xref: /XiangShan/src/main/scala/xiangshan/backend/fu/FuncUnit.scala (revision 039cdc35f5f3b68b6295ec5ace90f22a77322e02)
1package xiangshan.backend.fu
2
3import org.chipsalliance.cde.config.Parameters
4import chisel3._
5import chisel3.util._
6import utility.DataHoldBypass
7import utils.OptionWrapper
8import xiangshan._
9import xiangshan.backend.Bundles.VPUCtrlSignals
10import xiangshan.backend.rob.RobPtr
11import xiangshan.frontend.{FtqPtr, PreDecodeInfo}
12import xiangshan.backend.datapath.DataConfig._
13import xiangshan.backend.fu.vector.Bundles.Vxsat
14import xiangshan.ExceptionNO.illegalInstr
15import xiangshan.backend.fu.vector.Bundles.VType
16
17class FuncUnitCtrlInput(cfg: FuConfig)(implicit p: Parameters) extends XSBundle {
18  val fuOpType    = FuOpType()
19  val robIdx      = new RobPtr
20  val pdest       = UInt(PhyRegIdxWidth.W)
21  val rfWen       = OptionWrapper(cfg.needIntWen, Bool())
22  val fpWen       = OptionWrapper(cfg.needFpWen,  Bool())
23  val vecWen      = OptionWrapper(cfg.needVecWen, Bool())
24  val v0Wen       = OptionWrapper(cfg.needV0Wen, Bool())
25  val vlWen       = OptionWrapper(cfg.needVlWen, Bool())
26  val flushPipe   = OptionWrapper(cfg.flushPipe,  Bool())
27  val preDecode   = OptionWrapper(cfg.hasPredecode, new PreDecodeInfo)
28  val ftqIdx      = OptionWrapper(cfg.needPc || cfg.replayInst || cfg.isSta, new FtqPtr)
29  val ftqOffset   = OptionWrapper(cfg.needPc || cfg.replayInst || cfg.isSta, UInt(log2Up(PredictWidth).W))
30  val predictInfo = OptionWrapper(cfg.hasRedirect, new Bundle {
31    val target    = UInt(VAddrData().dataWidth.W)
32    val taken     = Bool()
33  })
34  val fpu         = OptionWrapper(cfg.writeFflags, new FPUCtrlSignals)
35  val vpu         = OptionWrapper(cfg.needVecCtrl, new VPUCtrlSignals)
36}
37
38class FuncUnitCtrlOutput(cfg: FuConfig)(implicit p: Parameters) extends XSBundle {
39  val robIdx        = new RobPtr
40  val pdest         = UInt(PhyRegIdxWidth.W) // Todo: use maximum of pregIdxWidth of different pregs
41  val rfWen         = OptionWrapper(cfg.needIntWen, Bool())
42  val fpWen         = OptionWrapper(cfg.needFpWen,  Bool())
43  val vecWen        = OptionWrapper(cfg.needVecWen, Bool())
44  val v0Wen         = OptionWrapper(cfg.needV0Wen, Bool())
45  val vlWen         = OptionWrapper(cfg.needVlWen, Bool())
46  val exceptionVec  = OptionWrapper(cfg.exceptionOut.nonEmpty, ExceptionVec())
47  val flushPipe     = OptionWrapper(cfg.flushPipe,  Bool())
48  val replay        = OptionWrapper(cfg.replayInst, Bool())
49  val preDecode     = OptionWrapper(cfg.hasPredecode, new PreDecodeInfo)
50  val fpu           = OptionWrapper(cfg.writeFflags, new FPUCtrlSignals)
51  val vpu           = OptionWrapper(cfg.needVecCtrl, new VPUCtrlSignals)
52}
53
54class FuncUnitDataInput(cfg: FuConfig)(implicit p: Parameters) extends XSBundle {
55  val src       = MixedVec(cfg.genSrcDataVec)
56  val imm       = UInt(cfg.destDataBits.W)
57  val pc        = OptionWrapper(cfg.needPc, UInt(VAddrData().dataWidth.W))
