xref: /XiangShan/src/main/scala/xiangshan/backend/fu/FuncUnit.scala (revision 007f6122a953eff2462f58844552d524d911f6c9)
1package xiangshan.backend.fu
2
3import org.chipsalliance.cde.config.Parameters
4import chisel3._
5import chisel3.util._
6import utility.DataHoldBypass
7import utils.OptionWrapper
8import xiangshan._
9import xiangshan.backend.Bundles.VPUCtrlSignals
10import xiangshan.backend.rob.RobPtr
11import xiangshan.frontend.{FtqPtr, PreDecodeInfo}
12import xiangshan.backend.datapath.DataConfig._
13import xiangshan.backend.fu.vector.Bundles.Vxsat
14import xiangshan.ExceptionNO.illegalInstr
15import xiangshan.backend.fu.vector.Bundles.VType
16import xiangshan.backend.fu.wrapper.CSRInput
17
18class FuncUnitCtrlInput(cfg: FuConfig)(implicit p: Parameters) extends XSBundle {
19  val fuOpType    = FuOpType()
20  val robIdx      = new RobPtr
21  val pdest       = UInt(PhyRegIdxWidth.W)
22  val rfWen       = OptionWrapper(cfg.needIntWen, Bool())
23  val fpWen       = OptionWrapper(cfg.needFpWen,  Bool())
24  val vecWen      = OptionWrapper(cfg.needVecWen, Bool())
25  val v0Wen       = OptionWrapper(cfg.needV0Wen, Bool())
26  val vlWen       = OptionWrapper(cfg.needVlWen, Bool())
27  val flushPipe   = OptionWrapper(cfg.flushPipe,  Bool())
28  val preDecode   = OptionWrapper(cfg.hasPredecode, new PreDecodeInfo)
29  val ftqIdx      = OptionWrapper(cfg.needPc || cfg.replayInst || cfg.isSta, new FtqPtr)
30  val ftqOffset   = OptionWrapper(cfg.needPc || cfg.replayInst || cfg.isSta, UInt(log2Up(PredictWidth).W))
31  val predictInfo = OptionWrapper(cfg.hasRedirect, new Bundle {
32    val target    = UInt(VAddrData().dataWidth.W)
33    val taken     = Bool()
34  })
35  val fpu         = OptionWrapper(cfg.writeFflags, new FPUCtrlSignals)
36  val vpu         = OptionWrapper(cfg.needVecCtrl, new VPUCtrlSignals)
37}
38
39class FuncUnitCtrlOutput(cfg: FuConfig)(implicit p: Parameters) extends XSBundle {
40  val robIdx        = new RobPtr
41  val pdest         = UInt(PhyRegIdxWidth.W) // Todo: use maximum of pregIdxWidth of different pregs
42  val rfWen         = OptionWrapper(cfg.needIntWen, Bool())
43  val fpWen         = OptionWrapper(cfg.needFpWen,  Bool())
44  val vecWen        = OptionWrapper(cfg.needVecWen, Bool())
45  val v0Wen         = OptionWrapper(cfg.needV0Wen, Bool())
46  val vlWen         = OptionWrapper(cfg.needVlWen, Bool())
47  val exceptionVec  = OptionWrapper(cfg.exceptionOut.nonEmpty, ExceptionVec())
48  val flushPipe     = OptionWrapper(cfg.flushPipe,  Bool())
49  val replay        = OptionWrapper(cfg.replayInst, Bool())
50  val preDecode     = OptionWrapper(cfg.hasPredecode, new PreDecodeInfo)
51  val fpu           = OptionWrapper(cfg.writeFflags, new FPUCtrlSignals)
52  val vpu           = OptionWrapper(cfg.needVecCtrl, new VPUCtrlSignals)
53}
54
55class FuncUnitDataInput(cfg: FuConfig)(implicit p: Parameters) extends XSBundle {
56  val src       = MixedVec(cfg.genSrcDataVec)
57  val imm       = UInt(cfg.destDataBits.W)
