1package xiangshan.backend.issue 2 3import chisel3._ 4import chisel3.util._ 5import xiangshan._ 6import xiangshan.utils._ 7 8trait IQConst{ 9 val iqSize = 8 10 val iqIdxWidth = log2Up(iqSize) 11 val layer1Size = iqSize 12 val layer2Size = iqSize/2 13 val debug = true 14} 15 16sealed abstract class IQBundle extends XSBundle with IQConst 17sealed abstract class IQModule extends XSModule with IQConst with NeedImpl 18 19sealed class CmpInputBundle extends IQBundle{ 20 val instRdy = Input(Bool()) 21 val roqIdx = Input(UInt(RoqIdxWidth.W)) 22 val iqIdx = Input(UInt(iqIdxWidth.W)) 23} 24 25 26sealed class CompareCircuitUnit(layer: Int = 0, id: Int = 0) extends IQModule { 27 val io = IO(new Bundle(){ 28 val in1 = new CmpInputBundle 29 val in2 = new CmpInputBundle 30 val out = Flipped(new CmpInputBundle) 31 }) 32 33 val roqIdx1 = io.in1.roqIdx 34 val roqIdx2 = io.in2.roqIdx 35 val iqIdx1 = io.in1.iqIdx 36 val iqIdx2 = io.in2.iqIdx 37 38 val inst1Rdy = io.in1.instRdy 39 val inst2Rdy = io.in2.instRdy 40 41 io.out.instRdy := inst1Rdy | inst2Rdy 42 io.out.roqIdx := roqIdx2 43 io.out.iqIdx := iqIdx2 44 45 when((inst1Rdy && !inst2Rdy) || (inst1Rdy && inst2Rdy && (roqIdx1 < roqIdx2))){ 46 io.out.roqIdx := roqIdx1 47 io.out.iqIdx := iqIdx1 48 } 49 if(debug && (layer==3)) { 50 printf("(%d)[CCU(L%did%d)] in1.ready:%d in1.index:%d || in1.ready:%d in1.index:%d || out.ready:%d out.index:%d\n",GTimer(),layer.asUInt,id.asUInt,inst1Rdy,iqIdx1,inst2Rdy,iqIdx2,io.out.instRdy,io.out.iqIdx) 51 } 52 53 54} 55 56class IssueQueue(val fuTypeInt: BigInt, val wakeupCnt: Int, val bypassCnt: Int = 0, val fixedDelay: Int = 1) extends IQModule { 57 58 val useBypass = bypassCnt > 0 59 60 val io = IO(new Bundle() { 61 // flush Issue Queue 62 val redirect = Flipped(ValidIO(new Redirect)) 63 64 // enq Ctrl sigs at dispatch-2 65 val enqCtrl = Flipped(DecoupledIO(new MicroOp)) 66 // enq Data at next cycle (regfile has 1 cycle latency) 67 val enqData = Flipped(ValidIO(new ExuInput)) 68 69 // broadcast selected uop to other issue queues which has bypasses 70 val selectedUop = if(useBypass) ValidIO(new MicroOp) else null 71 72 // send to exu 73 val deq = DecoupledIO(new ExuInput) 74 75 // listen to write back bus 76 val wakeUpPorts = Vec(wakeupCnt, Flipped(ValidIO(new ExuOutput))) 77 78 // use bypass uops to speculative wake-up 79 val bypassUops = if(useBypass) Vec(bypassCnt, Flipped(ValidIO(new MicroOp))) else null 80 val bypassData = if(useBypass) Vec(bypassCnt, Flipped(ValidIO(new ExuOutput))) else null 81 }) 82 //--------------------------------------------------------- 83 // Issue Queue 84 //--------------------------------------------------------- 85 86 //Tag Queue 87 val ctrlFlow = Mem(iqSize,new CtrlFlow) 88 val ctrlSig = Mem(iqSize,new CtrlSignals) 