1package xiangshan.backend.issue 2 3import chisel3._ 4import chisel3.util._ 5import xiangshan._ 6import xiangshan.utils._ 7 8trait IQConst{ 9 val iqSize = 8 10 val iqIdxWidth = log2Up(iqSize) 11 val layer1Size = iqSize 12 val layer2Size = iqSize/2 13 val debug = true 14} 15 16sealed abstract class IQBundle extends XSBundle with IQConst 17sealed abstract class IQModule extends XSModule with IQConst with NeedImpl 18 19sealed class CmpInputBundle extends IQBundle{ 20 val instRdy = Input(Bool()) 21 val roqIdx = Input(UInt(RoqIdxWidth.W)) 22 val iqIdx = Input(UInt(iqIdxWidth.W)) 23} 24 25 26sealed class CompareCircuitUnit(layer: Int = 0, id: Int = 0) extends IQModule { 27 val io = IO(new Bundle(){ 28 val in1 = new CmpInputBundle 29 val in2 = new CmpInputBundle 30 val out = Flipped(new CmpInputBundle) 31 }) 32 33 val roqIdx1 = io.in1.roqIdx 34 val roqIdx2 = io.in2.roqIdx 35 val iqIdx1 = io.in1.iqIdx 36 val iqIdx2 = io.in2.iqIdx 37 38 val inst1Rdy = io.in1.instRdy 39 val inst2Rdy = io.in2.instRdy 40 41 io.out.instRdy := inst1Rdy | inst2Rdy 42 io.out.roqIdx := roqIdx2 43 io.out.iqIdx := iqIdx2 44 45 when((inst1Rdy && !inst2Rdy) || (inst1Rdy && inst2Rdy && (roqIdx1 < roqIdx2))){ 46 io.out.roqIdx := roqIdx1 47 io.out.iqIdx := iqIdx1 48 } 49 if(debug && (layer==3)) { 50 printf("(%d)[CCU(L%did%d)] in1.ready:%d in1.index:%d || in1.ready:%d in1.index:%d || out.ready:%d out.index:%d\n",GTimer(),layer.asUInt,id.asUInt,inst1Rdy,iqIdx1,inst2Rdy,iqIdx2,io.out.instRdy,io.out.iqIdx) 51 } 52 53 54} 55 56class IssueQueue(val fuTypeInt: BigInt, val wakeupCnt: Int, val bypassCnt: Int = 0, val fixedDelay: Int = 1) extends IQModule { 57 58 val useBypass = bypassCnt > 0 59 60 val io = IO(new Bundle() { 61 // flush Issue Queue 62 val redirect = Flipped(ValidIO(new Redirect)) 63 64 // enq Ctrl sigs at dispatch-2 65 val enqCtrl = Flipped(DecoupledIO(new MicroOp)) 66 // enq Data at next cycle (regfile has 1 cycle latency) 67 val enqData = Flipped(ValidIO(new ExuInput)) 68 69 // broadcast selected uop to other issue queues which has bypasses 70 val selectedUop = if(useBypass) ValidIO(new MicroOp) else null 71 72 // send to exu 73 val deq = DecoupledIO(new ExuInput) 74 75 // listen to write back bus 76 val wakeUpPorts = Vec(wakeupCnt, Flipped(ValidIO(new ExuOutput))) 77 78 // use bypass uops to speculative wake-up 79 val bypassUops = if(useBypass) Vec(bypassCnt, Flipped(ValidIO(new MicroOp))) else null 80 val bypassData = if(useBypass) Vec(bypassCnt, Flipped(ValidIO(new ExuOutput))) else null 81 }) 82 //--------------------------------------------------------- 83 // Issue Queue 84 //--------------------------------------------------------- 85 86 //Tag Queue 87 val ctrlFlow = Mem(iqSize,new CtrlFlow) 88 val ctrlSig = Mem(iqSize,new CtrlSignals) 89 val brMask = RegInit(VecInit(Seq.fill(iqSize)(0.U(BrqSize.W)))) 90 val valid = RegInit(VecInit(Seq.fill(iqSize)(false.B))) 91 val src1Rdy = RegInit(VecInit(Seq.fill(iqSize)(false.B))) 92 val src2Rdy = RegInit(VecInit(Seq.fill(iqSize)(false.B))) 93 val src3Rdy = RegInit(VecInit(Seq.fill(iqSize)(false.B))) 94 val prfSrc1 = Reg(Vec(iqSize, UInt(PhyRegIdxWidth.W))) 95 val prfSrc2 = Reg(Vec(iqSize, UInt(PhyRegIdxWidth.W))) 96 val prfSrc3 = Reg(Vec(iqSize, UInt(PhyRegIdxWidth.W))) 97 val prfDest = Reg(Vec(iqSize, UInt(PhyRegIdxWidth.W))) 98 val oldPDest = Reg(Vec(iqSize, UInt(PhyRegIdxWidth.W))) 99 val freelistAllocPtr = Reg(Vec(iqSize, UInt(PhyRegIdxWidth.W))) 100 val roqIdx = Reg(Vec(iqSize, UInt(RoqIdxWidth.W))) 101 102 val instRdy = WireInit(VecInit(List.tabulate(iqSize)(i => src1Rdy(i) && src2Rdy(i) && valid(i)))) 103 104 105 //tag enqueue 106 val iqEmty = !valid.asUInt.orR 107 val iqFull = valid.asUInt.andR 108 val iqAllowIn = !iqFull 109 io.enqCtrl.ready := iqAllowIn 110 111 //enqueue pointer 112 val emptySlot = ~valid.asUInt 113 val enqueueSelect = PriorityEncoder(emptySlot) 114 assert(!(io.enqCtrl.valid && io.redirect.valid),"enqueue valid should be false when redirect valid") 115 116 when(io.enqCtrl.fire()){ 117 ctrlFlow(enqueueSelect) := io.enqCtrl.bits.cf 118 ctrlSig(enqueueSelect) := io.enqCtrl.bits.ctrl 119 brMask(enqueueSelect) := io.enqCtrl.bits.brMask 120 valid(enqueueSelect) := true.B 121 src1Rdy(enqueueSelect) := io.enqCtrl.bits.src1State === SrcState.rdy 122 src2Rdy(enqueueSelect) := io.enqCtrl.bits.src2State === SrcState.rdy 123 src3Rdy(enqueueSelect) := io.enqCtrl.bits.src3State === SrcState.rdy 124 prfSrc1(enqueueSelect) := io.enqCtrl.bits.psrc1 125 prfSrc2(enqueueSelect) := io.enqCtrl.bits.psrc2 126 prfSrc3(enqueueSelect) := io.enqCtrl.bits.psrc3 127 prfDest(enqueueSelect) := io.enqCtrl.bits.pdest 128 oldPDest(enqueueSelect) := io.enqCtrl.bits.old_pdest 129 freelistAllocPtr(enqueueSelect) := io.enqCtrl.bits.freelistAllocPtr 130 roqIdx(enqueueSelect) := io.enqCtrl.bits.roqIdx 131 if(debug) {printf("(%d)[IQ enq]: enqSelect:%d | s1Rd:%d s2Rd:%d s3Rd:%d\n",GTimer(),enqueueSelect.asUInt, 132 (io.enqCtrl.bits.src1State === SrcState.rdy), 133 (io.enqCtrl.bits.src2State === SrcState.rdy), 134 (io.enqCtrl.bits.src3State === SrcState.rdy))} 135 136 } 137 138 //Data Queue 139 val src1Data = Reg(Vec(iqSize, UInt(XLEN.W))) 140 val src2Data = Reg(Vec(iqSize, UInt(XLEN.W))) 141 val src3Data = Reg(Vec(iqSize, UInt(XLEN.W))) 142 143 val enqSelNext = RegNext(enqueueSelect) 144 val enqFireNext = RegNext(io.enqCtrl.fire()) 145 146 // Read RegFile 147 when (enqFireNext) { 148 