58  val pc        = OptionWrapper(cfg.needPc, UInt(VAddrData().dataWidth.W))
59
60  def getSrcVConfig : UInt = src(cfg.vconfigIdx)
61  def getSrcMask    : UInt = src(cfg.maskSrcIdx)
62}
63
64class FuncUnitDataOutput(cfg: FuConfig)(implicit p: Parameters) extends XSBundle {
65  val data      = UInt(cfg.destDataBits.W)
66  val fflags    = OptionWrapper(cfg.writeFflags, UInt(5.W))
67  val vxsat     = OptionWrapper(cfg.writeVxsat, Vxsat())
68  val pc        = OptionWrapper(cfg.isFence, UInt(VAddrData().dataWidth.W))
69  val redirect  = OptionWrapper(cfg.hasRedirect, ValidIO(new Redirect))
70}
71
72class FuncUnitInput(cfg: FuConfig)(implicit p: Parameters) extends XSBundle {
73  val ctrl = new FuncUnitCtrlInput(cfg)
74  val data = new FuncUnitDataInput(cfg)
75  val perfDebugInfo = new PerfDebugInfo()
76}
77
78class FuncUnitOutput(cfg: FuConfig)(implicit p: Parameters) extends XSBundle {
79  val ctrl = new FuncUnitCtrlOutput(cfg)
80  val res = new FuncUnitDataOutput(cfg)
81  val perfDebugInfo = new PerfDebugInfo()
82}
83
84class FuncUnitIO(cfg: FuConfig)(implicit p: Parameters) extends XSBundle {
85  val flush = Flipped(ValidIO(new Redirect))
86  val in = Flipped(DecoupledIO(new FuncUnitInput(cfg)))
87  val out = DecoupledIO(new FuncUnitOutput(cfg))
88  val csrin = OptionWrapper(cfg.isCsr, new CSRInput)
89  val csrio = OptionWrapper(cfg.isCsr, new CSRFileIO)
90  val fenceio = OptionWrapper(cfg.isFence, new FenceIO)
91  val frm = OptionWrapper(cfg.needSrcFrm, Input(UInt(3.W)))
92  val vxrm = OptionWrapper(cfg.needSrcVxrm, Input(UInt(2.W)))
93  val vtype = OptionWrapper(cfg.writeVlRf, (Valid(new VType)))
94  val vlIsZero = OptionWrapper(cfg.writeVlRf, Output(Bool()))
95  val vlIsVlmax = OptionWrapper(cfg.writeVlRf, Output(Bool()))
96}
97
98abstract class FuncUnit(val cfg: FuConfig)(implicit p: Parameters) extends XSModule {
99  val io = IO(new FuncUnitIO(cfg))
100
101  // should only be used in non-piped fu
102  def connectNonPipedCtrlSingal: Unit = {
103    io.out.bits.ctrl.robIdx := RegEnable(io.in.bits.ctrl.robIdx, io.in.fire)
104    io.out.bits.ctrl.pdest  := RegEnable(io.in.bits.ctrl.pdest, io.in.fire)
105    io.out.bits.ctrl.rfWen  .foreach(_ := RegEnable(io.in.bits.ctrl.rfWen.get, io.in.fire))
106    io.out.bits.ctrl.fpWen  .foreach(_ := RegEnable(io.in.bits.ctrl.fpWen.get, io.in.fire))
107    io.out.bits.ctrl.vecWen .foreach(_ := RegEnable(io.in.bits.ctrl.vecWen.get, io.in.fire))
108    io.out.bits.ctrl.v0Wen .foreach(_ := RegEnable(io.in.bits.ctrl.v0Wen.get, io.in.fire))
109    io.out.bits.ctrl.vlWen .foreach(_ := RegEnable(io.in.bits.ctrl.vlWen.get, io.in.fire))
110    // io.out.bits.ctrl.flushPipe should be connected in fu
111    io.out.bits.ctrl.preDecode.foreach(_ := RegEnable(io.in.bits.ctrl.preDecode.get, io.in.fire))
112    io.out.bits.ctrl.fpu      .foreach(_ := RegEnable(io.in.bits.ctrl.fpu.get, io.in.fire))
113    io.out.bits.ctrl.vpu      .foreach(_ := RegEnable(io.in.bits.ctrl.vpu.get, io.in.fire))
114    io.out.bits.perfDebugInfo := RegEnable(io.in.bits.perfDebugInfo, io.in.fire)
