xref: /XiangShan/src/main/scala/xiangshan/backend/rename/Rename.scala (revision 57bb43b5f11c3f1e89ac52f232fe73056b35d9bd)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.rename
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3._
21import chisel3.util._
22import xiangshan._
23import utils._
24import xiangshan.backend.decode.{Imm_I, Imm_LUI_LOAD, Imm_U}
25import xiangshan.backend.rob.RobPtr
26import xiangshan.backend.rename.freelist._
27import xiangshan.mem.mdp._
28
29class Rename(implicit p: Parameters) extends XSModule with HasPerfEvents {
30  val io = IO(new Bundle() {
31    val redirect = Flipped(ValidIO(new Redirect))
32    val robCommits = Flipped(new RobCommitIO)
33    // from decode
34    val in = Vec(RenameWidth, Flipped(DecoupledIO(new CfCtrl)))
35    // ssit read result
36    val ssit = Flipped(Vec(RenameWidth, Output(new SSITEntry)))
37    // waittable read result
38    val waittable = Flipped(Vec(RenameWidth, Output(Bool())))
39    // to rename table
40    val intReadPorts = Vec(RenameWidth, Vec(3, Input(UInt(PhyRegIdxWidth.W))))
41    val fpReadPorts = Vec(RenameWidth, Vec(4, Input(UInt(PhyRegIdxWidth.W))))
42    val intRenamePorts = Vec(RenameWidth, Output(new RatWritePort))
43    val fpRenamePorts = Vec(RenameWidth, Output(new RatWritePort))
44    // to dispatch1
45    val out = Vec(RenameWidth, DecoupledIO(new MicroOp))
46  })
47
48  // create free list and rat
49  val intFreeList = Module(new MEFreeList(NRPhyRegs))
50  val intRefCounter = Module(new RefCounter(NRPhyRegs))
51  val fpFreeList = Module(new StdFreeList(NRPhyRegs - 32))
52
53  // decide if given instruction needs allocating a new physical register (CfCtrl: from decode; RobCommitInfo: from rob)
54  def needDestReg[T <: CfCtrl](fp: Boolean, x: T): Bool = {
55    {if(fp) x.ctrl.fpWen else x.ctrl.rfWen && (x.ctrl.ldest =/= 0.U)}
56  }
57  def needDestRegCommit[T <: RobCommitInfo](fp: Boolean, x: T): Bool = {
58    if(fp) x.fpWen else x.rfWen
59  }
60
61  // connect [redirect + walk] ports for __float point__ & __integer__ free list
62  Seq((fpFreeList, true), (intFreeList, false)).foreach{ case (fl, isFp) =>
63    fl.io.redirect := io.redirect.valid
64    fl.io.walk := io.robCommits.isWalk
65    // when isWalk, use stepBack to restore head pointer of free list
66    // (if ME enabled, stepBack of intFreeList should be useless thus optimized out)
67    fl.io.stepBack := PopCount(io.robCommits.valid.zip(io.robCommits.info).map{case (v, i) => v && needDestRegCommit(isFp, i)})
68  }
69  // walk has higher priority than allocation and thus we don't use isWalk here
70  // only when both fp and int free list and dispatch1 has enough space can we do allocation
71  intFreeList.io.doAllocate := fpFreeList.io.canAllocate && io.out(0).ready
72  fpFreeList.io.doAllocate := intFreeList.io.canAllocate && io.out(0).ready
73
74  //           dispatch1 ready ++ float point free list ready ++ int free list ready      ++ not walk
75  val canOut = io.out(0).ready && fpFreeList.io.canAllocate && intFreeList.io.canAllocate && !io.robCommits.isWalk
76
77
78  // speculatively assign the instruction with an robIdx
79  val validCount = PopCount(io.in.map(_.valid)) // number of instructions waiting to enter rob (from decode)
80  val robIdxHead = RegInit(0.U.asTypeOf(new RobPtr))
81  val lastCycleMisprediction = RegNext(io.redirect.valid && !io.redirect.bits.flushItself())
82  val robIdxHeadNext = Mux(io.redirect.valid, io.redirect.bits.robIdx, // redirect: move ptr to given rob index
83         Mux(lastCycleMisprediction, robIdxHead + 1.U, // mis-predict: not flush robIdx itself
84                         Mux(canOut, robIdxHead + validCount, // instructions successfully entered next stage: increase robIdx
85                      /* default */  robIdxHead))) // no instructions passed by this cycle: stick to old value