89 val brMask = RegInit(VecInit(Seq.fill(iqSize)(0.U(BrqSize.W)))) 90 val validReg = RegInit(VecInit(Seq.fill(iqSize)(false.B))) 91 val validFire= WireInit(VecInit(Seq.fill(iqSize)(false.B))) 92 val valid = validReg.asUInt & ~validFire.asUInt 93 val src1Rdy = RegInit(VecInit(Seq.fill(iqSize)(false.B))) 94 val src2Rdy = RegInit(VecInit(Seq.fill(iqSize)(false.B))) 95 val src3Rdy = RegInit(VecInit(Seq.fill(iqSize)(false.B))) 96 val prfSrc1 = Reg(Vec(iqSize, UInt(PhyRegIdxWidth.W))) 97 val prfSrc2 = Reg(Vec(iqSize, UInt(PhyRegIdxWidth.W))) 98 val prfSrc3 = Reg(Vec(iqSize, UInt(PhyRegIdxWidth.W))) 99 val prfDest = Reg(Vec(iqSize, UInt(PhyRegIdxWidth.W))) 100 val oldPDest = Reg(Vec(iqSize, UInt(PhyRegIdxWidth.W))) 101 val freelistAllocPtr = Reg(Vec(iqSize, UInt(PhyRegIdxWidth.W))) 102 val roqIdx = Reg(Vec(iqSize, UInt(RoqIdxWidth.W))) 103 104 val instRdy = WireInit(VecInit(List.tabulate(iqSize)(i => src1Rdy(i) && src2Rdy(i) && src3Rdy(i)&& valid(i)))) 105 106 107 //tag enqueue 108 val iqEmty = !valid.asUInt.orR 109 val iqFull = valid.asUInt.andR 110 val iqAllowIn = !iqFull 111 io.enqCtrl.ready := iqAllowIn 112 113 //enqueue pointer 114 val emptySlot = ~valid.asUInt 115 val enqueueSelect = PriorityEncoder(emptySlot) 116 assert(!(io.enqCtrl.valid && io.redirect.valid),"enqueue valid should be false when redirect valid") 117 118 when(io.enqCtrl.fire()){ 119 ctrlFlow(enqueueSelect) := io.enqCtrl.bits.cf 120 ctrlSig(enqueueSelect) := io.enqCtrl.bits.ctrl 121 brMask(enqueueSelect) := io.enqCtrl.bits.brMask 122 validReg(enqueueSelect) := true.B 123 src1Rdy(enqueueSelect) := io.enqCtrl.bits.src1State === SrcState.rdy 124 src2Rdy(enqueueSelect) := io.enqCtrl.bits.src2State === SrcState.rdy 125 src3Rdy(enqueueSelect) := io.enqCtrl.bits.src3State === SrcState.rdy 126 prfSrc1(enqueueSelect) := io.enqCtrl.bits.psrc1 127 prfSrc2(enqueueSelect) := io.enqCtrl.bits.psrc2 128 prfSrc3(enqueueSelect) := io.enqCtrl.bits.psrc3 129 prfDest(enqueueSelect) := io.enqCtrl.bits.pdest 130 oldPDest(enqueueSelect) := io.enqCtrl.bits.old_pdest 131 freelistAllocPtr(enqueueSelect) := io.enqCtrl.bits.freelistAllocPtr 132 roqIdx(enqueueSelect) := io.enqCtrl.bits.roqIdx 133 if(debug) {printf("(%d)[IQ enq]: enqSelect:%d | s1Rd:%d s2Rd:%d s3Rd:%d\n",GTimer(),enqueueSelect.asUInt, 134 (io.enqCtrl.bits.src1State === SrcState.rdy), 135 (io.enqCtrl.bits.src2State === SrcState.rdy), 136 (io.enqCtrl.bits.src3State === SrcState.rdy))} 137 138 } 139 140 //Data Queue 141 val src1Data = Reg(Vec(iqSize, UInt(XLEN.W))) 142 val src2Data = Reg(Vec(iqSize, UInt(XLEN.W))) 143 val src3Data = Reg(Vec(iqSize, UInt(XLEN.W))) 144 145 val enqSelNext = RegNext(enqueueSelect) 146 val enqFireNext = RegNext(io.enqCtrl.fire()) 147 148 // Read RegFile 149 when (enqFireNext) { 150 