1package xiangshan.backend.fu.NewCSR 2 3import chisel3._ 4import chisel3.util._ 5import org.chipsalliance.cde.config.Parameters 6import freechips.rocketchip.rocket.CSRs 7import utility.SignExt 8import utils.PerfEvent 9import xiangshan.backend.fu.NewCSR.CSRBundles._ 10import xiangshan.backend.fu.NewCSR.CSRDefines._ 11import xiangshan.backend.fu.NewCSR.CSRDefines.{CSRROField => RO, CSRRWField => RW, _} 12import xiangshan.backend.fu.NewCSR.CSREvents._ 13import xiangshan.backend.fu.NewCSR.CSREnumTypeImplicitCast._ 14import xiangshan.backend.fu.NewCSR.ChiselRecordForField._ 15import xiangshan.backend.fu.PerfCounterIO 16import xiangshan.backend.fu.NewCSR.CSRConfig._ 17 18import scala.collection.immutable.SeqMap 19 20trait MachineLevel { self: NewCSR => 21 val mstatus = Module(new MstatusModule) 22 .setAddr(CSRs.mstatus) 23 24 val misa = Module(new CSRModule("Misa", new MisaBundle)) 25 .setAddr(CSRs.misa) 26 27 println(s"[CSR] supported isa ext: ${misa.bundle.getISAString}") 28 29 val medeleg = Module(new CSRModule("Medeleg", new MedelegBundle)) 30 .setAddr(CSRs.medeleg) 31 32 val mideleg = Module(new CSRModule("Mideleg", new MidelegBundle)) 33 .setAddr(CSRs.mideleg) 34 35 val mie = Module(new CSRModule("Mie", new MieBundle) with HasIpIeBundle { 36 val fromHie = IO(Flipped(new HieToMie)) 37 val fromSie = IO(Flipped(new SieToMie)) 38 val fromVSie = IO(Flipped(new VSieToMie)) 39 40 // bit 1 SSIE 41 when (fromSie.SSIE.valid) { 42 reg.SSIE := fromSie.SSIE.bits 43 } 44 45 // bit 2 VSSIE 46 when (fromHie.VSSIE.valid || fromVSie.VSSIE.valid) { 47 reg.VSSIE := Mux1H(Seq( 48 fromHie .VSSIE.valid -> fromHie .VSSIE.bits, 49 fromVSie.VSSIE.valid -> fromVSie.VSSIE.bits, 50 )) 51 } 52 53 // bit 5 STIE 54 when(fromSie.STIE.valid) { 55 reg.STIE := fromSie.STIE.bits 56 } 57 58 // bit 6 VSTIE 59 when(fromHie.VSTIE.valid || fromVSie.VSTIE.valid) { 60 reg.VSTIE := Mux1H(Seq( 61 fromHie .VSTIE.valid -> fromHie .VSTIE.bits, 62 fromVSie.VSTIE.valid -> fromVSie.VSTIE.bits, 63 )) 64 } 65 66 // bit 9 SEIE 67 when(fromSie.SEIE.valid) { 68 reg.SEIE := fromSie.SEIE.bits 69 } 70 71 // bit 10 VSEIE 72 when(fromHie.VSEIE.valid || fromVSie.VSEIE.valid) { 73 reg.VSEIE := Mux1H(Seq( 74 fromHie .VSEIE.valid -> fromHie .VSEIE.bits, 75 fromVSie.VSEIE.valid -> fromVSie.VSEIE.bits, 76 )) 77 } 78 79 // bit 12 SGEIE 80 when(fromHie.SGEIE.valid) { 81 reg.SGEIE := fromHie.SGEIE.bits 82 } 83 84 // bit 13~63 LCIP 85 reg.getLocal lazyZip fromSie.getLocal lazyZip fromVSie.getLocal foreach { case (rLCIE, sieLCIE, vsieLCIE) => 86 when (sieLCIE.valid || vsieLCIE.valid) { 87 rLCIE := Mux1H(Seq( 88 sieLCIE .valid -> sieLCIE .bits, 89 vsieLCIE.valid -> vsieLCIE.bits, 90 )) 91 } 92 } 93 94 // 14~63 read only 0 95 regOut.getLocal.filterNot(_.lsb == InterruptNO.COI).foreach(_ := 0.U) 96 }).setAddr(CSRs.mie) 97 98 val mtvec = Module(new CSRModule("Mtvec", new XtvecBundle)) 99 .setAddr(CSRs.mtvec) 100 101 // Todo: support "Stimecmp/Vstimecmp" Extension, Version 1.0.0 102 // Todo: support Sscounterenw Extension 103 val mcounteren = Module(new CSRModule("Mcounteren", new Counteren)) 104 .setAddr(CSRs.mcounteren) 105 106 val mvien = Module(new CSRModule("Mvien", new MvienBundle)) 107 .setAddr(CSRs.mvien) 108 109 val mvip = Module(new CSRModule("Mvip", new MvipBundle) 110 with HasIpIeBundle 111 with HasMachineEnvBundle 112 { 113 val toMip = IO(new MvipToMip).connectZeroNonRW 114 val fromMip = IO(Flipped(new MipToMvip)) 115 val fromSip = IO(Flipped(new SipToMvip)) 116 val fromVSip = IO(Flipped(new VSipToMvip)) 117 118 // When bit 1 of mvien is zero, bit 1(SSIP) of mvip is an alias of the same bit (SSIP) of mip. 119 // But when bit 1 of mvien is one, bit 1(SSIP) of mvip is a separate writable bit independent of mip.SSIP. 120 // When the value of bit 1 of mvien is changed from zero to one, the value of bit 1 of mvip becomes UNSPECIFIED. 121 // XiangShan will keep the value in mvip.SSIP when mvien.SSIE is changed from zero to one 122 reg.SSIP := Mux(wen && mvien.SSIE.asBool, wdata.SSIP, reg.SSIP) 123 regOut.SSIP := Mux(mvien.SSIE.asBool, reg.SSIP, mip.SSIP) 124 toMip.SSIP.valid := wen && !mvien.SSIE.asBool 125 toMip.SSIP.bits := wdata.SSIP 126 127 // Bit 5 of mvip is an alias of the same bit (STIP) in mip when that bit is writable in mip. 128 // When STIP is not writable in mip (such as when menvcfg.STCE = 1), bit 5 of mvip is read-only zero. 129 // Todo: check mip writable when menvcfg.STCE = 1 130 regOut.STIP := Mux(this.menvcfg.STCE.asBool, 0.U, mip.STIP.asBool) 131 // Don't update mip.STIP when menvcfg.STCE is 1 132 toMip.STIP.valid := wen && !this.menvcfg.STCE.asBool 133 toMip.STIP.bits := wdata.STIP 134 135 // When bit 9 of mvien is zero, bit 9 of mvip is an alias of the software-writable bit 9 of mip (SEIP). 136 // But when bit 9 of mvien is one, bit 9 of mvip is a writable bit independent of mip.SEIP. 137 // Unlike for bit 1, changing the value of bit 9 of mvien does not affect the value of bit 9 of mvip. 138 toMip.SEIP.valid := wen && !mvien.SEIE.asUInt.asBool 139 toMip.SEIP.bits := wdata.SEIP 140 when (fromMip.SEIP.valid) { 141 reg.SEIP := fromMip.SEIP.bits 142 } 143 144 // write from sip 145 when (fromSip.SSIP.valid) { 146 reg.SSIP := fromSip.SSIP.bits 147 } 148 149 reg.getLocal lazyZip fromSip.getLocal lazyZip fromVSip.getLocal foreach { case (rLCIP, sipLCIP, vsipLCIP) => 150 // sip should assert valid when mideleg=0 && mvien=1 151 when (sipLCIP.valid || vsipLCIP.valid) { 152 rLCIP := Mux1H(Seq( 153 sipLCIP .valid -> sipLCIP .bits, 154 vsipLCIP.valid -> vsipLCIP.bits, 155 )) 156 } 157 } 158 }).setAddr(CSRs.mvip) 159 160 val menvcfg = Module(new CSRModule("Menvcfg", new MEnvCfg)) 161 .setAddr(CSRs.menvcfg) 162 163 val mcountinhibit = Module(new CSRModule("Mcountinhibit", new McountinhibitBundle)) 164 .setAddr(CSRs.mcountinhibit) 165 166 