115  }
116
117  def connect0LatencyCtrlSingal: Unit = {
118    io.out.bits.ctrl.robIdx := io.in.bits.ctrl.robIdx
119    io.out.bits.ctrl.pdest := io.in.bits.ctrl.pdest
120    io.out.bits.ctrl.rfWen.foreach(_ := io.in.bits.ctrl.rfWen.get)
121    io.out.bits.ctrl.fpWen.foreach(_ := io.in.bits.ctrl.fpWen.get)
122    io.out.bits.ctrl.vecWen.foreach(_ := io.in.bits.ctrl.vecWen.get)
123    io.out.bits.ctrl.v0Wen.foreach(_ := io.in.bits.ctrl.v0Wen.get)
124    io.out.bits.ctrl.vlWen.foreach(_ := io.in.bits.ctrl.vlWen.get)
125    // io.out.bits.ctrl.flushPipe should be connected in fu
126    io.out.bits.ctrl.preDecode.foreach(_ := io.in.bits.ctrl.preDecode.get)
127    io.out.bits.ctrl.fpu.foreach(_ := io.in.bits.ctrl.fpu.get)
128    io.out.bits.ctrl.vpu.foreach(_ := io.in.bits.ctrl.vpu.get)
129    io.out.bits.perfDebugInfo := io.in.bits.perfDebugInfo
130  }
131}
132
133/**
134  * @author LinJiaWei, Yinan Xu
135  */
136trait HasPipelineReg { this: FuncUnit =>
137  def latency: Int
138
139  val latdiff :Int = cfg.latency.extraLatencyVal.getOrElse(0)
140  val preLat :Int = latency - latdiff
141  require(latency >= 0 && latdiff >=0)
142
143  def pipelineReg(init: FuncUnitInput , valid:Bool, ready: Bool,latency: Int, flush:ValidIO[Redirect]): (Seq[FuncUnitInput],Seq[Bool],Seq[Bool])={
144    val rdyVec = Seq.fill(latency)(Wire(Bool())) :+ ready
145    val validVec = valid +: Seq.fill(latency)(RegInit(false.B))
146    val ctrlVec = init.ctrl +: Seq.fill(latency)(Reg(chiselTypeOf(io.in.bits.ctrl)))
147    val dataVec = init.data +: Seq.fill(latency)(Reg(chiselTypeOf(io.in.bits.data)))
148    val perfVec = init.perfDebugInfo +: Seq.fill(latency)(Reg(chiselTypeOf(io.in.bits.perfDebugInfo)))
149
150
151
152    val robIdxVec = ctrlVec.map(_.robIdx)
153
154    // if flush(0), valid 0 will not given, so set flushVec(0) to false.B
155    val flushVec = validVec.zip(robIdxVec).map(x => x._1 && x._2.needFlush(flush))
156
157    for (i <- 0 until latency) {
158      rdyVec(i) := !validVec(i + 1) || rdyVec(i + 1).asTypeOf(Bool())
159    }
160    for (i <- 1 to latency) {
161      when(rdyVec(i - 1) && validVec(i - 1) && !flushVec(i - 1)) {
162        validVec(i) := validVec(i - 1)
163        ctrlVec(i) := ctrlVec(i - 1)
164        dataVec(i) := dataVec(i - 1)
165        perfVec(i) := perfVec(i - 1)
166      }.elsewhen(flushVec(i) || rdyVec(i)) {
167        validVec(i) := false.B
168      }
169    }
170
171    (ctrlVec.zip(dataVec).zip(perfVec).map{
172      case(( ctrl,data), perf) => {
173        val out = Wire(new FuncUnitInput(cfg))
174        out.ctrl := ctrl
175        out.data := data
176        out.perfDebugInfo := perf
177        out
178      }
179    },validVec, rdyVec)
180  }
181  val (pipeReg : Seq[FuncUnitInput],validVec ,rdyVec ) = pipelineReg(io.in.bits, io.in.valid,io.out.ready,preLat, io.flush)
182  val ctrlVec = pipeReg.map(_.ctrl)
183  val dataVec = pipeReg.map(_.data)
184  val perfVec = pipeReg.map(_.perfDebugInfo)
