)
679  XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe)
680  XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst)
681
682  val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush
683  io.exception.valid := RegNext(exceptionHappen)
684  io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen)
685  io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen)
686  io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen)
687  io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen)
688  io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen)
689  io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen)
690  io.exception.bits.uop.cf.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen)
691
692  XSDebug(io.flushOut.valid,
693    p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " +
694    p"excp $exceptionEnable flushPipe $isFlushPipe " +
695    p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n")
696
697
698  /**
699    * Commits (and walk)
700    * They share the same width.
701    */
702  val walkCounter = Reg(UInt(log2Up(RobSize + 1).W))
703  val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter))
704  val walkFinished = walkCounter <= CommitWidth.U
705
706  require(RenameWidth <= CommitWidth)
707
708  // wiring to csr
709  val (wflags, fpWen) = (0 until CommitWidth).map(i => {
710    val v = io.commits.commitValid(i)
711    val info = io.commits.info(i)
712    (v & info.wflags, v & info.fpWen)
713  }).unzip
714  val fflags = Wire(Valid(UInt(5.W)))
715  fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR
716  fflags.bits := wflags.zip(fflagsDataRead).map({
717    case (w, f) => Mux(w, f, 0.U)
718  }).reduce(_|_)
719  val dirty_fs = io.commits.isCommit && VecInit(fpWen).asUInt.orR
720
721  // when mispredict branches writeback, stop commit in the next 2 cycles
722  // TODO: don't check all exu write back
723  val misPredWb = Cat(VecInit(exuWriteback.map(wb =>
724    wb.bits.redirect.cfiUpdate.isMisPred && wb.bits.redirectValid
725  ))).orR
726  val misPredBlockCounter = Reg(UInt(3.W))
727  misPredBlockCounter := Mux(misPredWb,
728    "b111".U,
729    misPredBlockCounter >> 1.U
730  )
731  val misPredBlock = misPredBlockCounter(0)
732  val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI
733
734  io.commits.isWalk := state === s_walk
735  io.commits.isCommit := state === s_idle && !blockCommit
736  val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value)))
737  val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value)))
738  // store will be commited iff both sta & std have been writebacked
739  val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value)))
740  val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last)
741  val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i)))
742  val allowOnlyOneCommit = commit_exception || intrBitSetReg
743  // for instructions that may block others, we don't allow them to commit
744  for (i <- 0 until CommitWidth) {
745    // defaults: state === s_idle and instructions commit
746    // when intrBitSetReg, allow only one instruction to commit at each clock cycle
747    val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst
748    io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked
749    io.commits.info(i)  := dispatchDataRead(i)
750
751    when (state === s_walk) {
752      io.commits.walkValid(i) := shouldWalkVec(i)
753      when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) {
754        XSError(!walk_v(i), s"why not $i???\n")
755      }
756    }
757
758    XSInfo(io.commits.isCommit && io.commits.commitValid(i),
759      "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n",
760      debug_microOp(deqPtrVec(i).value).cf.pc,
761      io.commits.info(i).rfWen,
762      io.commits.info(i).ldest,
763      io.commits.info(i).pdest,
764      io.commits.info(i).old_pdest,
765      debug_exuData(deqPtrVec(i).value),
766      fflagsDataRead(i)
767    )
768    XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n",
769      debug_microOp(walkPtrVec(i).value).cf.pc,
770      io.commits.info(i).rfWen,
771      io.commits.info(i).ldest,
772      debug_exuData(walkPtrVec(i).value)
773    )
774  }
775  if (env.EnableDifftest) {
776    io.commits.info.map(info => dontTouch(info.pc))
777  }
778
779  // sync fflags/dirty_fs to csr
780  io.csr.fflags := RegNext(fflags)
