1package xiangshan.backend.fu 2 3import chisel3._ 4import chisel3.util._ 5import xiangshan._ 6import utils._ 7 8abstract class AbstractDivider(len: Int) extends FunctionUnit(len){ 9 val ctrl = IO(Input(new MulDivCtrl)) 10 val sign = ctrl.sign 11} 12 13class Radix2Divider(len: Int) extends AbstractDivider(len) { 14 15 def abs(a: UInt, sign: Bool): (Bool, UInt) = { 16 val s = a(len - 1) && sign 17 (s, Mux(s, -a, a)) 18 } 19 20 val s_idle :: s_log2 :: s_shift :: s_compute :: s_finish :: Nil = Enum(5) 21 val state = RegInit(s_idle) 22 val newReq = (state === s_idle) && io.in.fire() 23 24 val (a, b) = (io.in.bits.src(0), io.in.bits.src(1)) 25 val divBy0 = b === 0.U(len.W) 26 val divBy0Reg = RegEnable(divBy0, newReq) 27 28 val shiftReg = Reg(UInt((1 + len * 2).W)) 29 val hi = shiftReg(len * 2, len) 30 val lo = shiftReg(len - 1, 0) 31 32 val uop = io.in.bits.uop 33 34 val (aSign, aVal) = abs(a, sign) 35 val (bSign, bVal) = abs(b, sign) 36 val aSignReg = RegEnable(aSign, newReq) 37 val qSignReg = RegEnable((aSign ^ bSign) && !divBy0, newReq) 38 val bReg = RegEnable(bVal, newReq) 39 val aValx2Reg = RegEnable(Cat(aVal, "b0".U), newReq) 40 val ctrlReg = RegEnable(ctrl, newReq) 41 val uopReg = RegEnable(uop, newReq) 42 43 val cnt = Counter(len) 44 when (newReq) { 45 state := s_log2 46 } .elsewhen (state === s_log2) { 47 // `canSkipShift` is calculated as following: 48 // bEffectiveBit = Log2(bVal, XLEN) + 1.U 49 // aLeadingZero = 64.U - aEffectiveBit = 64.U - (Log2(aVal, XLEN) + 1.U) 50 // canSkipShift = aLeadingZero + bEffectiveBit 51 // = 64.U - (Log2(aVal, XLEN) + 1.U) + Log2(bVal, XLEN) + 1.U 52 // = 64.U + Log2(bVal, XLEN) - Log2(aVal, XLEN) 53 // = (64.U | Log2(bVal, XLEN)) - Log2(aVal, XLEN) // since Log2(bVal, XLEN) < 64.U 54 val canSkipShift = (64.U | Log2(bReg)) - Log2(aValx2Reg) 55 // When divide by 0, the quotient should be all 1's. 56 // Therefore we can not shift in 0s here. 57 // We do not skip any shift to avoid this. 58 cnt.value := Mux(divBy0Reg, 0.U, Mux(canSkipShift >= (len-1).U, (len-1).U, canSkipShift)) 59 state := s_shift 60 } .elsewhen (state === s_shift) { 61 shiftReg := aValx2Reg << cnt.value 62 state := s_compute 63 } .elsewhen (state === s_compute) { 64 val enough = hi.asUInt >= bReg.asUInt 65 shiftReg := Cat(Mux(enough, hi - bReg, hi)(len - 1, 0), lo, enough) 66 cnt.inc() 67 when (cnt.value === (len-1).U) { state := s_finish } 68 } .elsewhen (state === s_finish) { 69 when(io.out.ready){ 70 state := s_idle 71 } 72 } 73 74 val kill = state=/=s_idle && uopReg.roqIdx.needFlush(io.redirectIn, io.flushIn) 75 when(kill){ 76 state := s_idle 77 } 78 79 val r = hi(len, 1) 80 val resQ = Mux(qSignReg, -lo, lo) 81 val resR = Mux(aSignReg, -r, r) 82 83 val xlen = io.out.bits.data.getWidth 84 val res = Mux(ctrlReg.isHi, resR, resQ) 85 io.out.bits.data := Mux(ctrlReg.isW, SignExt(res(31,0),xlen), res) 86 io.out.bits.uop := uopReg 87 88 io.out.valid := state === s_finish 89 io.in.ready := state === s_idle 90}