86  robIdxHead := robIdxHeadNext
87
88  /**
89    * Rename: allocate free physical register and update rename table
90    */
91  val uops = Wire(Vec(RenameWidth, new MicroOp))
92  uops.foreach( uop => {
93    uop.srcState(0) := DontCare
94    uop.srcState(1) := DontCare
95    uop.srcState(2) := DontCare
96    uop.robIdx := DontCare
97    uop.debugInfo := DontCare
98    uop.lqIdx := DontCare
99    uop.sqIdx := DontCare
100  })
101
102  val needFpDest = Wire(Vec(RenameWidth, Bool()))
103  val needIntDest = Wire(Vec(RenameWidth, Bool()))
104  val hasValid = Cat(io.in.map(_.valid)).orR
105
106  val isMove = io.in.map(_.bits.ctrl.isMove)
107  val intPsrc = Wire(Vec(RenameWidth, UInt()))
108
109  val intSpecWen = Wire(Vec(RenameWidth, Bool()))
110  val fpSpecWen = Wire(Vec(RenameWidth, Bool()))
111
112  // uop calculation
113  for (i <- 0 until RenameWidth) {
114    uops(i).cf := io.in(i).bits.cf
115    uops(i).ctrl := io.in(i).bits.ctrl
116
117    // update cf according to ssit result
118    uops(i).cf.storeSetHit := io.ssit(i).valid
119    uops(i).cf.loadWaitStrict := io.ssit(i).strict && io.ssit(i).valid
120    uops(i).cf.ssid := io.ssit(i).ssid
121
122    // update cf according to waittable result
123    uops(i).cf.loadWaitBit := io.waittable(i)
124
125    val inValid = io.in(i).valid
126
127    // alloc a new phy reg
128    needFpDest(i) := inValid && needDestReg(fp = true, io.in(i).bits)
129    needIntDest(i) := inValid && needDestReg(fp = false, io.in(i).bits)
130    fpFreeList.io.allocateReq(i) := needFpDest(i)
131    intFreeList.io.allocateReq(i) := needIntDest(i) && !isMove(i)
132
133    // no valid instruction from decode stage || all resources (dispatch1 + both free lists) ready
134    io.in(i).ready := !hasValid || canOut
135
136    uops(i).robIdx := robIdxHead + PopCount(io.in.take(i).map(_.valid))
137
138    val intPhySrcVec = io.intReadPorts(i).take(2)
139    val intOldPdest = io.intReadPorts(i).last
140    intPsrc(i) := intPhySrcVec(0)
141    val fpPhySrcVec = io.fpReadPorts(i).take(3)
142    val fpOldPdest = io.fpReadPorts(i).last
143    uops(i).psrc(0) := Mux(uops(i).ctrl.srcType(0) === SrcType.reg, intPhySrcVec(0), fpPhySrcVec(0))
144    uops(i).psrc(1) := Mux(uops(i).ctrl.srcType(1) === SrcType.reg, intPhySrcVec(1), fpPhySrcVec(1))
145    uops(i).psrc(2) := fpPhySrcVec(2)
146    uops(i).old_pdest := Mux(uops(i).ctrl.rfWen, intOldPdest, fpOldPdest)
147    uops(i).eliminatedMove := isMove(i)
148
149    // update pdest
150    uops(i).pdest := Mux(needIntDest(i), intFreeList.io.allocatePhyReg(i), // normal int inst
151      // normal fp inst
152      Mux(needFpDest(i), fpFreeList.io.allocatePhyReg(i),
153        /* default */0.U))
154
155    // Assign performance counters
156    uops(i).debugInfo.renameTime := GTimer()
157
158    io.out(i).valid := io.in(i).valid && intFreeList.io.canAllocate && fpFreeList.io.canAllocate && !io.robCommits.isWalk
159    io.out(i).bits := uops(i)
160    when (io.out(i).bits.ctrl.fuType === FuType.fence) {
161      io.out(i).bits.ctrl.imm := Cat(io.in(i).bits.ctrl.lsrc(1), io.in(i).bits.ctrl.lsrc(0))
162    }
163
164    // write speculative rename table
165    // we update rat later inside commit code
166    intSpecWen(i) := needIntDest(i) && intFreeList.io.canAllocate && intFreeList.io.doAllocate && !io.robCommits.isWalk && !io.redirect.valid
167    fpSpecWen(i) := needFpDest(i) && fpFreeList.io.canAllocate && fpFreeList.io.doAllocate && !io.robCommits.isWalk && !io.redirect.valid
168
169    intRefCounter.io.allocate(i).valid := intSpecWen(i)
170    intRefCounter.io.allocate(i).bits := io.out(i).bits.pdest
171  }
172
173  /**
174    * How to set psrc:
175    * - bypass the pdest to psrc if previous instructions write to the same ldest as lsrc
176    * - default: psrc from RAT
177    * How to set pdest:
178    * - Mux(isMove, psrc, pdest_from_freelist).