185  val robIdxVec = ctrlVec.map(_.robIdx)
186  val pipeflushVec = validVec.zip(robIdxVec).map(x => x._1 && x._2.needFlush(io.flush))
187
188
189  val fixtiminginit = Wire(new FuncUnitInput(cfg))
190  fixtiminginit.ctrl := ctrlVec.last
191  fixtiminginit.data := dataVec.last
192  fixtiminginit.perfDebugInfo := perfVec.last
193
194  // fixtiming pipelinereg
195  val (fixpipeReg : Seq[FuncUnitInput], fixValidVec, fixRdyVec) = pipelineReg(fixtiminginit, validVec.last,rdyVec.head ,latdiff, io.flush)
196  val fixCtrlVec = fixpipeReg.map(_.ctrl)
197  val fixDataVec = fixpipeReg.map(_.data)
198  val fixPerfVec = fixpipeReg.map(_.perfDebugInfo)
199  val fixrobIdxVec = ctrlVec.map(_.robIdx)
200  val fixflushVec = fixValidVec.zip(fixrobIdxVec).map(x => x._1 && x._2.needFlush(io.flush))
201  val flushVec = pipeflushVec ++ fixflushVec
202  val pcVec = fixDataVec.map(_.pc)
203
204  io.in.ready := fixRdyVec.head
205  io.out.valid := fixValidVec.last
206  io.out.bits.res.pc.zip(pcVec.last).foreach { case (l, r) => l := r }
207
208  io.out.bits.ctrl.robIdx := fixCtrlVec.last.robIdx
209  io.out.bits.ctrl.pdest := fixCtrlVec.last.pdest
210  io.out.bits.ctrl.rfWen.foreach(_ := fixCtrlVec.last.rfWen.get)
211  io.out.bits.ctrl.fpWen.foreach(_ := fixCtrlVec.last.fpWen.get)
212  io.out.bits.ctrl.vecWen.foreach(_ := fixCtrlVec.last.vecWen.get)
213  io.out.bits.ctrl.v0Wen.foreach(_ := fixCtrlVec.last.v0Wen.get)
214  io.out.bits.ctrl.vlWen.foreach(_ := fixCtrlVec.last.vlWen.get)
215  io.out.bits.ctrl.fpu.foreach(_ := fixCtrlVec.last.fpu.get)
216  io.out.bits.ctrl.vpu.foreach(_ := fixCtrlVec.last.vpu.get)
217  io.out.bits.perfDebugInfo := fixPerfVec.last
218
219  // vstart illegal
220  if (cfg.exceptionOut.nonEmpty) {
221    val outVstart = fixCtrlVec.last.vpu.get.vstart
222    val vstartIllegal = outVstart =/= 0.U
223    io.out.bits.ctrl.exceptionVec.get := 0.U.asTypeOf(io.out.bits.ctrl.exceptionVec.get)
224    io.out.bits.ctrl.exceptionVec.get(illegalInstr) := vstartIllegal
225  }
226
227  def regEnable(i: Int): Bool = validVec(i - 1) && rdyVec(i - 1) && !flushVec(i - 1)
228
229  def PipelineReg[TT <: Data](i: Int)(next: TT) = {
230    val lat = preLat min i
231    RegEnable(
232      next,
233      regEnable(lat)
234    )
235  }
236
237  def SNReg[TT <: Data](in: TT, n: Int): TT ={
238    val lat = preLat min n
239    var next = in
240    for (i <- 1 to lat) {
241      next = PipelineReg[TT](i)(next)
242    }
243    next
244  }
245
246  def S1Reg[TT <: Data](next: TT): TT = PipelineReg[TT](1)(next)
247
248  def S2Reg[TT <: Data](next: TT): TT = PipelineReg[TT](2)(next)
249
250  def S3Reg[TT <: Data](next: TT): TT = PipelineReg[TT](3)(next)
251
252  def S4Reg[TT <: Data](next: TT): TT = PipelineReg[TT](4)(next)
253
254  def S5Reg[TT <: Data](next: TT): TT = PipelineReg[TT](5)(next)
255
256}
257
258abstract class PipedFuncUnit(override val cfg: FuConfig)(implicit p: Parameters) extends FuncUnit(cfg)
259  with HasPipelineReg {
260  override def latency: Int = cfg.latency.latencyVal.get
261}
262