781  io.csr.dirty_fs := RegNext(dirty_fs)
782
783  // sync v csr to csr
784//  io.csr.vcsrFlag := RegNext(isVsetFlushPipe)
785
786  // commit load/store to lsq
787  val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD))
788  val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE))
789  io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U))
790  io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U))
791  // indicate a pending load or store
792  io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value))
793  io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value))
794  io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0))
795
796  /**
797    * state changes
798    * (1) redirect: switch to s_walk
799    * (2) walk: when walking comes to the end, switch to s_idle
800    */
801  val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished, s_idle, state))
802  XSPerfAccumulate("s_idle_to_idle",            state === s_idle && state_next === s_idle)
803  XSPerfAccumulate("s_idle_to_walk",            state === s_idle && state_next === s_walk)
804  XSPerfAccumulate("s_walk_to_idle",            state === s_walk && state_next === s_idle)
805  XSPerfAccumulate("s_walk_to_walk",            state === s_walk && state_next === s_walk)
806  state := state_next
807
808  /**
809    * pointers and counters
810    */
811  val deqPtrGenModule = Module(new RobDeqPtrWrapper)
812  deqPtrGenModule.io.state := state
813  deqPtrGenModule.io.deq_v := commit_v
814  deqPtrGenModule.io.deq_w := commit_w
815  deqPtrGenModule.io.exception_state := exceptionDataRead
816  deqPtrGenModule.io.intrBitSetReg := intrBitSetReg
817  deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec
818  deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value)
819  deqPtrGenModule.io.blockCommit := blockCommit
820  deqPtrVec := deqPtrGenModule.io.out
821  val deqPtrVec_next = deqPtrGenModule.io.next_out
822
823  val enqPtrGenModule = Module(new RobEnqPtrWrapper)
824  enqPtrGenModule.io.redirect := io.redirect
825  enqPtrGenModule.io.allowEnqueue := allowEnqueue
826  enqPtrGenModule.io.hasBlockBackward := hasBlockBackward
827  enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid))
828  enqPtrVec := enqPtrGenModule.io.out
829
830  val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U)
831  // next walkPtrVec:
832  // (1) redirect occurs: update according to state
833  // (2) walk: move forwards
834  val walkPtrVec_next = Mux(io.redirect.valid,
835    deqPtrVec_next,
836    Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec)
837  )
838  walkPtrVec := walkPtrVec_next
839
840  val numValidEntries = distanceBetween(enqPtr, deqPtr)
841  val isLastUopVec = io.commits.info.map(_.uopIdx.andR)
842  val commitCnt = PopCount(io.commits.commitValid.zip(isLastUopVec).map{case(isCommitValid, isLastUop) => isCommitValid && isLastUop})
843
844  allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U
845
846  val currentWalkPtr = Mux(state === s_walk, walkPtr, deqPtrVec_next(0))
847  val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0))
848  when (io.redirect.valid) {
849    // full condition:
850    // +& is used here because:
851    // When rob is full and the tail instruction causes a misprediction,
852    // the redirect robIdx is the deqPtr - 1. In this case, redirectWalkDistance
853    // is RobSize - 1.
854    // Since misprediction does not flush the instruction itself, flushItSelf is false.B.
855    // Previously we use `+` to count the walk distance and it causes overflows
856    // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize.
857    // The width of walkCounter also needs to be changed.
858    // empty condition:
859    // When the last instruction in ROB commits and causes a flush, a redirect
860    // will be raised later. In such circumstances, the redirect robIdx is before
861    // the deqPtrVec_next(0) and will cause underflow.
862    walkCounter := Mux(isBefore(io.redirect.bits.robIdx, deqPtrVec_next(0)), 0.U,
863                       redirectWalkDistance +& !io.redirect.bits.flushItself())
864  }.elsewhen (state === s_walk) {
865    walkCounter := walkCounter - thisCycleWalkCount
866    XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n")
867  }
868
869
870  /**
871    * States
872    * We put all the stage bits changes here.