val mhpmevents: Seq[CSRModule[_]] = (3 to 0x1F).map(num => 167 Module(new CSRModule(s"Mhpmevent$num") with HasPerfEventBundle { 168 regOut := perfEvents(num - 3) 169 }) 170 .setAddr(CSRs.mhpmevent3 - 3 + num) 171 ) 172 173 val mscratch = Module(new CSRModule("Mscratch")) 174 .setAddr(CSRs.mscratch) 175 176 val mepc = Module(new CSRModule("Mepc", new Epc) with TrapEntryMEventSinkBundle { 177 rdata := SignExt(Cat(reg.epc.asUInt, 0.U(1.W)), XLEN) 178 }) 179 .setAddr(CSRs.mepc) 180 181 val mcause = Module(new CSRModule("Mcause", new CauseBundle) with TrapEntryMEventSinkBundle) 182 .setAddr(CSRs.mcause) 183 184 val mtval = Module(new CSRModule("Mtval") with TrapEntryMEventSinkBundle) 185 .setAddr(CSRs.mtval) 186 187 val mip = Module(new CSRModule("Mip", new MipBundle) 188 with HasIpIeBundle 189 with HasExternalInterruptBundle 190 with HasMachineEnvBundle 191 with HasLocalInterruptReqBundle 192 { 193 // Alias write in 194 val fromMvip = IO(Flipped(new MvipToMip)) 195 val fromSip = IO(Flipped(new SipToMip)) 196 val fromVSip = IO(Flipped(new VSipToMip)) 197 // Alias write out 198 val toMvip = IO(new MipToMvip).connectZeroNonRW 199 val toHvip = IO(new MipToHvip).connectZeroNonRW 200 201 // bit 1 SSIP 202 when (fromMvip.SSIP.valid || fromSip.SSIP.valid) { 203 reg.SSIP := Mux1H(Seq( 204 fromMvip.SSIP.valid -> fromMvip.SSIP.bits, 205 fromSip .SSIP.valid -> fromSip .SSIP.bits, 206 )) 207 } 208 209 // bit 2 VSSIP reg in hvip 210 // alias of hvip.VSSIP 211 toHvip.VSSIP.valid := wen 212 toHvip.VSSIP.bits := wdata.VSSIP 213 regOut.VSSIP := hvip.VSSIP 214 215 // bit 3 MSIP is read-only in mip, and is written by accesses to memory-mapped control registers, 216 // which are used by remote harts to provide machine-level interprocessor interrupts. 217 regOut.MSIP := platformIRP.MSIP 218 219 // bit 5 STIP 220 // If the stimecmp (supervisor-mode timer compare) register is implemented(menvcfg.STCE=1), STIP is read-only in mip. 221 regOut.STIP := Mux(this.menvcfg.STCE.asBool, platformIRP.STIP, reg.STIP.asBool) 222 when ((wen || fromMvip.STIP.valid) && !this.menvcfg.STCE) { 223 reg.STIP := Mux1H(Seq( 224 wen -> wdata.STIP, 225 fromMvip.STIP.valid -> fromMvip.STIP.bits, 226 )) 227 } 228 229 // bit 6 VSTIP 230 regOut.VSTIP := hvip.VSTIP || platformIRP.VSTIP 231 232 // bit 7 MTIP is read-only in mip, and is cleared by writing to the memory-mapped machine-mode timer compare register 233 regOut.MTIP := platformIRP.MTIP 234 235 // bit 9 SEIP 236 // When bit 9 of mvien is zero, the value of bit 9 of mvip is logically ORed into the readable value of mip.SEIP. 237 // when bit 9 of mvien is one, bit SEIP in mip is read-only and does not include the value of bit 9 of mvip. 238 // 239 // As explained in this issue(https://github.com/riscv/riscv-aia/issues/64), 240 // when mvien[9]=0, mip.SEIP is a software-writable bit and is special in its read value, which is the logical-OR of 241 // mip.SEIP reg and other source from the interrupt controller. 