1package xiangshan.backend.fu 2 3import org.chipsalliance.cde.config.Parameters 4import chisel3._ 5import chisel3.util._ 6import utility.DataHoldBypass 7import utils.OptionWrapper 8import xiangshan._ 9import xiangshan.backend.Bundles.VPUCtrlSignals 10import xiangshan.backend.rob.RobPtr 11import xiangshan.frontend.{FtqPtr, PreDecodeInfo} 12import xiangshan.backend.datapath.DataConfig._ 13import xiangshan.backend.fu.vector.Bundles.Vxsat 14import xiangshan.ExceptionNO.illegalInstr 15import xiangshan.backend.fu.vector.Bundles.VType 16 17class FuncUnitCtrlInput(cfg: FuConfig)(implicit p: Parameters) extends XSBundle { 18 val fuOpType = FuOpType() 19 val robIdx = new RobPtr 20 val pdest = UInt(PhyRegIdxWidth.W) 21 val rfWen = OptionWrapper(cfg.needIntWen, Bool()) 22 val fpWen = OptionWrapper(cfg.needFpWen, Bool()) 23 val vecWen = OptionWrapper(cfg.needVecWen, Bool()) 24 val v0Wen = OptionWrapper(cfg.needV0Wen, Bool()) 25 val vlWen = OptionWrapper(cfg.needVlWen, Bool()) 26 val flushPipe = OptionWrapper(cfg.flushPipe, Bool()) 27 val preDecode = OptionWrapper(cfg.hasPredecode, new PreDecodeInfo) 28 val ftqIdx = OptionWrapper(cfg.needPc || cfg.replayInst || cfg.isSta, new FtqPtr) 29 val ftqOffset = OptionWrapper(cfg.needPc || cfg.replayInst || cfg.isSta, UInt(log2Up(PredictWidth).W)) 30 val predictInfo = OptionWrapper(cfg.hasRedirect, new Bundle { 31 val target = UInt(VAddrData().dataWidth.W) 32 val taken = Bool() 33 }) 34 val fpu = OptionWrapper(cfg.writeFflags, new FPUCtrlSignals) 35 val vpu = OptionWrapper(cfg.needVecCtrl, new VPUCtrlSignals) 36} 37 38class FuncUnitCtrlOutput(cfg: FuConfig)(implicit p: Parameters) extends XSBundle { 39 val robIdx = new RobPtr 40 val pdest = UInt(PhyRegIdxWidth.W) // Todo: use maximum of pregIdxWidth of different pregs 41 val rfWen = OptionWrapper(cfg.needIntWen, Bool()) 42 val fpWen = OptionWrapper(cfg.needFpWen, Bool()) 43 val vecWen = OptionWrapper(cfg.needVecWen, Bool()) 44 val v0Wen = OptionWrapper(cfg.needV0Wen, Bool()) 45 val vlWen = OptionWrapper(cfg.needVlWen, Bool()) 46 val exceptionVec = OptionWrapper(cfg.exceptionOut.nonEmpty, ExceptionVec()) 47 val flushPipe = OptionWrapper(cfg.flushPipe, Bool()) 48 val replay = OptionWrapper(cfg.replayInst, Bool()) 49 val preDecode = OptionWrapper(cfg.hasPredecode, new PreDecodeInfo) 50 val fpu = OptionWrapper(cfg.writeFflags, new FPUCtrlSignals) 51 val vpu = OptionWrapper(cfg.needVecCtrl, new VPUCtrlSignals) 52} 53 54class FuncUnitDataInput(cfg: FuConfig)(implicit p: Parameters) extends XSBundle { 55 val src = MixedVec(cfg.genSrcDataVec) 56 val imm = UInt(cfg.destDataBits.W) 57 val pc = OptionWrapper(cfg.needPc, UInt(VAddrData().dataWidth.W)) 58 59 def getSrcVConfig : UInt = src(cfg.vconfigIdx) 60 def getSrcMask : UInt = src(cfg.maskSrcIdx) 61} 62 63class FuncUnitDataOutput(cfg: FuConfig)(implicit p: Parameters) extends XSBundle { 64 val data = UInt(cfg.destDataBits.W) 65 val fflags = OptionWrapper(cfg.writeFflags, UInt(5.W)) 66 val vxsat = OptionWrapper(cfg.writeVxsat, Vxsat()) 67 val pc = OptionWrapper(cfg.isFence, UInt(VAddrData().dataWidth.W)) 68 val redirect = OptionWrapper(cfg.hasRedirect, ValidIO(new Redirect)) 69} 70 71class FuncUnitInput(cfg: FuConfig)(implicit p: Parameters) extends XSBundle { 72 val ctrl = new FuncUnitCtrlInput(cfg) 73 val data = new FuncUnitDataInput(cfg) 74 val perfDebugInfo = new PerfDebugInfo() 75} 76 77class FuncUnitOutput(cfg: FuConfig)(implicit p: Parameters) extends XSBundle { 78 val ctrl = new FuncUnitCtrlOutput(cfg) 79 val res = new FuncUnitDataOutput(cfg) 80 val perfDebugInfo = new PerfDebugInfo() 81} 82 83class FuncUnitIO(cfg: FuConfig)(implicit p: Parameters) extends XSBundle { 84 val flush = Flipped(ValidIO(new Redirect)) 85 val in = Flipped(DecoupledIO(new FuncUnitInput(cfg))) 86 val out = DecoupledIO(new FuncUnitOutput(cfg)) 87 val csrio = OptionWrapper(cfg.isCsr, new CSRFileIO) 88 val fenceio = OptionWrapper(cfg.isFence, new FenceIO) 89 val frm = OptionWrapper(cfg.needSrcFrm, Input(UInt(3.W))) 90 val vxrm = OptionWrapper(cfg.needSrcVxrm, Input(UInt(2.W))) 91 val vtype = OptionWrapper(cfg.writeVlRf, (Valid(new VType))) 92 val vlIsZero = OptionWrapper(cfg.writeVlRf, Output(Bool())) 93 val vlIsVlmax = OptionWrapper(cfg.writeVlRf, Output(Bool())) 94} 95 96abstract class FuncUnit(val cfg: FuConfig)(implicit p: Parameters) extends XSModule { 97 val io = IO(new FuncUnitIO(cfg)) 98 99 // should only be used in non-piped fu 100 def connectNonPipedCtrlSingal: Unit = { 101 io.out.bits.ctrl.robIdx := RegEnable(io.in.bits.ctrl.robIdx, io.in.fire) 102 io.out.bits.ctrl.pdest := RegEnable(io.in.bits.ctrl.pdest, io.in.fire) 103 io.out.bits.ctrl.rfWen .foreach(_ := RegEnable(io.in.bits.ctrl.rfWen.get, io.in.fire)) 104 io.out.bits.ctrl.fpWen .foreach(_ := RegEnable(io.in.bits.ctrl.fpWen.get, io.in.fire)) 105 io.out.bits.ctrl.vecWen .foreach(_ := RegEnable(io.in.bits.ctrl.vecWen.get, io.in.fire)) 106 io.out.bits.ctrl.v0Wen .foreach(_ := RegEnable(io.in.bits.ctrl.v0Wen.get, io.in.fire)) 107 io.out.bits.ctrl.vlWen .foreach(_ := RegEnable(io.in.bits.ctrl.vlWen.get, io.in.fire)) 108 // io.out.bits.ctrl.flushPipe should be connected in fu 109 io.out.bits.ctrl.preDecode.foreach(_ := RegEnable(io.in.bits.ctrl.preDecode.get, io.in.fire)) 110 io.out.bits.ctrl.fpu .foreach(_ := RegEnable(io.in.bits.ctrl.fpu.get, io.in.fire)) 111 io.out.bits.ctrl.vpu .foreach(_ := RegEnable(io.in.bits.ctrl.vpu.get, io.in.fire)) 112 io.out.bits.perfDebugInfo := RegEnable(io.in.bits.perfDebugInfo, io.in.fire) 113 } 114 115 def connect0LatencyCtrlSingal: Unit = { 116 io.out.bits.ctrl.robIdx := io.in.bits.ctrl.robIdx 