873
874    * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit);
875    * All states: (1) valid; (2) writebacked; (3) flagBkup
876    */
877  val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value)))
878
879  // redirect logic writes 6 valid
880  val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr))
881  val redirectTail = Reg(new RobPtr)
882  val redirectIdle :: redirectBusy :: Nil = Enum(2)
883  val redirectState = RegInit(redirectIdle)
884  val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail))
885  when(redirectState === redirectBusy) {
886    redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U)
887    redirectHeadVec zip invMask foreach {
888      case (redirectHead, inv) => when(inv) {
889        valid(redirectHead.value) := false.B
890      }
891    }
892    when(!invMask.last) {
893      redirectState := redirectIdle
894    }
895  }
896  when(io.redirect.valid) {
897    redirectState := redirectBusy
898    when(redirectState === redirectIdle) {
899      redirectTail := enqPtr
900    }
901    redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) =>
902      redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
903    }
904  }
905  // enqueue logic writes 6 valid
906  for (i <- 0 until RenameWidth) {
907    when (canEnqueue(i) && !io.redirect.valid) {
908      valid(allocatePtrVec(i).value) := true.B
909    }
910  }
911  // dequeue logic writes 6 valid
912  for (i <- 0 until CommitWidth) {
913    val commitValid = io.commits.isCommit && io.commits.commitValid(i)
914    when (commitValid) {
915      valid(commitReadAddr(i)) := false.B
916    }
917  }
918
919  // debug_inst update
920  for(i <- 0 until (exuParameters.LduCnt + exuParameters.StuCnt)) {
921    debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i))
922    debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i))
923  }
924
925  // status field: writebacked
926  // enqueue logic set 6 writebacked to false
927  for (i <- 0 until RenameWidth) {
928    when (canEnqueue(i)) {
929      val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec).asUInt.orR
930      val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend
931      val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove
932      writebacked(allocatePtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerHit
933      val isStu = io.enq.req(i).bits.ctrl.fuType === FuType.stu
934      store_data_writebacked(allocatePtrVec(i).value) := !isStu
935    }
936  }
937  when (exceptionGen.io.out.valid) {
938    val wbIdx = exceptionGen.io.out.bits.robIdx.value
939    writebacked(wbIdx) := true.B
940    store_data_writebacked(wbIdx) := true.B
941  }
942  // writeback logic set numWbPorts writebacked to true
943  for ((wb, cfgs) <- exuWriteback.zip(wbExuConfigs(exeWbSel))) {
944    when (wb.valid) {
945      val wbIdx = wb.bits.uop.robIdx.value
946      val wbHasException = ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, cfgs).asUInt.orR
947      val wbHasTriggerHit = wb.bits.uop.cf.trigger.getHitBackend
948      val wbHasFlushPipe = cfgs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe
949      val wbHasReplayInst = cfgs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst
950      val block_wb = wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit
951      writebacked(wbIdx) := !block_wb
952    }
953  }
954  // store data writeback logic mark store as data_writebacked
955  for (wb <- stdWriteback) {
956    when(RegNext(wb.valid)) {
957      store_data_writebacked(RegNext(wb.bits.uop.robIdx.value)) := true.B
958    }
959  }
960
961  // flagBkup
962  // enqueue logic set 6 flagBkup at most
963  for (i <- 0 until RenameWidth) {
964    when (canEnqueue(i)) {
965      flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag
966    }
967  }
968
969  // interrupt_safe
970  for (i <- 0 until RenameWidth) {
971    // We RegNext the updates for better timing.
972    // Note that instructions won't change the system's states in this cycle.
973    when (RegNext(canEnqueue(i))) {
974      // For now, we allow non-load-store instructions to trigger interrupts
975      // For MMIO instructions, they should not trigger interrupts since they may
976      // be sent to lower level before it writes back.
977      // However, we cannot determine whether a load/store instruction is MMIO.
978      // Thus, we don't allow load/store instructions to trigger an interrupt.