src1Data(enqSelNext) := io.enqData.bits.src1 149 src2Data(enqSelNext) := io.enqData.bits.src2 150 src3Data(enqSelNext) := io.enqData.bits.src3 151 } 152 153 if(debug) { 154 printf("(%d)[Reg info] enqSelNext:%d | enqFireNext:%d \n",GTimer(),enqSelNext,enqFireNext) 155 printf("(%d)[IQ content] valid src1rdy src1 src2Rdy src2 pdest \n",GTimer()) 156 for(i <- 0 to (iqSize -1)){ 157 printf("(%d)[IQ content][%d] %d %x %x %x %x %d",GTimer(),i.asUInt,valid(i), src1Rdy(i), src1Data(i), src2Rdy(i), src2Data(i),prfDest(i)) 158 when(valid(i)){printf(" valid")} 159 printf(" |\n") 160 } 161 } 162 // From Common Data Bus(wakeUpPort) 163 // chisel claims that firrtl will optimize Mux1H to and/or tree 164 // TODO: ignore ALU'cdb srcRdy, for byPass has done it 165 if(wakeupCnt > 0) { 166 val cdbValid = List.tabulate(wakeupCnt)(i => io.wakeUpPorts(i).valid) 167 val cdbData = List.tabulate(wakeupCnt)(i => io.wakeUpPorts(i).bits.data) 168 val cdbPdest = List.tabulate(wakeupCnt)(i => io.wakeUpPorts(i).bits.uop.pdest) 169 170 val srcNum = 3 171 val prfSrc = List(prfSrc1, prfSrc2, prfSrc3) 172 val srcRdy = List(src1Rdy, src2Rdy, src3Rdy) 173 val srcData = List(src1Data, src2Data, src3Data) 174 val srcHitVec = List.tabulate(srcNum)(k => 175 List.tabulate(iqSize)(i => 176 List.tabulate(wakeupCnt)(j => 177 (prfSrc(k)(i) === cdbPdest(j)) && cdbValid(j)))) 178 val srcHit = List.tabulate(srcNum)(k => 179 List.tabulate(iqSize)(i => 180 ParallelOR(srcHitVec(k)(i)).asBool())) 181 // VecInit(srcHitVec(k)(i)).asUInt.orR)) 182 for(k <- 0 until srcNum){ 183 for(i <- 0 until iqSize)( when (valid(i)) { 184 when(!srcRdy(k)(i) && srcHit(k)(i)) { 185 srcRdy(k)(i) := true.B 186 // srcData(k)(i) := Mux1H(srcHitVec(k)(i), cdbData) 187 srcData(k)(i) := ParallelMux(srcHitVec(k)(i) zip cdbData) 188 } 189 }) 190 } 191 // From byPass [speculative] (just for ALU to listen to other ALU's res, include itself) 192 // just need Tag(Ctrl). send out Tag when Tag is decided. other ALUIQ listen to them and decide Tag 193 // byPassUops is one cycle before byPassDatas 194 if (bypassCnt > 0) { 195 val bypassPdest = List.tabulate(bypassCnt)(i => io.bypassUops(i).bits.pdest) 196 val bypassValid = List.tabulate(bypassCnt)(i => io.bypassUops(i).valid) // may only need valid not fire() 197 val bypassData = List.tabulate(bypassCnt)(i => io.bypassData(i).bits.data) 198 val srcBpHitVec = List.tabulate(srcNum)(k => 199 List.tabulate(iqSize)(i => 200 List.tabulate(bypassCnt)(j => 201 (prfSrc(k)(i) === bypassPdest(j)) && bypassValid(j)))) 202 val srcBpHit = List.tabulate(srcNum)(k => 203 List.tabulate(iqSize)(i => 204 ParallelOR(srcBpHitVec(k)(i)).asBool())) 205 // VecInit(srcBpHitVec(k)(i)).asUInt.orR)) 206 val