117 io.out.bits.ctrl.pdest := io.in.bits.ctrl.pdest 118 io.out.bits.ctrl.rfWen.foreach(_ := io.in.bits.ctrl.rfWen.get) 119 io.out.bits.ctrl.fpWen.foreach(_ := io.in.bits.ctrl.fpWen.get) 120 io.out.bits.ctrl.vecWen.foreach(_ := io.in.bits.ctrl.vecWen.get) 121 io.out.bits.ctrl.v0Wen.foreach(_ := io.in.bits.ctrl.v0Wen.get) 122 io.out.bits.ctrl.vlWen.foreach(_ := io.in.bits.ctrl.vlWen.get) 123 // io.out.bits.ctrl.flushPipe should be connected in fu 124 io.out.bits.ctrl.preDecode.foreach(_ := io.in.bits.ctrl.preDecode.get) 125 io.out.bits.ctrl.fpu.foreach(_ := io.in.bits.ctrl.fpu.get) 126 io.out.bits.ctrl.vpu.foreach(_ := io.in.bits.ctrl.vpu.get) 127 io.out.bits.perfDebugInfo := io.in.bits.perfDebugInfo 128 } 129} 130 131/** 132 * @author LinJiaWei, Yinan Xu 133 */ 134trait HasPipelineReg { this: FuncUnit => 135 def latency: Int 136 137 val latdiff :Int = cfg.latency.extraLatencyVal.getOrElse(0) 138 val preLat :Int = latency - latdiff 139 require(latency >= 0 && latdiff >=0) 140 141 def pipelineReg(init: FuncUnitInput , valid:Bool, ready: Bool,latency: Int, flush:ValidIO[Redirect]): (Seq[FuncUnitInput],Seq[Bool],Seq[Bool])={ 142 val rdyVec = Seq.fill(latency)(Wire(Bool())) :+ ready 143 val validVec = valid +: Seq.fill(latency)(RegInit(false.B)) 144 val ctrlVec = init.ctrl +: Seq.fill(latency)(Reg(chiselTypeOf(io.in.bits.ctrl))) 145 val dataVec = init.data +: Seq.fill(latency)(Reg(chiselTypeOf(io.in.bits.data))) 146 val perfVec = init.perfDebugInfo +: Seq.fill(latency)(Reg(chiselTypeOf(io.in.bits.perfDebugInfo))) 147 148 149 150 val robIdxVec = ctrlVec.map(_.robIdx) 151 152 // if flush(0), valid 0 will not given, so set flushVec(0) to false.B 153 val flushVec = validVec.zip(robIdxVec).map(x => x._1 && x._2.needFlush(flush)) 154 155 for (i <- 0 until latency) { 156 rdyVec(i) := !validVec(i + 1) || rdyVec(i + 1).asTypeOf(Bool()) 157 } 158 for (i <- 1 to latency) { 159 when(rdyVec(i - 1) && validVec(i - 1) && !flushVec(i - 1)) { 160 validVec(i) := validVec(i - 1) 161 ctrlVec(i) := ctrlVec(i - 1) 162 dataVec(i) := dataVec(i - 1) 163 perfVec(i) := perfVec(i - 1) 164 }.elsewhen(flushVec(i) || rdyVec(i)) { 165 validVec(i) := false.B 166 } 167 } 168 169 (ctrlVec.zip(dataVec).zip(perfVec).map{ 170 case(( ctrl,data), perf) => { 171 val out = Wire(new FuncUnitInput(cfg)) 172 out.ctrl := ctrl 173 out.data := data 174 out.perfDebugInfo := perf 175 out 176 } 177 },validVec, rdyVec) 178 } 179 val (pipeReg : Seq[FuncUnitInput],validVec ,rdyVec ) = pipelineReg(io.in.bits, io.in.valid,io.out.ready,preLat, io.flush) 180 val ctrlVec = pipeReg.map(_.ctrl) 181 val dataVec = pipeReg.map(_.data) 182 val perfVec = pipeReg.map(_.perfDebugInfo) 183 val robIdxVec = ctrlVec.map(_.robIdx) 184 val pipeflushVec = validVec.zip(robIdxVec).map(x => x._1 && x._2.needFlush(io.flush)) 