979      // TODO: support non-MMIO load-store instructions to trigger interrupts
980      val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.ctrl.commitType)
981      interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts)
982    }
983  }
984
985  /**
986    * read and write of data modules
987    */
988  val commitReadAddr_next = Mux(state_next === s_idle,
989    VecInit(deqPtrVec_next.map(_.value)),
990    VecInit(walkPtrVec_next.map(_.value))
991  )
992  // NOTE: dispatch info will record the uop of inst
993  dispatchData.io.wen := canEnqueue
994  dispatchData.io.waddr := allocatePtrVec.map(_.value)
995  dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) =>
996    wdata.ldest := req.ctrl.ldest
997    wdata.rfWen := req.ctrl.rfWen
998    wdata.fpWen := req.ctrl.fpWen
999    wdata.vecWen := req.ctrl.vecWen
1000    wdata.wflags := req.ctrl.fpu.wflags
1001    wdata.commitType := req.ctrl.commitType
1002    wdata.pdest := req.pdest
1003    wdata.old_pdest := req.old_pdest
1004    wdata.ftqIdx := req.cf.ftqPtr
1005    wdata.ftqOffset := req.cf.ftqOffset
1006    wdata.isMove := req.eliminatedMove
1007    wdata.pc := req.cf.pc
1008    wdata.uopIdx := req.ctrl.uopIdx
1009    wdata.vconfig := req.ctrl.vconfig
1010  }
1011  dispatchData.io.raddr := commitReadAddr_next
1012
1013  exceptionGen.io.redirect <> io.redirect
1014  exceptionGen.io.flush := io.flushOut.valid
1015  for (i <- 0 until RenameWidth) {
1016    exceptionGen.io.enq(i).valid := canEnqueue(i)
1017    exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx
1018    exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec)
1019    exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe
1020    exceptionGen.io.enq(i).bits.isVset := FuType.isIntExu(io.enq.req(i).bits.ctrl.fuType) && ALUOpType.isVset(io.enq.req(i).bits.ctrl.fuOpType)
1021    exceptionGen.io.enq(i).bits.replayInst := false.B
1022    XSError(canEnqueue(i) && io.enq.req(i).bits.ctrl.replayInst, "enq should not set replayInst")
1023    exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep
1024    exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.cf.crossPageIPFFix
1025    exceptionGen.io.enq(i).bits.trigger.clear()
1026    exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.cf.trigger.frontendHit
1027  }
1028
1029  println(s"ExceptionGen:")
1030  val exceptionCases = exceptionPorts.map(_._1.flatMap(_.exceptionOut).distinct.sorted)
1031  require(exceptionCases.length == exceptionGen.io.wb.length)
1032  for ((((configs, wb), exc_wb), i) <- exceptionPorts.zip(exceptionGen.io.wb).zipWithIndex) {
1033    exc_wb.valid                := wb.valid
1034    exc_wb.bits.robIdx          := wb.bits.uop.robIdx
1035    exc_wb.bits.exceptionVec    := ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, configs)
1036    exc_wb.bits.flushPipe       := configs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe
1037    exc_wb.bits.isVset          := false.B
1038    exc_wb.bits.replayInst      := configs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst
1039    exc_wb.bits.singleStep      := false.B
1040    exc_wb.bits.crossPageIPFFix := false.B
1041    // TODO: make trigger configurable
1042    exc_wb.bits.trigger.clear()
1043    exc_wb.bits.trigger.backendHit := wb.bits.uop.cf.trigger.backendHit
1044    println(s"  [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " +
1045      s"flushPipe ${configs.exists(_.flushPipe)}, " +
1046      s"replayInst ${configs.exists(_.replayInst)}")
1047  }
1048
1049  val fflags_wb = fflagsPorts.map(_._2)
1050  val fflagsDataModule = Module(new SyncDataModuleTemplate(
1051    UInt(5.W), RobSize, CommitWidth, fflags_wb.size)
1052  )
1053  for(i <- fflags_wb.indices){
1054    fflagsDataModule.io.wen  (i) := fflags_wb(i).valid
1055    fflagsDataModule.io.waddr(i) := fflags_wb(i).bits.uop.robIdx.value
1056    fflagsDataModule.io.wdata(i) := fflags_wb(i).bits.fflags
1057  }
1058  fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value))
1059  fflagsDataRead := fflagsDataModule.io.rdata
1060
1061  val instrCntReg = RegInit(0.U(64.W))
1062  val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) })
1063  val trueCommitCnt = RegNext(commitCnt) +& fuseCommitCnt
1064  val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U)