src1Data(enqSelNext) := io.enqData.bits.src1 151 src2Data(enqSelNext) := io.enqData.bits.src2 152 src3Data(enqSelNext) := io.enqData.bits.src3 153 } 154 155 if(debug) { 156 printf("(%d)[Reg info] enqSelNext:%d | enqFireNext:%d \n",GTimer(),enqSelNext,enqFireNext) 157 printf("(%d)[IQ content] valid | src1rdy src1 | src2Rdy src2 pdest \n",GTimer()) 158 for(i <- 0 to (iqSize -1)){ 159 printf("(%d)[IQ content][%d] %d%d%d | %x %x | %x %x | %d",GTimer(),i.asUInt, valid(i), validReg(i), validFire(i), src1Rdy(i), src1Data(i), src2Rdy(i), src2Data(i),prfDest(i)) 160 when(valid(i)){printf(" valid")} 161 printf(" |\n") 162 } 163 } 164 // From Common Data Bus(wakeUpPort) 165 // chisel claims that firrtl will optimize Mux1H to and/or tree 166 // TODO: ignore ALU'cdb srcRdy, for byPass has done it 167 if(wakeupCnt > 0) { 168 val cdbValid = List.tabulate(wakeupCnt)(i => io.wakeUpPorts(i).valid) 169 val cdbData = List.tabulate(wakeupCnt)(i => io.wakeUpPorts(i).bits.data) 170 val cdbPdest = List.tabulate(wakeupCnt)(i => io.wakeUpPorts(i).bits.uop.pdest) 171 172 val srcNum = 3 173 val prfSrc = List(prfSrc1, prfSrc2, prfSrc3) 174 val srcRdy = List(src1Rdy, src2Rdy, src3Rdy) 175 val srcData = List(src1Data, src2Data, src3Data) 176 val srcHitVec = List.tabulate(srcNum)(k => 177 List.tabulate(iqSize)(i => 178 List.tabulate(wakeupCnt)(j => 179 (prfSrc(k)(i) === cdbPdest(j)) && cdbValid(j)))) 180 val srcHit = List.tabulate(srcNum)(k => 181 List.tabulate(iqSize)(i => 182 ParallelOR(srcHitVec(k)(i)).asBool())) 183 // VecInit(srcHitVec(k)(i)).asUInt.orR)) 184 for(k <- 0 until srcNum){ 185 for(i <- 0 until iqSize)( when (valid(i)) { 186 when(!srcRdy(k)(i) && srcHit(k)(i)) { 187 srcRdy(k)(i) := true.B 188 // srcData(k)(i) := Mux1H(srcHitVec(k)(i), cdbData) 189 srcData(k)(i) := ParallelMux(srcHitVec(k)(i) zip cdbData) 190 } 191 }) 192 } 193 // From byPass [speculative] (just for ALU to listen to other ALU's res, include itself) 194 // just need Tag(Ctrl). send out Tag when Tag is decided. other ALUIQ listen to them and decide Tag 195 // byPassUops is one cycle before byPassDatas 196 if (bypassCnt > 0) { 197 val bypassPdest = List.tabulate(bypassCnt)(i => io.bypassUops(i).bits.pdest) 198 val bypassValid = List.tabulate(bypassCnt)(i => io.bypassUops(i).valid) // may only need valid not fire() 199 val bypassData = List.tabulate(bypassCnt)(i => io.bypassData(i).bits.data) 200 val srcBpHitVec = List.tabulate(srcNum)(k => 201 List.tabulate(iqSize)(i => 202 List.tabulate(bypassCnt)(j => 203 (prfSrc(k)(i) === bypassPdest(j)) && bypassValid(j)))) 204 val srcBpHit = List.tabulate(srcNum)(k => 205 List.tabulate(iqSize)(i => 206 ParallelOR(srcBpHitVec(k)(i)).asBool())) 207 // VecInit(srcBpHitVec(k)(i)).asUInt.orR)) 208 val srcBpHitVecNext = List.tabulate(srcNum)(k => 209 List.tabulate(iqSize)(i => 210 List.tabulate(bypassCnt)(j => RegNext(srcBpHitVec(k)(i)(j))))) 211 val srcBpHitNext = List.tabulate(srcNum)(k => 212 List.tabulate(iqSize)(i => 213 RegNext(srcBpHit(k)(i)))) 214 val srcBpData = List.tabulate(srcNum)(k => 215 List.tabulate(iqSize)(i => 216 ParallelMux(srcBpHitVecNext(k)(i) zip bypassData))) 217 // Mux1H(srcBpHitVecNext(k)(i), bypassData))) 218 for(k <- 0 until srcNum){ 219 for(i <- 0 until iqSize){ when (valid(i)) { 220 when(valid(i) && !srcRdy(k)(i) && srcBpHit(k)(i)) { srcRdy(k)(i) := true.B } 221 when(srcBpHitNext(k)(i)) { srcData(k)(i) := srcBpData(k)(i)} 222 }} 223 } 224 } 225 } 226 227 228 //--------------------------------------------------------- 229 // Select Circuit 230 //--------------------------------------------------------- 231 //layer 1 232 val layer1CCUs = (0 until layer1Size by 2) map { i => 233 val CCU_1 = Module(new CompareCircuitUnit(layer = 1, id = i/2)) 234 CCU_1.io.in1.instRdy := instRdy(i) 235 CCU_1.io.in1.roqIdx := roqIdx(i) 236 CCU_1.io.in1.iqIdx := i.U 237 238 CCU_1.io.in2.instRdy := instRdy(i+1) 239 CCU_1.io.in2.roqIdx := roqIdx(i+1) 240 CCU_1.io.in2.iqIdx := (i+1).U 241 242 CCU_1 243 } 244 245 //layer 2 246 val layer2CCUs = (0 until layer2Size by 2) map { i => 247 val CCU_2 = Module(new CompareCircuitUnit(layer = 2, id = i/2)) 248 CCU_2.io.in1.instRdy := layer1CCUs(i).io.out.instRdy 249 CCU_2.io.in1.roqIdx := layer1CCUs(i).io.out.roqIdx 250 CCU_2.io.in1.iqIdx := layer1CCUs(i).io.out.iqIdx 251 252 CCU_2.io.in2.instRdy := layer1CCUs(i+1).io.out.instRdy 253 CCU_2.io.in2.roqIdx := layer1CCUs(i+1).io.out.roqIdx 254 CCU_2.io.in2.iqIdx := layer1CCUs(i+1).io.out.iqIdx 255 256 CCU_2 257 } 258 259 //layer 3 260 val CCU_3 = Module(new CompareCircuitUnit(layer = 3, id = 0)) 261 CCU_3.io.in1.instRdy := layer2CCUs(0).io.out.instRdy 262 CCU_3.io.in1.roqIdx := layer2CCUs(0).io.out.roqIdx 263 CCU_3.io.in1.iqIdx := layer2CCUs(0).io.out.iqIdx 264 265 CCU_3.io.in2.instRdy := layer2CCUs(1).io.out.instRdy 266 CCU_3.io.in2.roqIdx := layer2CCUs(1).io.out.roqIdx 267 CCU_3.io.in2.iqIdx := layer2CCUs(1).io.out.iqIdx 268 269 270 //--------------------------------------------------------- 271 // Redirect Logic 272 //--------------------------------------------------------- 273 val expRedirect = io.redirect.valid && io.redirect.bits.isException 274 val brRedirect = io.redirect.valid && !io.redirect.bits.isException 275 276 List.tabulate(iqSize)( i => 277 when(brRedirect && (UIntToOH(io.redirect.bits.brTag) & brMask(i)).orR && valid(i) ){ 278 validReg(i) := false.B 279 } .elsewhen(expRedirect) { 280 validReg(i) := false.B 281 } 282 ) 283 //--------------------------------------------------------- 284 // Dequeue Logic 285 //--------------------------------------------------------- 