242 // mvip.SEIP is alias of mip.SEIP's reg part, and is independent of the other source from the interrupt controller. 243 // 244 // mip.SEIP is implemented as the alias of mvip.SEIP when mvien=0 245 // the read valid of SEIP is ORed by mvip.SEIP and the other source from the interrupt controller. 246 247 toMvip.SEIP.valid := wen && !mvien.SSIE 248 toMvip.SEIP.bits := wdata.SEIP 249 // When mvien.SEIE = 0, mip.SEIP is alias of mvip.SEIP. 250 // Otherwise, mip.SEIP is read only 0 251 regOut.SEIP := Mux(!mvien.SEIE, mvip.SEIP.asUInt, 0.U) 252 rdataFields.SEIP := regOut.SEIP || platformIRP.SEIP 253 254 // bit 10 VSEIP 255 regOut.VSEIP := hvip.VSEIP || platformIRP.VSEIP || hgeip.ip.asUInt(hstatusVGEIN.asUInt) 256 257 // bit 11 MEIP is read-only in mip, and is set and cleared by a platform-specific interrupt controller. 258 regOut.MEIP := platformIRP.MEIP 259 260 // bit 12 SGEIP 261 regOut.SGEIP := Cat(hgeip.asUInt & hgeie.asUInt).orR 262 263 // bit 13 LCOFIP 264 reg.LCOFIP := lcofiReq 265 when (fromSip.LCOFIP.valid || fromVSip.LCOFIP.valid) { 266 reg.LCOFIP := Mux1H(Seq( 267 fromSip.LCOFIP.valid -> fromSip.LCOFIP.bits, 268 fromVSip.LCOFIP.valid -> fromVSip.LCOFIP.bits, 269 )) 270 } 271 }).setAddr(CSRs.mip) 272 273 val mtinst = Module(new CSRModule("Mtinst") with TrapEntryMEventSinkBundle) 274 .setAddr(CSRs.mtinst) 275 276 val mtval2 = Module(new CSRModule("Mtval2") with TrapEntryMEventSinkBundle) 277 .setAddr(CSRs.mtval2) 278 279 val mseccfg = Module(new CSRModule("Mseccfg", new CSRBundle { 280 val PMM = RO(33, 32) 281 val SSEED = RO( 9) 282 val USEED = RO( 8) 283 val RLB = RO( 2) 284 val MMWP = RO( 1) 285 val MML = RO( 0) 286 })).setAddr(CSRs.mseccfg) 287 288 val mcycle = Module(new CSRModule("Mcycle") with HasMachineCounterControlBundle { 289 reg.ALL := Mux(!mcountinhibit.CY.asUInt.asBool, reg.ALL.asUInt + 1.U, reg.ALL.asUInt) 290 }).setAddr(CSRs.mcycle) 291 292 293 val minstret = Module(new CSRModule("Minstret") with HasMachineCounterControlBundle with HasRobCommitBundle { 294 reg.ALL := Mux(!mcountinhibit.IR.asUInt.asBool && robCommit.instNum.valid, reg.ALL.asUInt + robCommit.instNum.bits, reg.ALL.asUInt) 295 }).setAddr(CSRs.minstret) 296 297 val mhpmcounters: Seq[CSRModule[_]] = (3 to 0x1F).map(num => 298 Module(new CSRModule(s"Mhpmcounter$num") with HasMachineCounterControlBundle with HasPerfCounterBundle { 299 val countingInhibit = mcountinhibit.asUInt(num) | !countingEn 300 val counterAdd = reg.ALL.asUInt +& perf.value 301 reg.ALL := Mux(countingInhibit, reg.ALL.asUInt, counterAdd.tail(1)) 302 // Count overflow never results from writes to the mhpmcountern or mhpmeventn registers, only from 303 // hardware increments of counter registers. 