179    *
180    * The critical path of rename lies here:
181    * When move elimination is enabled, we need to update the rat with psrc.
182    * However, psrc maybe comes from previous instructions' pdest, which comes from freelist.
183    *
184    * If we expand these logic for pdest(N):
185    * pdest(N) = Mux(isMove(N), psrc(N), freelist_out(N))
186    *          = Mux(isMove(N), Mux(bypass(N, N - 1), pdest(N - 1),
187    *                           Mux(bypass(N, N - 2), pdest(N - 2),
188    *                           ...
189    *                           Mux(bypass(N, 0),     pdest(0),
190    *                                                 rat_out(N))...)),
191    *                           freelist_out(N))
192    */
193  // a simple functional model for now
194  io.out(0).bits.pdest := Mux(isMove(0), uops(0).psrc.head, uops(0).pdest)
195  val bypassCond = Wire(Vec(4, MixedVec(List.tabulate(RenameWidth-1)(i => UInt((i+1).W)))))
196  for (i <- 1 until RenameWidth) {
197    val fpCond = io.in(i).bits.ctrl.srcType.map(_ === SrcType.fp) :+ needFpDest(i)
198    val intCond = io.in(i).bits.ctrl.srcType.map(_ === SrcType.reg) :+ needIntDest(i)
199    val target = io.in(i).bits.ctrl.lsrc :+ io.in(i).bits.ctrl.ldest
200    for ((((cond1, cond2), t), j) <- fpCond.zip(intCond).zip(target).zipWithIndex) {
201      val destToSrc = io.in.take(i).zipWithIndex.map { case (in, j) =>
202        val indexMatch = in.bits.ctrl.ldest === t
203        val writeMatch =  cond2 && needIntDest(j) || cond1 && needFpDest(j)
204        indexMatch && writeMatch
205      }
206      bypassCond(j)(i - 1) := VecInit(destToSrc).asUInt
207    }
208    io.out(i).bits.psrc(0) := io.out.take(i).map(_.bits.pdest).zip(bypassCond(0)(i-1).asBools).foldLeft(uops(i).psrc(0)) {
209      (z, next) => Mux(next._2, next._1, z)
210    }
211    io.out(i).bits.psrc(1) := io.out.take(i).map(_.bits.pdest).zip(bypassCond(1)(i-1).asBools).foldLeft(uops(i).psrc(1)) {
212      (z, next) => Mux(next._2, next._1, z)
213    }
214    io.out(i).bits.psrc(2) := io.out.take(i).map(_.bits.pdest).zip(bypassCond(2)(i-1).asBools).foldLeft(uops(i).psrc(2)) {
215      (z, next) => Mux(next._2, next._1, z)
216    }
217    io.out(i).bits.old_pdest := io.out.take(i).map(_.bits.pdest).zip(bypassCond(3)(i-1).asBools).foldLeft(uops(i).old_pdest) {
218      (z, next) => Mux(next._2, next._1, z)
219    }
220    io.out(i).bits.pdest := Mux(isMove(i), io.out(i).bits.psrc(0), uops(i).pdest)
221
222    // For fused-lui-load, load.src(0) is replaced by the imm.