1065  val instrCnt = instrCntReg + retireCounter
1066  instrCntReg := instrCnt
1067  io.csr.perfinfo.retiredInstr := retireCounter
1068  io.robFull := !allowEnqueue
1069
1070  /**
1071    * debug info
1072    */
1073  XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n")
1074  XSDebug("")
1075  for(i <- 0 until RobSize){
1076    XSDebug(false, !valid(i), "-")
1077    XSDebug(false, valid(i) && writebacked(i), "w")
1078    XSDebug(false, valid(i) && !writebacked(i), "v")
1079  }
1080  XSDebug(false, true.B, "\n")
1081
1082  for(i <- 0 until RobSize) {
1083    if(i % 4 == 0) XSDebug("")
1084    XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc)
1085    XSDebug(false, !valid(i), "- ")
1086    XSDebug(false, valid(i) && writebacked(i), "w ")
1087    XSDebug(false, valid(i) && !writebacked(i), "v ")
1088    if(i % 4 == 3) XSDebug(false, true.B, "\n")
1089  }
1090
1091  def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U)
1092  def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U)
1093
1094  val commitDebugExu = deqPtrVec.map(_.value).map(debug_exuDebug(_))
1095  val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_))
1096  val commitDebugLsInfo = deqPtrVec.map(_.value).map(debug_lsInfo(_))
1097  XSPerfAccumulate("clock_cycle", 1.U)
1098  QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue)
1099  XSPerfAccumulate("commitUop", ifCommit(commitCnt))
1100  XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt))
1101  val commitIsMove = commitDebugUop.map(_.ctrl.isMove)
1102  XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })))
1103  val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove)
1104  XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e })))
1105  XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt))
1106  val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD)
1107  val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t }
1108  XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid)))
1109  val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH)
1110  val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t }
1111  XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid)))
1112  val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit)
1113  XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })))
1114  val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE)
1115  XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })))
1116  XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i))))
1117  // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire)))
1118  // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready)))
1119  XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U))
1120  XSPerfAccumulate("walkCycle", state === s_walk)
1121  val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value)
1122  val deqUopCommitType = io.commits.info(0).commitType
1123  XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL)
1124  XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH)
1125  XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD)
1126  XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE)
1127  XSPerfAccumulate("robHeadPC", io.commits.info(0).pc)
1128  val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime)
1129  val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime)
1130  val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime)
1131  val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime)
1132  val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
1133  val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime)
1134  val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime)
1135  val accessLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
1136  val tlbLatency = commitDebugUop.map(uop => uop.debugInfo.tlbRespTime - uop.debugInfo.tlbFirstReqTime)
1137  def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = {
1138    cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _)
1139  }
1140  for (fuType <- FuType.functionNameMap.keys) {
1141    val fuName = FuType.functionNameMap(fuType)
1142    val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U )
1143    XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType)))
1144    XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency)))