58
59  def getSrcVConfig : UInt = src(cfg.vconfigIdx)
60  def getSrcMask    : UInt = src(cfg.maskSrcIdx)
61}
62
63class FuncUnitDataOutput(cfg: FuConfig)(implicit p: Parameters) extends XSBundle {
64  val data      = UInt(cfg.destDataBits.W)
65  val fflags    = OptionWrapper(cfg.writeFflags, UInt(5.W))
66  val vxsat     = OptionWrapper(cfg.writeVxsat, Vxsat())
67  val pc        = OptionWrapper(cfg.isFence, UInt(VAddrData().dataWidth.W))
68  val redirect  = OptionWrapper(cfg.hasRedirect, ValidIO(new Redirect))
69}
70
71class FuncUnitInput(cfg: FuConfig)(implicit p: Parameters) extends XSBundle {
72  val ctrl = new FuncUnitCtrlInput(cfg)
73  val data = new FuncUnitDataInput(cfg)
74  val perfDebugInfo = new PerfDebugInfo()
75}
76
77class FuncUnitOutput(cfg: FuConfig)(implicit p: Parameters) extends XSBundle {
78  val ctrl = new FuncUnitCtrlOutput(cfg)
79  val res = new FuncUnitDataOutput(cfg)
80  val perfDebugInfo = new PerfDebugInfo()
81}
82
83class FuncUnitIO(cfg: FuConfig)(implicit p: Parameters) extends XSBundle {
84  val flush = Flipped(ValidIO(new Redirect))
85  val in = Flipped(DecoupledIO(new FuncUnitInput(cfg)))
86  val out = DecoupledIO(new FuncUnitOutput(cfg))
87  val csrio = OptionWrapper(cfg.isCsr, new CSRFileIO)
88  val fenceio = OptionWrapper(cfg.isFence, new FenceIO)
89  val frm = OptionWrapper(cfg.needSrcFrm, Input(UInt(3.W)))
90  val vxrm = OptionWrapper(cfg.needSrcVxrm, Input(UInt(2.W)))
91  val vtype = OptionWrapper(cfg.writeVlRf, (Valid(new VType)))
92  val vlIsZero = OptionWrapper(cfg.writeVlRf, Output(Bool()))
93  val vlIsVlmax = OptionWrapper(cfg.writeVlRf, Output(Bool()))
94}
95
96abstract class FuncUnit(val cfg: FuConfig)(implicit p: Parameters) extends XSModule {
97  val io = IO(new FuncUnitIO(cfg))
98
99  // should only be used in non-piped fu
100  def connectNonPipedCtrlSingal: Unit = {
101    io.out.bits.ctrl.robIdx := RegEnable(io.in.bits.ctrl.robIdx, io.in.fire)
102    io.out.bits.ctrl.pdest  := RegEnable(io.in.bits.ctrl.pdest, io.in.fire)
103    io.out.bits.ctrl.rfWen  .foreach(_ := RegEnable(io.in.bits.ctrl.rfWen.get, io.in.fire))
104    io.out.bits.ctrl.fpWen  .foreach(_ := RegEnable(io.in.bits.ctrl.fpWen.get, io.in.fire))
105    io.out.bits.ctrl.vecWen .foreach(_ := RegEnable(io.in.bits.ctrl.vecWen.get, io.in.fire))
106    io.out.bits.ctrl.v0Wen .foreach(_ := RegEnable(io.in.bits.ctrl.v0Wen.get, io.in.fire))
107    io.out.bits.ctrl.vlWen .foreach(_ := RegEnable(io.in.bits.ctrl.vlWen.get, io.in.fire))
108    // io.out.bits.ctrl.flushPipe should be connected in fu
109    io.out.bits.ctrl.preDecode.foreach(_ := RegEnable(io.in.bits.ctrl.preDecode.get, io.in.fire))
110    io.out.bits.ctrl.fpu      .foreach(_ := RegEnable(io.in.bits.ctrl.fpu.get, io.in.fire))
111    io.out.bits.ctrl.vpu      .foreach(_ := RegEnable(io.in.bits.ctrl.vpu.get, io.in.fire))
112    io.out.bits.perfDebugInfo := RegEnable(io.in.bits.perfDebugInfo, io.in.fire)
113  }
114