223    val last_is_lui = io.in(i - 1).bits.ctrl.selImm === SelImm.IMM_U && io.in(i - 1).bits.ctrl.srcType(0) =/= SrcType.pc
224    val this_is_load = io.in(i).bits.ctrl.fuType === FuType.ldu && !LSUOpType.isPrefetch(io.in(i).bits.ctrl.fuOpType)
225    val lui_to_load = io.in(i - 1).valid && io.in(i - 1).bits.ctrl.ldest === io.in(i).bits.ctrl.lsrc(0)
226    val fused_lui_load = last_is_lui && this_is_load && lui_to_load
227    when (fused_lui_load) {
228      // The first LOAD operand (base address) is replaced by LUI-imm and stored in {psrc, imm}
229      val lui_imm = io.in(i - 1).bits.ctrl.imm
230      val ld_imm = io.in(i).bits.ctrl.imm
231      io.out(i).bits.ctrl.srcType(0) := SrcType.imm
232      io.out(i).bits.ctrl.imm := Imm_LUI_LOAD().immFromLuiLoad(lui_imm, ld_imm)
233      val psrcWidth = uops(i).psrc.head.getWidth
234      val lui_imm_in_imm = uops(i).ctrl.imm.getWidth - Imm_I().len
235      val left_lui_imm = Imm_U().len - lui_imm_in_imm
236      require(2 * psrcWidth >= left_lui_imm, "cannot fused lui and load with psrc")
237      io.out(i).bits.psrc(0) := lui_imm(lui_imm_in_imm + psrcWidth - 1, lui_imm_in_imm)
238      io.out(i).bits.psrc(1) := lui_imm(lui_imm.getWidth - 1, lui_imm_in_imm + psrcWidth)
239    }
240
241  }
242
243  /**
244    * Instructions commit: update freelist and rename table
245    */
246  for (i <- 0 until CommitWidth) {
247
248    Seq((io.intRenamePorts, false), (io.fpRenamePorts, true)) foreach { case (rat, fp) =>
249      // is valid commit req and given instruction has destination register
250      val commitDestValid = io.robCommits.valid(i) && needDestRegCommit(fp, io.robCommits.info(i))
251      XSDebug(p"isFp[${fp}]index[$i]-commitDestValid:$commitDestValid,isWalk:${io.robCommits.isWalk}\n")
252
253      /*
254      I. RAT Update
255       */
256
257      // walk back write - restore spec state : ldest => old_pdest
258      if (fp && i < RenameWidth) {
259        // When redirect happens (mis-prediction), don't update the rename table
260        rat(i).wen := fpSpecWen(i)
261        rat(i).addr := uops(i).ctrl.ldest
262        rat(i).data := fpFreeList.io.allocatePhyReg(i)
263      } else if (!fp && i < RenameWidth) {
264        rat(i).wen := intSpecWen(i)
265        rat(i).addr := uops(i).ctrl.ldest
266        rat(i).data := io.out(i).bits.pdest
267      }
268
269      /*
270      II. Free List Update
271       */
272      if (fp) { // Float Point free list
273        fpFreeList.io.freeReq(i)  := commitDestValid && !io.robCommits.isWalk
274        fpFreeList.io.freePhyReg(i) := io.robCommits.info(i).old_pdest
275      } else { // Integer free list
276        intFreeList.io.freeReq(i) := intRefCounter.io.freeRegs(i).valid
277        intFreeList.io.freePhyReg(i) := intRefCounter.io.freeRegs(i).bits
278      }
279    }
280    intRefCounter.io.deallocate(i).valid := io.robCommits.valid(i) && needDestRegCommit(false, io.robCommits.info(i))
281    intRefCounter.io.deallocate(i).bits := Mux(io.robCommits.isWalk, io.robCommits.info(i).pdest, io.robCommits.info(i).old_pdest)
282  }
283
284  /*
285  Debug and performance counters
286   */
287  def printRenameInfo(in: DecoupledIO[CfCtrl], out: DecoupledIO[MicroOp]) = {
288    XSInfo(out.fire, p"pc:${Hexadecimal(in.bits.cf.pc)} in(${in.valid},${in.ready}) " +