286 //hold the sel-index to wait for data 287 val selInstIdx = RegInit(0.U(iqIdxWidth.W)) 288 val selInstRdy = RegInit(false.B) 289 290 //issue the select instruction 291 val dequeueSelect = Wire(UInt(iqIdxWidth.W)) 292 dequeueSelect := selInstIdx 293 294 val brRedirectMaskMatch = (UIntToOH(io.redirect.bits.brTag) & brMask(dequeueSelect)).orR 295 val IQreadyGo = selInstRdy && !expRedirect && (!brRedirect || !brRedirectMaskMatch) 296 297 io.deq.valid := IQreadyGo 298 299 io.deq.bits.uop.psrc1 := prfSrc1(dequeueSelect) 300 io.deq.bits.uop.psrc2 := prfSrc2(dequeueSelect) 301 io.deq.bits.uop.psrc3 := prfSrc3(dequeueSelect) 302 io.deq.bits.uop.pdest := prfDest(dequeueSelect) 303 io.deq.bits.uop.old_pdest := oldPDest(dequeueSelect) 304 io.deq.bits.uop.src1State := SrcState.rdy 305 io.deq.bits.uop.src2State := SrcState.rdy 306 io.deq.bits.uop.src3State := SrcState.rdy 307 io.deq.bits.uop.freelistAllocPtr := freelistAllocPtr(dequeueSelect) 308 io.deq.bits.uop.roqIdx := roqIdx(dequeueSelect) 309 310 //TODO 311 io.deq.bits.redirect := DontCare 312 313 io.deq.bits.src1 := src1Data(dequeueSelect) 314 io.deq.bits.src2 := src2Data(dequeueSelect) 315 io.deq.bits.src3 := src3Data(dequeueSelect) 316 317 if(debug) { 318 printf("(%d)[Sel Reg] selInstRdy:%d || selIdx:%d\n",GTimer(),selInstRdy,selInstIdx.asUInt) 319 when(IQreadyGo){printf("(%d)[IQ dequeue] **fire:%d** roqIdx:%d dequeueSel:%d | src1Rd:%d src1:%d | src2Rd:%d src2:%d\n",GTimer(), io.deq.fire(), io.deq.bits.uop.roqIdx, dequeueSelect.asUInt, 320 (io.deq.bits.uop.src1State === SrcState.rdy), io.deq.bits.uop.psrc1, 321 (io.deq.bits.uop.src2State === SrcState.rdy), io.deq.bits.uop.psrc2 322 )} 323 } 324 325 //update the index register of instruction that can be issue, unless function unit not allow in 326 //then the issue will be stopped to wait the function unit 327 //clear the validBit of dequeued instruction in issuequeue 328 when(io.deq.fire()){ 329 validReg(dequeueSelect) := false.B 330 validFire(dequeueSelect) := true.B 331 } 332 333 selInstRdy := CCU_3.io.out.instRdy 334 selInstIdx := CCU_3.io.out.iqIdx 335 // SelectedUop (bypass / speculative) 336 if(useBypass) { 337 def DelayPipe[T <: Data](a: T, delay: Int = 0) = { 338 // println(delay) 339 if(delay == 0) a 340 else { 341 val storage = Wire(VecInit(Seq.fill(delay+1)(a))) 342 // storage(0) := a 343 for(i <- 1 until delay) { 344 storage(i) := RegNext(storage(i-1)) 345 } 346 storage(delay) 347 } 348 } 349 val sel = io.selectedUop 350 val selIQIdx = CCU_3.io.out.iqIdx 351 val delayPipe = DelayPipe(VecInit(CCU_3.io.out.instRdy, prfDest(selIQIdx)), fixedDelay-1) 352 sel.valid := delayPipe(fixedDelay-1)(0) 353 sel.bits := DontCare 354 sel.bits.pdest := delayPipe(fixedDelay-1)(1) 355 } 356} 357