115  def connect0LatencyCtrlSingal: Unit = {
116    io.out.bits.ctrl.robIdx := io.in.bits.ctrl.robIdx
117    io.out.bits.ctrl.pdest := io.in.bits.ctrl.pdest
118    io.out.bits.ctrl.rfWen.foreach(_ := io.in.bits.ctrl.rfWen.get)
119    io.out.bits.ctrl.fpWen.foreach(_ := io.in.bits.ctrl.fpWen.get)
120    io.out.bits.ctrl.vecWen.foreach(_ := io.in.bits.ctrl.vecWen.get)
121    io.out.bits.ctrl.v0Wen.foreach(_ := io.in.bits.ctrl.v0Wen.get)
122    io.out.bits.ctrl.vlWen.foreach(_ := io.in.bits.ctrl.vlWen.get)
123    // io.out.bits.ctrl.flushPipe should be connected in fu
124    io.out.bits.ctrl.preDecode.foreach(_ := io.in.bits.ctrl.preDecode.get)
125    io.out.bits.ctrl.fpu.foreach(_ := io.in.bits.ctrl.fpu.get)
126    io.out.bits.ctrl.vpu.foreach(_ := io.in.bits.ctrl.vpu.get)
127    io.out.bits.perfDebugInfo := io.in.bits.perfDebugInfo
128  }
129}
130
131/**
132  * @author LinJiaWei, Yinan Xu
133  */
134trait HasPipelineReg { this: FuncUnit =>
135  def latency: Int
136
137  val latdiff :Int = cfg.latency.extraLatencyVal.getOrElse(0)
138  val preLat :Int = latency - latdiff
139  require(latency >= 0 && latdiff >=0)
140
141  def pipelineReg(init: FuncUnitInput , valid:Bool, ready: Bool,latency: Int, flush:ValidIO[Redirect]): (Seq[FuncUnitInput],Seq[Bool],Seq[Bool])={
142    val rdyVec = Seq.fill(latency)(Wire(Bool())) :+ ready
143    val validVec = valid +: Seq.fill(latency)(RegInit(false.B))
144    val ctrlVec = init.ctrl +: Seq.fill(latency)(Reg(chiselTypeOf(io.in.bits.ctrl)))
145    val dataVec = init.data +: Seq.fill(latency)(Reg(chiselTypeOf(io.in.bits.data)))
146    val perfVec = init.perfDebugInfo +: Seq.fill(latency)(Reg(chiselTypeOf(io.in.bits.perfDebugInfo)))
147
148
149
150    val robIdxVec = ctrlVec.map(_.robIdx)
151
152    // if flush(0), valid 0 will not given, so set flushVec(0) to false.B
153    val flushVec = validVec.zip(robIdxVec).map(x => x._1 && x._2.needFlush(flush))
154
155    for (i <- 0 until latency) {
156      rdyVec(i) := !validVec(i + 1) || rdyVec(i + 1).asTypeOf(Bool())
157    }
158    for (i <- 1 to latency) {
159      when(rdyVec(i - 1) && validVec(i - 1) && !flushVec(i - 1)) {
160        validVec(i) := validVec(i - 1)
161        ctrlVec(i) := ctrlVec(i - 1)
162        dataVec(i) := dataVec(i - 1)
163        perfVec(i) := perfVec(i - 1)
164      }.elsewhen(flushVec(i) || rdyVec(i)) {
165        validVec(i) := false.B
166      }
167    }
168
169    (ctrlVec.zip(dataVec).zip(perfVec).map{
170      case(( ctrl,data), perf) => {
171        val out = Wire(new FuncUnitInput(cfg))
172        out.ctrl := ctrl
173        out.data := data
174        out.perfDebugInfo := perf
175        out
176      }
177    },validVec, rdyVec)
178  }
179  val (pipeReg : Seq[FuncUnitInput],validVec ,rdyVec ) = pipelineReg(io.in.bits, io.in.valid,io.out.ready,preLat, io.flush)
180  val ctrlVec = pipeReg.map(_.ctrl)
181  val dataVec = pipeReg.map(_.data)
182  val perfVec = pipeReg.map(_.perfDebugInfo)
183  val robIdxVec = ctrlVec.map(_.robIdx)