304 toMhpmeventOF := !countingInhibit & counterAdd.head(1) 305 }).setAddr(CSRs.mhpmcounter3 - 3 + num) 306 ) 307 308 val mvendorid = Module(new CSRModule("Mvendorid") { rdata := 0.U }) 309 .setAddr(CSRs.mvendorid) 310 311 // architecture id for XiangShan is 25 312 // see https://github.com/riscv/riscv-isa-manual/blob/master/marchid.md 313 val marchid = Module(new CSRModule("Marchid", new CSRBundle { 314 val ALL = MarchidField(63, 0).withReset(MarchidField.XSArchid) 315 })).setAddr(CSRs.marchid) 316 317 val mimpid = Module(new CSRModule("Mimpid", new CSRBundle { 318 val ALL = RO(0).withReset(0.U) 319 })) 320 .setAddr(CSRs.mimpid) 321 322 val mhartid = Module(new CSRModule("Mhartid", new CSRBundle { 323 val ALL = RO(7, 0) 324 }) { 325 val hartid = IO(Input(UInt(hartIdLen.W))) 326 this.reg.ALL := RegEnable(hartid, reset.asBool) 327 }) 328 .setAddr(CSRs.mhartid) 329 330 val mconfigptr = Module(new CSRModule("Mconfigptr")) 331 .setAddr(CSRs.mconfigptr) 332 333 val machineLevelCSRMods: Seq[CSRModule[_]] = Seq( 334 mstatus, 335 misa, 336 medeleg, 337 mideleg, 338 mie, 339 mtvec, 340 mcounteren, 341 mvien, 342 mvip, 343 menvcfg, 344 mcountinhibit, 345 mscratch, 346 mepc, 347 mcause, 348 mtval, 349 mip, 350 mtinst, 351 mtval2, 352 mseccfg, 353 mcycle, 354 minstret, 355 mvendorid, 356 marchid, 357 mimpid, 358 mhartid, 359 mconfigptr, 360 ) ++ mhpmevents ++ mhpmcounters 361 362 val machineLevelCSRMap: SeqMap[Int, (CSRAddrWriteBundle[_], UInt)] = SeqMap.from( 363 machineLevelCSRMods.map(csr => (csr.addr -> (csr.w -> csr.rdata))).iterator 364 ) 365 366 val machineLevelCSROutMap: SeqMap[Int, UInt] = SeqMap.from( 367 machineLevelCSRMods.map(csr => (csr.addr -> csr.regOut.asInstanceOf[CSRBundle].asUInt)).iterator 368 ) 369 370 // read/write/update mhpmevents -> read/write/update perfEvents 371 val perfEvents = List.fill(8)(RegInit("h0000000000".U(XLEN.W))) ++ 372 List.fill(8)(RegInit("h4010040100".U(XLEN.W))) ++ 373 List.fill(8)(RegInit("h8020080200".U(XLEN.W))) ++ 374 List.fill(5)(RegInit("hc0300c0300".U(XLEN.W))) 375 376 mhpmevents.foreach { mod => 377 mod match { 378 case m: HasPerfEventBundle => 379 m.perfEvents := perfEvents 380 case _ => 381 } 382 } 383 384} 385 386class MstatusBundle extends CSRBundle { 387 388 val SIE = CSRRWField (1).withReset(0.U) 389 val MIE = CSRRWField (3).withReset(0.U) 390 val SPIE = CSRRWField (5).withReset(0.U) 391 val UBE = CSRROField (6).withReset(0.U) 392 val MPIE = CSRRWField (7).withReset(0.U) 393 val SPP = CSRRWField (8).withReset(0.U) 394 val VS = ContextStatus (10, 9).withReset(ContextStatus.Off) 395 val MPP = PrivMode (12, 11).withReset(PrivMode.U) 396 val FS = ContextStatus (14, 13).withReset(ContextStatus.Off) 397 val XS = ContextStatusRO(16, 15).withReset(0.U) 398 val MPRV = CSRRWField (17).withReset(0.U) 399 val SUM = CSRRWField (18).withReset(0.U) 400 val MXR = CSRRWField (19).withReset(0.U) 401 val TVM = CSRRWField (20).withReset(0.U) 402 val TW = CSRRWField (21).withReset(0.U) 403 val TSR = CSRRWField (22).withReset(0.U) 404 val UXL = XLENField (33, 32).withReset(XLENField.XLEN64) 405 val SXL = XLENField (35, 34).withReset(XLENField.XLEN64) 406 val SBE = CSRROField (36).withReset(0.U) 407 val MBE = CSRROField (37).withReset(0.U) 408 val GVA = CSRRWField (38).withReset(0.U) 409 val MPV = VirtMode (39).withReset(0.U) 410 val SD = CSRROField (63, 411 (_, _) => FS === ContextStatus.Dirty || VS === ContextStatus.Dirty 412 ) 413} 414 415class MstatusModule(implicit override val p: Parameters) extends CSRModule("MStatus", new MstatusBundle) 416 with TrapEntryMEventSinkBundle 417 with TrapEntryHSEventSinkBundle 418 with DretEventSinkBundle 419 with MretEventSinkBundle 420 with SretEventSinkBundle 421 with HasRobCommitBundle 422{ 423 val mstatus = IO(Output(bundle)) 424 val sstatus = IO(Output(new SstatusBundle)) 425 val sstatusRdata = IO(Output(UInt(64.W))) 426 427 val wAliasSstatus = IO(Input(new CSRAddrWriteBundle(new SstatusBundle))) 428 429 // write connection 430 this.wfn(reg)(Seq(wAliasSstatus)) 431 432 when (robCommit.fsDirty) { 433 assert(reg.FS =/= ContextStatus.Off, "The [m|s]status.FS should not be Off when set dirty, please check decode") 434 reg.FS := ContextStatus.Dirty 435 } 436 437 when (robCommit.vsDirty) { 438 assert(reg.VS =/= ContextStatus.Off, "The [m|s]status.VS should not be Off when set dirty, please check decode") 439 reg.VS := ContextStatus.Dirty 440 } 441 442 // read connection 443 mstatus :|= reg 444 sstatus := mstatus 445 rdata := mstatus.asUInt 446 sstatusRdata := sstatus.asUInt 447} 448 449class MisaBundle extends CSRBundle { 450 // Todo: reset with ISA string 451 val A = RO( 0).withReset(1.U) // Atomic extension 452 val B = RO( 1).withReset(0.U) // Reserved 453 val C = RO( 2).withReset(1.U) // Compressed extension 454 val D = RO( 3).withReset(1.U) // Double-precision floating-point extension 455 val E = RO( 4).withReset(0.U) // RV32E/64E base ISA 456 val F = RO( 5).withReset(1.U) // Single-precision floating-point extension 457 val G = RO( 6).withReset(0.U) // Reserved 458 val H = RO( 7).withReset(1.U) // Hypervisor extension 459 val I = RO( 8).withReset(1.U) // RV32I/64I/128I base ISA 460 val J = RO( 9).withReset(0.U) // Reserved 461 val K = RO(10).withReset(0.U) // Reserved 462 val L = RO(11).withReset(0.U) // Reserved 463 val M = RO(12).withReset(1.U) // Integer Multiply/Divide extensi 464 val N = RO(13).withReset(0.U) // Tentatively reserved for User-Level Interrupts extension 465 val O = RO(14).withReset(0.U) // Reserved 466 val P = RO(15).withReset(0.U) // Tentatively reserved for Packed-SIMD extension 467 val Q = RO(16).withReset(0.U) // Quad-precision floating-point extension 468 val R = RO(17).withReset(0.U) // Reserved 469 val S = RO(18).withReset(1.U) // Supervisor mode implemented 470 val T = RO(19).withReset(0.U) // Reserved 471 val U = RO(20).withReset(1.U) // User mode implemented 472 val V = RO(21).withReset(1.U) // Vector extension 