srcBpHitVecNext = List.tabulate(srcNum)(k => 207 List.tabulate(iqSize)(i => 208 List.tabulate(bypassCnt)(j => RegNext(srcBpHitVec(k)(i)(j))))) 209 val srcBpHitNext = List.tabulate(srcNum)(k => 210 List.tabulate(iqSize)(i => 211 RegNext(srcBpHit(k)(i)))) 212 val srcBpData = List.tabulate(srcNum)(k => 213 List.tabulate(iqSize)(i => 214 ParallelMux(srcBpHitVecNext(k)(i) zip bypassData))) 215 // Mux1H(srcBpHitVecNext(k)(i), bypassData))) 216 for(k <- 0 until srcNum){ 217 for(i <- 0 until iqSize){ when (valid(i)) { 218 when(valid(i) && !srcRdy(k)(i) && srcBpHit(k)(i)) { srcRdy(k)(i) := true.B } 219 when(srcBpHitNext(k)(i)) { srcData(k)(i) := srcBpData(k)(i)} 220 }} 221 } 222 } 223 } 224 225 226 //--------------------------------------------------------- 227 // Select Circuit 228 //--------------------------------------------------------- 229 //layer 1 230 val layer1CCUs = (0 until layer1Size by 2) map { i => 231 val CCU_1 = Module(new CompareCircuitUnit(layer = 1, id = i/2)) 232 CCU_1.io.in1.instRdy := instRdy(i) 233 CCU_1.io.in1.roqIdx := roqIdx(i) 234 CCU_1.io.in1.iqIdx := i.U 235 236 CCU_1.io.in2.instRdy := instRdy(i+1) 237 CCU_1.io.in2.roqIdx := roqIdx(i+1) 238 CCU_1.io.in2.iqIdx := (i+1).U 239 240 CCU_1 241 } 242 243 //layer 2 244 val layer2CCUs = (0 until layer2Size by 2) map { i => 245 val CCU_2 = Module(new CompareCircuitUnit(layer = 2, id = i/2)) 246 CCU_2.io.in1.instRdy := layer1CCUs(i).io.out.instRdy 247 CCU_2.io.in1.roqIdx := layer1CCUs(i).io.out.roqIdx 248 CCU_2.io.in1.iqIdx := layer1CCUs(i).io.out.iqIdx 249 250 CCU_2.io.in2.instRdy := layer1CCUs(i+1).io.out.instRdy 251 CCU_2.io.in2.roqIdx := layer1CCUs(i+1).io.out.roqIdx 252 CCU_2.io.in2.iqIdx := layer1CCUs(i+1).io.out.iqIdx 253 254 CCU_2 255 } 256 257 //layer 3 258 val CCU_3 = Module(new CompareCircuitUnit(layer = 3, id = 0)) 259 CCU_3.io.in1.instRdy := layer2CCUs(0).io.out.instRdy 260 CCU_3.io.in1.roqIdx := layer2CCUs(0).io.out.roqIdx 261 CCU_3.io.in1.iqIdx := layer2CCUs(0).io.out.iqIdx 262 263 CCU_3.io.in2.instRdy := layer2CCUs(1).io.out.instRdy 264 CCU_3.io.in2.roqIdx := layer2CCUs(1).io.out.roqIdx 265 CCU_3.io.in2.iqIdx := layer2CCUs(1).io.out.iqIdx 266 267 268 //--------------------------------------------------------- 269 // Redirect Logic 270 //--------------------------------------------------------- 271 val expRedirect = io.redirect.valid && io.redirect.bits.isException 272 val brRedirect = io.redirect.valid && !io.redirect.bits.isException 273 274 List.tabulate(iqSize)( i => 275 when(brRedirect && (UIntToOH(io.redirect.bits.brTag) & brMask(i)).orR && valid(i) ){ 276 valid(i) := false.B 277 } .elsewhen(expRedirect) { 278 valid(i) := false.B 279 } 280 ) 281 //--------------------------------------------------------- 282 // Dequeue Logic 283 //--------------------------------------------------------- 284 //hold the sel-index to wait for data 285 val selInstIdx = RegInit(0.U(iqIdxWidth.W)) 286 val selInstRdy = RegInit(false.B) 287 288 //issue the select instruction 289 val dequeueSelect = Wire(UInt(iqIdxWidth.W)) 290 dequeueSelect := selInstIdx 291 292 val brRedirectMaskMatch = (UIntToOH(io.redirect.bits.brTag) & brMask(dequeueSelect)).orR 293 val IQreadyGo = selInstRdy && !expRedirect && (!brRedirect || !brRedirectMaskMatch) 294 295 io.deq.valid := IQreadyGo 296 297 io.deq.bits.uop.psrc1 := prfSrc1(dequeueSelect) 298 io.deq.bits.uop.psrc2 := prfSrc2(dequeueSelect) 299 io.deq.bits.uop.psrc3 := prfSrc3(dequeueSelect) 300 io.deq.bits.uop.pdest := prfDest(dequeueSelect) 301 io.deq.bits.uop.old_pdest := oldPDest(dequeueSelect) 302 io.deq.bits.uop.src1State := SrcState.rdy 303 io.deq.bits.uop.src2State := SrcState.rdy 304 io.deq.bits.uop.src3State := SrcState.rdy 305 io.deq.bits.uop.freelistAllocPtr := freelistAllocPtr(dequeueSelect) 306 io.deq.bits.uop.roqIdx := roqIdx(dequeueSelect) 307 308 //TODO 309 io.deq.bits.redirect := DontCare 310 311 io.deq.bits.src1 := src1Data(dequeueSelect) 312 io.deq.bits.src2 := src2Data(dequeueSelect) 313 io.deq.bits.src3 := src3Data(dequeueSelect) 314 315 if(debug) { 316 printf("(%d)[Sel Reg] selInstRdy:%d || selIdx:%d\n",GTimer(),selInstRdy,selInstIdx.asUInt) 317 when(IQreadyGo){printf("(%d)[IQ dequeue] dequeueSel:%d | src1Rd:%d src1:%d | src2Rd:%d src2:%d\n",GTimer(),dequeueSelect.asUInt, 318 (io.deq.bits.uop.src1State === SrcState.rdy), io.deq.bits.uop.psrc1, 319 (io.deq.bits.uop.src2State === SrcState.rdy), io.deq.bits.uop.psrc2 320 )} 321 } 322 323 //update the index register of instruction that can be issue, unless function unit not allow in 324 //then the issue will be stopped to wait the function unit 325 //clear the validBit of dequeued instruction in issuequeue 326 when(io.deq.fire()){ 327 valid(dequeueSelect) := false.B 328 } 329 330 selInstRdy := CCU_3.io.out.instRdy 331 selInstIdx := CCU_3.io.out.iqIdx 332 // SelectedUop (bypass / speculative) 333 if(useBypass) { 334 def DelayPipe[T <: Data](a: T, delay: Int = 0) = { 335 val storage = Wire(VecInit(Seq.fill(delay+1)(a))) 336 // storage(0) := a 337 for(i <- 1 until delay) { 338 storage(i) := RegNext(storage(i-1)) 339 } 340 storage(delay) 341 } 342 val sel = io.selectedUop 343 val selIQIdx = CCU_3.io.out.iqIdx 344 val delayPipe = DelayPipe(VecInit(CCU_3.io.out.instRdy, prfDest(selIQIdx)), fixedDelay-1) 345 sel.valid := delayPipe(fixedDelay-1)(0) 346 sel.bits := DontCare 347 sel.bits.pdest := delayPipe(fixedDelay-1)(1) 348 } 349} 350