185 186 187 val fixtiminginit = Wire(new FuncUnitInput(cfg)) 188 fixtiminginit.ctrl := ctrlVec.last 189 fixtiminginit.data := dataVec.last 190 fixtiminginit.perfDebugInfo := perfVec.last 191 192 // fixtiming pipelinereg 193 val (fixpipeReg : Seq[FuncUnitInput], fixValidVec, fixRdyVec) = pipelineReg(fixtiminginit, validVec.last,rdyVec.head ,latdiff, io.flush) 194 val fixCtrlVec = fixpipeReg.map(_.ctrl) 195 val fixDataVec = fixpipeReg.map(_.data) 196 val fixPerfVec = fixpipeReg.map(_.perfDebugInfo) 197 val fixrobIdxVec = ctrlVec.map(_.robIdx) 198 val fixflushVec = fixValidVec.zip(fixrobIdxVec).map(x => x._1 && x._2.needFlush(io.flush)) 199 val flushVec = pipeflushVec ++ fixflushVec 200 val pcVec = fixDataVec.map(_.pc) 201 202 io.in.ready := fixRdyVec.head 203 io.out.valid := fixValidVec.last 204 io.out.bits.res.pc.zip(pcVec.last).foreach { case (l, r) => l := r } 205 206 io.out.bits.ctrl.robIdx := fixCtrlVec.last.robIdx 207 io.out.bits.ctrl.pdest := fixCtrlVec.last.pdest 208 io.out.bits.ctrl.rfWen.foreach(_ := fixCtrlVec.last.rfWen.get) 209 io.out.bits.ctrl.fpWen.foreach(_ := fixCtrlVec.last.fpWen.get) 210 io.out.bits.ctrl.vecWen.foreach(_ := fixCtrlVec.last.vecWen.get) 211 io.out.bits.ctrl.v0Wen.foreach(_ := fixCtrlVec.last.v0Wen.get) 212 io.out.bits.ctrl.vlWen.foreach(_ := fixCtrlVec.last.vlWen.get) 213 io.out.bits.ctrl.fpu.foreach(_ := fixCtrlVec.last.fpu.get) 214 io.out.bits.ctrl.vpu.foreach(_ := fixCtrlVec.last.vpu.get) 215 io.out.bits.perfDebugInfo := fixPerfVec.last 216 217 // vstart illegal 218 if (cfg.exceptionOut.nonEmpty) { 219 val outVstart = fixCtrlVec.last.vpu.get.vstart 220 val vstartIllegal = outVstart =/= 0.U 221 io.out.bits.ctrl.exceptionVec.get := 0.U.asTypeOf(io.out.bits.ctrl.exceptionVec.get) 222 io.out.bits.ctrl.exceptionVec.get(illegalInstr) := vstartIllegal 223 } 224 225 def regEnable(i: Int): Bool = validVec(i - 1) && rdyVec(i - 1) && !flushVec(i - 1) 226 227 def PipelineReg[TT <: Data](i: Int)(next: TT) = { 228 val lat = preLat min i 229 RegEnable( 230 next, 231 regEnable(lat) 232 ) 233 } 234 235 def SNReg[TT <: Data](in: TT, n: Int): TT ={ 236 val lat = preLat min n 237 var next = in 238 for (i <- 1 to lat) { 239 next = PipelineReg[TT](i)(next) 240 } 241 next 242 } 243 244 def S1Reg[TT <: Data](next: TT): TT = PipelineReg[TT](1)(next) 245 246 def S2Reg[TT <: Data](next: TT): TT = PipelineReg[TT](2)(next) 247 248 def S3Reg[TT <: Data](next: TT): TT = PipelineReg[TT](3)(next) 249 250 def S4Reg[TT <: Data](next: TT): TT = PipelineReg[TT](4)(next) 251 252 def S5Reg[TT <: Data](next: TT): TT = PipelineReg[TT](5)(next) 253 254} 255 256abstract class PipedFuncUnit(override val cfg: FuConfig)(implicit p: Parameters) extends FuncUnit(cfg) 257 with HasPipelineReg { 258 override def latency: Int = cfg.latency.latencyVal.get 259} 260