473 val W = RO(22).withReset(0.U) // Reserved 474 val X = RO(23).withReset(0.U) // Non-standard extensions present 475 val Y = RO(24).withReset(0.U) // Reserved 476 val Z = RO(25).withReset(0.U) // Reserved 477 val MXL = XLENField(63, 62).withReset(XLENField.XLEN64) 478 479 def getISAString = this.getFields.filter(x => x != MXL && x.init.litValue == 1).sortBy(_.lsb).map(x => ('A' + x.msb).toChar).mkString 480} 481 482class MedelegBundle extends ExceptionBundle { 483 this.getALL.foreach(_.setRW().withReset(0.U)) 484 this.EX_MCALL.setRO().withReset(0.U) // never delegate machine level ecall 485 this.EX_BP.setRO().withReset(0.U) // Parter 5.4 in debug spec. tcontrol is implemented. medeleg [3] is hard-wired to 0. 486} 487 488class MidelegBundle extends InterruptBundle { 489 this.getALL.foreach(_.setRW().withReset(0.U)) 490 // Don't delegate Machine level interrupts 491 this.getM.foreach(_.setRO().withReset(0.U)) 492 // Ref: 13.4.2. Machine Interrupt Delegation Register (mideleg) 493 // When the hypervisor extension is implemented, bits 10, 6, and 2 of mideleg (corresponding to the standard VS-level 494 // interrupts) are each read-only one. 495 this.getVS.foreach(_.setRO().withReset(1.U)) 496 // bit 12 of mideleg (corresponding to supervisor-level guest external interrupts) is also read-only one. 497 // VS-level interrupts and guest external interrupts are always delegated past M-mode to HS-mode. 498 this.SGEI.setRO().withReset(1.U) 499} 500 501class MieBundle extends InterruptEnableBundle { 502 this.getNonLocal.foreach(_.setRW().withReset(0.U)) 503} 504 505class MipBundle extends InterruptPendingBundle { 506 // Ref: riscv privileged spec - 18.4.3. Machine Interrupt (mip and mie) Registers 507 // Bits SGEIP, VSEIP, VSTIP, and VSSIP in mip are aliases for the same bits in hypervisor CSR hip 508 // 509 // We implement SGEIP, VSEIP, VSTIP, and VSSIP in mip are registers, 510 // while these bits in hip are aliases for the same bits in mip. 511 // 512 // Ref: riscv interrupt spec - 2.1 Machine-level CSRs 513 // Existing CSRs mie, mip, and mideleg are widended to 64 bits to support a total of 64 interrupt causes. 514 this.getHS.foreach(_.setRW().withReset(0.U)) 515 this.getVS.foreach(_.setRW().withReset(0.U)) 516 this.LCOFIP.setRW().withReset(0.U) 517} 518 519class MvienBundle extends InterruptEnableBundle { 520 // Ref: riscv interrupt spec - 5.3 Interrupt filtering and virtual interrupts for supervisor level 521 // It is strongly recommended that bit 9 of mvien be writable. 522 // It is strongly recommended that bit 1 of mvien also be writable. 523 // A bit in mvien can be set to 1 only for major interrupts 1, 9, and 13–63. 