184  val pipeflushVec = validVec.zip(robIdxVec).map(x => x._1 && x._2.needFlush(io.flush))
185
186
187  val fixtiminginit = Wire(new FuncUnitInput(cfg))
188  fixtiminginit.ctrl := ctrlVec.last
189  fixtiminginit.data := dataVec.last
190  fixtiminginit.perfDebugInfo := perfVec.last
191
192  // fixtiming pipelinereg
193  val (fixpipeReg : Seq[FuncUnitInput], fixValidVec, fixRdyVec) = pipelineReg(fixtiminginit, validVec.last,rdyVec.head ,latdiff, io.flush)
194  val fixCtrlVec = fixpipeReg.map(_.ctrl)
195  val fixDataVec = fixpipeReg.map(_.data)
196  val fixPerfVec = fixpipeReg.map(_.perfDebugInfo)
197  val fixrobIdxVec = ctrlVec.map(_.robIdx)
198  val fixflushVec = fixValidVec.zip(fixrobIdxVec).map(x => x._1 && x._2.needFlush(io.flush))
199  val flushVec = pipeflushVec ++ fixflushVec
200  val pcVec = fixDataVec.map(_.pc)
201
202  io.in.ready := fixRdyVec.head
203  io.out.valid := fixValidVec.last
204  io.out.bits.res.pc.zip(pcVec.last).foreach { case (l, r) => l := r }
205
206  io.out.bits.ctrl.robIdx := fixCtrlVec.last.robIdx
207  io.out.bits.ctrl.pdest := fixCtrlVec.last.pdest
208  io.out.bits.ctrl.rfWen.foreach(_ := fixCtrlVec.last.rfWen.get)
209  io.out.bits.ctrl.fpWen.foreach(_ := fixCtrlVec.last.fpWen.get)
210  io.out.bits.ctrl.vecWen.foreach(_ := fixCtrlVec.last.vecWen.get)
211  io.out.bits.ctrl.v0Wen.foreach(_ := fixCtrlVec.last.v0Wen.get)
212  io.out.bits.ctrl.vlWen.foreach(_ := fixCtrlVec.last.vlWen.get)
213  io.out.bits.ctrl.fpu.foreach(_ := fixCtrlVec.last.fpu.get)
214  io.out.bits.ctrl.vpu.foreach(_ := fixCtrlVec.last.vpu.get)
215  io.out.bits.perfDebugInfo := fixPerfVec.last
216
217  // vstart illegal
218  if (cfg.exceptionOut.nonEmpty) {
219    val outVstart = fixCtrlVec.last.vpu.get.vstart
220    val vstartIllegal = outVstart =/= 0.U
221    io.out.bits.ctrl.exceptionVec.get := 0.U.asTypeOf(io.out.bits.ctrl.exceptionVec.get)
222    io.out.bits.ctrl.exceptionVec.get(illegalInstr) := vstartIllegal
223  }
224
225  def regEnable(i: Int): Bool = validVec(i - 1) && rdyVec(i - 1) && !flushVec(i - 1)
226
227  def PipelineReg[TT <: Data](i: Int)(next: TT) = {
228    val lat = preLat min i
229    RegEnable(
230      next,
231      regEnable(lat)
232    )
233  }
234
235  def SNReg[TT <: Data](in: TT, n: Int): TT ={
236    val lat = preLat min n
237    var next = in
238    for (i <- 1 to lat) {
239      next = PipelineReg[TT](i)(next)
240    }
241    next
242  }
243
244  def S1Reg[TT <: Data](next: TT): TT = PipelineReg[TT](1)(next)
245
246  def S2Reg[TT <: Data](next: TT): TT = PipelineReg[TT](2)(next)
247
248  def S3Reg[TT <: Data](next: TT): TT = PipelineReg[TT](3)(next)
249
250  def S4Reg[TT <: Data](next: TT): TT = PipelineReg[TT](4)(next)
251
252  def S5Reg[TT <: Data](next: TT): TT = PipelineReg[TT](5)(next)
253
254}
255
256abstract class PipedFuncUnit(override val cfg: FuConfig)(implicit p: Parameters) extends FuncUnit(cfg)
257  with HasPipelineReg {
258  override def latency: Int = cfg.latency.latencyVal.get
259}
260