1145    XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency)))
1146    XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency)))
1147    XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency)))
1148    XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency)))
1149    XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency)))
1150    XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency)))
1151    if (fuType == FuType.fmac.litValue) {
1152      val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 )
1153      XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma)))
1154      XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency)))
1155      XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency)))
1156    }
1157  }
1158
1159  /**
1160    * DataBase info:
1161    * log trigger is at writeback valid
1162    * */
1163  if(!env.FPGAPlatform){
1164    val instTableName = "InstDB" + p(XSCoreParamsKey).HartId.toString
1165    val instSiteName = "Rob" + p(XSCoreParamsKey).HartId.toString
1166    val debug_instTable = ChiselDB.createTable(instTableName, new DebugInstDB)
1167    // FIXME lyq: only get inst (alu, bj, ls) in exuWriteback
1168    for (wb <- exuWriteback) {
1169      when(wb.valid) {
1170        val debug_instData = Wire(new DebugInstDB)
1171        val idx = wb.bits.uop.robIdx.value
1172        debug_instData.globalID := wb.bits.uop.ctrl.debug_globalID
1173        debug_instData.robIdx := idx
1174        debug_instData.instType := wb.bits.uop.ctrl.fuType
1175        debug_instData.ivaddr := wb.bits.uop.cf.pc
1176        debug_instData.dvaddr := wb.bits.debug.vaddr
1177        debug_instData.dpaddr := wb.bits.debug.paddr
1178        debug_instData.tlbLatency := wb.bits.uop.debugInfo.tlbRespTime - wb.bits.uop.debugInfo.tlbFirstReqTime
1179        debug_instData.accessLatency := wb.bits.uop.debugInfo.writebackTime - wb.bits.uop.debugInfo.issueTime
1180        debug_instData.executeLatency := wb.bits.uop.debugInfo.writebackTime - wb.bits.uop.debugInfo.issueTime
1181        debug_instData.issueLatency := wb.bits.uop.debugInfo.issueTime - wb.bits.uop.debugInfo.selectTime
1182        debug_instData.exceptType := wb.bits.uop.cf.exceptionVec
1183        debug_instData.lsInfo := debug_lsInfo(idx)
1184        debug_instData.mdpInfo.ssid := wb.bits.uop.cf.ssid
1185        debug_instData.mdpInfo.waitAllStore := wb.bits.uop.cf.loadWaitStrict && wb.bits.uop.cf.loadWaitBit
1186        debug_instTable.log(
1187          data = debug_instData,
1188          en = wb.valid,
1189          site = instSiteName,
1190          clock = clock,
1191          reset = reset
1192        )
1193      }
1194    }
1195  }
1196
1197
1198  //difftest signals
1199  val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value
1200
1201  val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1202  val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1203
1204  for(i <- 0 until CommitWidth) {
1205    val idx = deqPtrVec(i).value
1206    wdata(i) := debug_exuData(idx)
1207    wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN)
1208  }
1209
1210  if (env.EnableDifftest) {
1211    for (i <- 0 until CommitWidth) {
1212      val difftest = Module(new DifftestInstrCommit)
1213      // assgin default value
1214      difftest.io := DontCare
1215
1216      difftest.io.clock    := clock
1217      difftest.io.coreid   := io.hartId
1218      difftest.io.index    := i.U
1219
1220      val ptr = deqPtrVec(i).value
1221      val uop = commitDebugUop(i)
1222      val exuOut = debug_exuDebug(ptr)
1223      val exuData = debug_exuData(ptr)
1224      difftest.io.valid    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1225      difftest.io.pc       := RegNext(RegNext(RegNext(SignExt(uop.cf.pc, XLEN))))
1226      difftest.io.instr    := RegNext(RegNext(RegNext(uop.cf.instr)))
1227      difftest.io.robIdx   := RegNext(RegNext(RegNext(ZeroExt(ptr, 10))))
1228      difftest.io.lqIdx    := RegNext(RegNext(RegNext(ZeroExt(uop.lqIdx.value, 7))))
1229      difftest.io.sqIdx    := RegNext(RegNext(RegNext(ZeroExt(uop.sqIdx.value, 7))))
1230      difftest.io.isLoad   := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.LOAD)))
1231      difftest.io.isStore  := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.STORE)))