524 this.SSIE.setRW().withReset(0.U) 525 this.SEIE.setRW().withReset(0.U) 526 this.getLocal.foreach(_.setRW().withReset(0.U)) 527} 528 529class MvipBundle extends InterruptPendingBundle { 530 this.getHS.foreach(_.setRW().withReset(0.U)) 531 this.getLocal.foreach(_.setRW().withReset(0.U)) 532} 533 534class Epc extends CSRBundle { 535 import CSRConfig._ 536 537 val epc = RW(VaddrMaxWidth - 1, 1) 538} 539 540class McountinhibitBundle extends CSRBundle { 541 val CY = RW(0) 542 val IR = RW(2) 543 val HPM3 = RW(31, 3) 544} 545 546// todo: for the future, delete bypass between mhpmevents and perfEvents 547class MhpmeventBundle extends CSRBundle { 548 val OF = RW(63).withReset(0.U) 549 val MINH = RW(62).withReset(0.U) 550 val SINH = RW(61).withReset(0.U) 551 val UINH = RW(60).withReset(0.U) 552 val VSINH = RW(59).withReset(0.U) 553 val VUINH = RW(58).withReset(0.U) 554} 555 556class MEnvCfg extends EnvCfg { 557 if (CSRConfig.EXT_SSTC) { 558 this.STCE.setRW().withReset(1.U) 559 } 560} 561 562object MarchidField extends CSREnum with ROApply { 563 val XSArchid = Value(25.U) 564} 565 566class MieToHie extends Bundle { 567 val VSSIE = ValidIO(RW(0)) 568 val VSTIE = ValidIO(RW(0)) 569 val VSEIE = ValidIO(RW(0)) 570 val SGEIE = ValidIO(RW(0)) 571} 572 573class MvipToMip extends IpValidBundle { 574 this.getHS.foreach(_.bits.setRW()) 575} 576 577class HipToMip extends IpValidBundle { 578 // Only hip.VSSIP is writable 579 this.VSSIP.bits.setRW() 580} 581 582class VSipToMip extends IpValidBundle { 583 this.LCOFIP.bits.setRW() 584} 585 586class MipToHvip extends IpValidBundle { 587 this.VSSIP.bits.setRW() 588} 589 590class MipToMvip extends IpValidBundle { 591 this.SEIP.bits.setRW() 592} 593 594trait HasMipToAlias { self: CSRModule[_] => 595 val mipAlias = Output(new MipBundle) 596} 597 598trait HasMachineDelegBundle { self: CSRModule[_] => 599 val mideleg = IO(Input(new MidelegBundle)) 600 val medeleg = IO(Input(new MedelegBundle)) 601} 602 603trait HasExternalInterruptBundle { 604 val platformIRP = IO(new Bundle { 605 val MEIP = Input(Bool()) 606 val MTIP = Input(Bool()) 607 val MSIP = Input(Bool()) 608 val SEIP = Input(Bool()) 609 val STIP = Input(Bool()) 610 val VSEIP = Input(Bool()) 611 val VSTIP = Input(Bool()) 612 // debug interrupt from debug module 613 val debugIP = Input(Bool()) 614 }) 615} 616 617trait HasMachineCounterControlBundle { self: CSRModule[_] => 618 val mcountinhibit = IO(Input(new McountinhibitBundle)) 619} 620 621trait HasRobCommitBundle { self: CSRModule[_] => 622 val robCommit = IO(Input(new RobCommitCSR)) 623 val isVirtMode = IO(Input(Bool())) 624} 625 626trait HasMachineEnvBundle { self: CSRModule[_] => 627 val menvcfg = IO(Input(new MEnvCfg)) 628} 629 630trait HasPerfCounterBundle { self: CSRModule[_] => 631 val countingEn = IO(Input(Bool())) 632 val perf = IO(Input(new PerfEvent)) 633 val toMhpmeventOF = IO(Output(Bool())) 634} 635 636trait HasPerfEventBundle { self: CSRModule[_] => 637 val perfEvents = IO(Input(Vec(perfCntNum, UInt(XLEN.W)))) 638} 639 640trait HasLocalInterruptReqBundle { self: CSRModule[_] => 641 val lcofiReq = IO(Input(Bool())) 642}