289      p"lsrc(0):${in.bits.ctrl.lsrc(0)} -> psrc(0):${out.bits.psrc(0)} " +
290      p"lsrc(1):${in.bits.ctrl.lsrc(1)} -> psrc(1):${out.bits.psrc(1)} " +
291      p"lsrc(2):${in.bits.ctrl.lsrc(2)} -> psrc(2):${out.bits.psrc(2)} " +
292      p"ldest:${in.bits.ctrl.ldest} -> pdest:${out.bits.pdest} " +
293      p"old_pdest:${out.bits.old_pdest}\n"
294    )
295  }
296
297  for((x,y) <- io.in.zip(io.out)){
298    printRenameInfo(x, y)
299  }
300
301  XSDebug(io.robCommits.isWalk, p"Walk Recovery Enabled\n")
302  XSDebug(io.robCommits.isWalk, p"validVec:${Binary(io.robCommits.valid.asUInt)}\n")
303  for (i <- 0 until CommitWidth) {
304    val info = io.robCommits.info(i)
305    XSDebug(io.robCommits.isWalk && io.robCommits.valid(i), p"[#$i walk info] pc:${Hexadecimal(info.pc)} " +
306      p"ldest:${info.ldest} rfWen:${info.rfWen} fpWen:${info.fpWen} " +
307      p"pdest:${info.pdest} old_pdest:${info.old_pdest}\n")
308  }
309
310  XSDebug(p"inValidVec: ${Binary(Cat(io.in.map(_.valid)))}\n")
311
312  XSPerfAccumulate("in", Mux(RegNext(io.in(0).ready), PopCount(io.in.map(_.valid)), 0.U))
313  XSPerfAccumulate("utilization", PopCount(io.in.map(_.valid)))
314  XSPerfAccumulate("waitInstr", PopCount((0 until RenameWidth).map(i => io.in(i).valid && !io.in(i).ready)))
315  XSPerfAccumulate("stall_cycle_dispatch", hasValid && !io.out(0).ready && fpFreeList.io.canAllocate && intFreeList.io.canAllocate && !io.robCommits.isWalk)
316  XSPerfAccumulate("stall_cycle_fp", hasValid && io.out(0).ready && !fpFreeList.io.canAllocate && intFreeList.io.canAllocate && !io.robCommits.isWalk)
317  XSPerfAccumulate("stall_cycle_int", hasValid && io.out(0).ready && fpFreeList.io.canAllocate && !intFreeList.io.canAllocate && !io.robCommits.isWalk)
318  XSPerfAccumulate("stall_cycle_walk", hasValid && io.out(0).ready && fpFreeList.io.canAllocate && intFreeList.io.canAllocate && io.robCommits.isWalk)
319
320  XSPerfAccumulate("move_instr_count", PopCount(io.out.map(out => out.fire() && out.bits.ctrl.isMove)))
321  val is_fused_lui_load = io.out.map(o => o.fire() && o.bits.ctrl.fuType === FuType.ldu && o.bits.ctrl.srcType(0) === SrcType.imm)
322  XSPerfAccumulate("fused_lui_load_instr_count", PopCount(is_fused_lui_load))
323
324
325  val renamePerf = Seq(
326    ("rename_in                  ", PopCount(io.in.map(_.valid & io.in(0).ready ))                                                               ),
327    ("rename_waitinstr           ", PopCount((0 until RenameWidth).map(i => io.in(i).valid && !io.in(i).ready))                                  ),
328    ("rename_stall_cycle_dispatch", hasValid && !io.out(0).ready &&  fpFreeList.io.canAllocate &&  intFreeList.io.canAllocate && !io.robCommits.isWalk),
329    ("rename_stall_cycle_fp      ", hasValid &&  io.out(0).ready && !fpFreeList.io.canAllocate &&  intFreeList.io.canAllocate && !io.robCommits.isWalk),
330    ("rename_stall_cycle_int     ", hasValid &&  io.out(0).ready &&  fpFreeList.io.canAllocate && !intFreeList.io.canAllocate && !io.robCommits.isWalk),
331    ("rename_stall_cycle_walk    ", hasValid &&  io.out(0).ready &&  fpFreeList.io.canAllocate &&  intFreeList.io.canAllocate &&  io.robCommits.isWalk)
332  )
333  val intFlPerf = intFreeList.getPerfEvents
334  val fpFlPerf = fpFreeList.getPerfEvents
335  val perfEvents = renamePerf ++ intFlPerf ++ fpFlPerf
336  generatePerfEvent()
337}
338