1232      difftest.io.special  := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType))))
1233      // when committing an eliminated move instruction,
1234      // we must make sure that skip is properly set to false (output from EXU is random value)
1235      difftest.io.skip     := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1236      difftest.io.isRVC    := RegNext(RegNext(RegNext(uop.cf.pd.isRVC)))
1237      difftest.io.rfwen    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U)))
1238      difftest.io.fpwen    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).fpWen)))
1239      difftest.io.vecwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).vecWen)))
1240      difftest.io.wpdest   := RegNext(RegNext(RegNext(io.commits.info(i).pdest)))
1241      difftest.io.wdest    := RegNext(RegNext(RegNext(io.commits.info(i).ldest)))
1242      difftest.io.uopIdx   := RegNext(RegNext(RegNext(io.commits.info(i).uopIdx)))
1243      // // runahead commit hint
1244      // val runahead_commit = Module(new DifftestRunaheadCommitEvent)
1245      // runahead_commit.io.clock := clock
1246      // runahead_commit.io.coreid := io.hartId
1247      // runahead_commit.io.index := i.U
1248      // runahead_commit.io.valid := difftest.io.valid &&
1249      //   (commitBranchValid(i) || commitIsStore(i))
1250      // // TODO: is branch or store
1251      // runahead_commit.io.pc    := difftest.io.pc
1252    }
1253  }
1254  else if (env.AlwaysBasicDiff) {
1255    // These are the structures used by difftest only and should be optimized after synthesis.
1256    val dt_eliminatedMove = Mem(RobSize, Bool())
1257    val dt_isRVC = Mem(RobSize, Bool())
1258    val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle))
1259    for (i <- 0 until RenameWidth) {
1260      when (canEnqueue(i)) {
1261        dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove
1262        dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.cf.pd.isRVC
1263      }
1264    }
1265    for (wb <- exuWriteback) {
1266      when (wb.valid) {
1267        val wbIdx = wb.bits.uop.robIdx.value
1268        dt_exuDebug(wbIdx) := wb.bits.debug
1269      }
1270    }
1271    // Always instantiate basic difftest modules.
1272    for (i <- 0 until CommitWidth) {
1273      val commitInfo = io.commits.info(i)
1274      val ptr = deqPtrVec(i).value
1275      val exuOut = dt_exuDebug(ptr)
1276      val eliminatedMove = dt_eliminatedMove(ptr)
1277      val isRVC = dt_isRVC(ptr)
1278
1279      val difftest = Module(new DifftestBasicInstrCommit)
1280      difftest.io.clock   := clock
1281      difftest.io.coreid  := io.hartId
1282      difftest.io.index   := i.U
1283      difftest.io.valid   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1284      difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType))))
1285      difftest.io.skip    := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1286      difftest.io.isRVC   := RegNext(RegNext(RegNext(isRVC)))
1287      difftest.io.rfwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U)))
1288      difftest.io.fpwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.fpWen)))
1289      difftest.io.vecwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).vecWen)))
1290      difftest.io.wpdest  := RegNext(RegNext(RegNext(commitInfo.pdest)))
1291      difftest.io.wdest   := RegNext(RegNext(RegNext(commitInfo.ldest)))
1292      difftest.io.uopIdx  := RegNext(RegNext(RegNext(commitInfo.uopIdx)))
1293    }
1294  }
1295
1296  if (env.EnableDifftest) {
1297    for (i <- 0 until CommitWidth) {
1298      val difftest = Module(new DifftestLoadEvent)
1299      difftest.io.clock  := clock
1300      difftest.io.coreid := io.hartId
1301      difftest.io.index  := i.U
1302
1303      val ptr = deqPtrVec(i).value
1304      val uop = commitDebugUop(i)
1305      val exuOut = debug_exuDebug(ptr)
1306      difftest.io.valid  := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1307      difftest.io.paddr  := RegNext(RegNext(RegNext(exuOut.paddr)))
1308      difftest.io.opType := RegNext(RegNext(RegNext(uop.ctrl.fuOpType)))
1309      difftest.io.fuType := RegNext(RegNext(RegNext(uop.ctrl.fuType)))
1310    }
1311  }
1312
1313  // Always instantiate basic difftest modules.
1314  if (env.EnableDifftest) {
1315    val dt_isXSTrap = Mem(RobSize, Bool())
1316    for (i <- 0 until RenameWidth) {
1317      when (canEnqueue(i)) {
1318        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap
1319      }
1320    }
1321    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) }
1322    val hitTrap = trapVec.reduce(_||_)
1323    val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1))
1324    val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN)
1325    val difftest = Module(new DifftestTrapEvent)
1326    difftest.io.clock    := clock
1327    difftest.io.coreid   := io.hartId
1328    difftest.io.valid    := hitTrap
1329    difftest.io.code     := trapCode
1330    difftest.io.pc       := trapPC
1331    difftest.io.cycleCnt := timer
1332    difftest.io.instrCnt := instrCnt
1333    difftest.io.hasWFI   := hasWFI
1334  }
1335  else if (env.AlwaysBasicDiff) {
1336    val dt_isXSTrap = Mem(RobSize, Bool())
1337    for (i <- 0 until RenameWidth) {
1338      when (canEnqueue(i)) {
1339        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap
1340      }
1341    }
1342    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) }
1343    val hitTrap = trapVec.reduce(_||_)
1344    val difftest = Module(new DifftestBasicTrapEvent)
1345    difftest.io.clock    := clock
1346    difftest.io.coreid   := io.hartId
1347    difftest.io.valid    := hitTrap
1348    difftest.io.cycleCnt := timer
1349    difftest.io.instrCnt := instrCnt
1350  }
1351
1352  val validEntriesBanks = (0 until (RobSize + 63) / 64).map(i => RegNext(PopCount(valid.drop(i * 64).take(64))))
1353  val validEntries = RegNext(ParallelOperation(validEntriesBanks, (a: UInt, b: UInt) => a +& b))
1354  val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })
1355  val commitLoadVec = VecInit(commitLoadValid)
1356  val commitBranchVec = VecInit(commitBranchValid)
1357  val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })
1358  val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })
1359  val perfEvents = Seq(
1360    ("rob_interrupt_num      ", io.flushOut.valid && intrEnable                                       ),
1361    ("rob_exception_num      ", io.flushOut.valid && exceptionEnable                                  ),
1362    ("rob_flush_pipe_num     ", io.flushOut.valid && isFlushPipe                                      ),
1363    ("rob_replay_inst_num    ", io.flushOut.valid && isFlushPipe && deqHasReplayInst                  ),
1364    ("rob_commitUop          ", ifCommit(commitCnt)                                                   ),
1365    ("rob_commitInstr        ", ifCommitReg(trueCommitCnt)                                            ),
1366    ("rob_commitInstrMove    ", ifCommitReg(PopCount(RegNext(commitMoveVec)))                         ),
1367    ("rob_commitInstrFused   ", ifCommitReg(fuseCommitCnt)                                            ),
1368    ("rob_commitInstrLoad    ", ifCommitReg(PopCount(RegNext(commitLoadVec)))                         ),
1369    ("rob_commitInstrBranch  ", ifCommitReg(PopCount(RegNext(commitBranchVec)))                       ),
1370    ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec)))                     ),
1371    ("rob_commitInstrStore   ", ifCommitReg(PopCount(RegNext(commitStoreVec)))                        ),
1372    ("rob_walkInstr          ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)           ),
1373    ("rob_walkCycle          ", (state === s_walk)                                                    ),
1374    ("rob_1_4_valid          ", validEntries <= (RobSize / 4).U                                       ),
1375    ("rob_2_4_valid          ", validEntries >  (RobSize / 4).U && validEntries <= (RobSize / 2).U    ),
1376    ("rob_3_4_valid          ", validEntries >  (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U),
1377    ("rob_4_4_valid          ", validEntries >  (RobSize * 3 / 4).U                                   ),
1378  )
1379  generatePerfEvent()
1380}
1381