1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.fu 18 19import org.chipsalliance.cde.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.util._ 24import utility.MaskedRegMap.WritableMask 25import utils._ 26import utility._ 27import xiangshan.ExceptionNO._ 28import xiangshan._ 29import xiangshan.backend.fu.util._ 30import xiangshan.cache._ 31import xiangshan.backend.Bundles.ExceptionInfo 32import xiangshan.backend.fu.util.CSR.CSRNamedConstant.ContextStatus 33import utils.MathUtils.{BigIntGenMask, BigIntNot} 34 35// Trigger Tdata1 bundles 36trait HasTriggerConst { 37 def I_Trigger = 0.U 38 def S_Trigger = 1.U 39 def L_Trigger = 2.U 40 def GenESL(triggerType: UInt) = Cat((triggerType === I_Trigger), (triggerType === S_Trigger), (triggerType === L_Trigger)) 41} 42 43class FpuCsrIO extends Bundle { 44 val fflags = Output(Valid(UInt(5.W))) 45 val isIllegal = Output(Bool()) 46 val dirty_fs = Output(Bool()) 47 val frm = Input(UInt(3.W)) 48} 49 50class VpuCsrIO(implicit p: Parameters) extends XSBundle { 51 val vstart = Input(UInt(XLEN.W)) 52 val vxsat = Input(UInt(1.W)) 53 val vxrm = Input(UInt(2.W)) 54 val vcsr = Input(UInt(XLEN.W)) 55 val vl = Input(UInt(XLEN.W)) 56 val vtype = Input(UInt(XLEN.W)) 57 val vlenb = Input(UInt(XLEN.W)) 58 59 val vill = Input(UInt(1.W)) 60 val vma = Input(UInt(1.W)) 61 val vta = Input(UInt(1.W)) 62 val vsew = Input(UInt(3.W)) 63 val vlmul = Input(UInt(3.W)) 64 65 val set_vstart = Output(Valid(UInt(XLEN.W))) 66 val set_vl = Output(Valid(UInt(XLEN.W))) 67 val set_vtype = Output(Valid(UInt(XLEN.W))) 68 val set_vxsat = Output(Valid(UInt(1.W))) 69 70 val dirty_vs = Output(Bool()) 71} 72 73 74class PerfCounterIO(implicit p: Parameters) extends XSBundle { 75 val perfEventsFrontend = Vec(numCSRPCntFrontend, new PerfEvent) 76 val perfEventsCtrl = Vec(numCSRPCntCtrl, new PerfEvent) 77 val perfEventsLsu = Vec(numCSRPCntLsu, new PerfEvent) 78 val perfEventsHc = Vec(numPCntHc * coreParams.L2NBanks, new PerfEvent) 79 val retiredInstr = UInt(3.W) 80 val frontendInfo = new Bundle { 81 val ibufFull = Bool() 82 val bpuInfo = new Bundle { 83 val bpRight = UInt(XLEN.W) 84 val bpWrong = UInt(XLEN.W) 85 } 86 } 87 val ctrlInfo = new Bundle { 88 val robFull = Bool() 89 val intdqFull = Bool() 90 val fpdqFull = Bool() 91 val lsdqFull = Bool() 92 } 93 val memInfo = new Bundle { 94 val sqFull = Bool() 95 val lqFull = Bool() 96 val dcacheMSHRFull = Bool() 97 } 98} 99 100class CSRFileIO(implicit p: Parameters) extends XSBundle { 101 val hartId = Input(UInt(8.W)) 102 // output (for func === CSROpType.jmp) 103 val perf = Input(new PerfCounterIO) 104 val isPerfCnt = Output(Bool()) 105 // to FPU 106 val fpu = Flipped(new FpuCsrIO) 107 // to VPU 108 val vpu = Flipped(new VpuCsrIO) 109 // from rob 110 val exception = Flipped(ValidIO(new ExceptionInfo)) 111 // to ROB 112 val isXRet = Output(Bool()) 113 val trapTarget = Output(UInt(VAddrBits.W)) 114 val interrupt = Output(Bool()) 115 val wfi_event = Output(Bool()) 116 // from LSQ 117 val memExceptionVAddr = Input(UInt(VAddrBits.W)) 118 // from outside cpu,externalInterrupt 119 val externalInterrupt = new ExternalInterruptIO 120 // TLB 121 val tlb = Output(new TlbCsrBundle) 122 // Debug Mode 123 // val singleStep = Output(Bool()) 124 val debugMode = Output(Bool()) 125 // to Fence to disable sfence 126 val disableSfence = Output(Bool()) 127 // Custom microarchiture ctrl signal 128 val customCtrl = Output(new CustomCSRCtrlIO) 129 // distributed csr write 130 val distributedUpdate = Vec(2, Flipped(new DistributedCSRUpdateReq)) 131} 132 133class VtypeStruct(implicit p: Parameters) extends XSBundle { 134 val vill = UInt(1.W) 135 val reserved = UInt((XLEN - 9).W) 136 val vma = UInt(1.W) 137 val vta = UInt(1.W) 138 val vsew = UInt(3.W) 139 val vlmul = UInt(3.W) 140} 141 142class CSR(cfg: FuConfig)(implicit p: Parameters) extends FuncUnit(cfg) 143 with HasCSRConst 144 with PMPMethod 145 with PMAMethod 146 with HasTriggerConst 147 with HasXSParameter 148 with SdtrigExt 149 with DebugCSR 150{ 151 val csrio = io.csrio.get 152 153 val flushPipe = Wire(Bool()) 154 155 val (valid, src1, src2, func) = ( 156 io.in.valid, 157 io.in.bits.data.src(0), 158 io.in.bits.data.imm, 159 io.in.bits.ctrl.fuOpType 160 ) 161 162 // CSR define 163 164 class Priv extends Bundle { 165 val m = Output(Bool()) 166 val h = Output(Bool()) 167 val s = Output(Bool()) 168 val u = Output(Bool()) 169 } 170 171 class MstatusStruct extends Bundle { 172 val sd = Output(UInt(1.W)) 173 174 val pad1 = if (XLEN == 64) Output(UInt(25.W)) else null 175 val mbe = if (XLEN == 64) Output(UInt(1.W)) else null 176 val sbe = if (XLEN == 64) Output(UInt(1.W)) else null 177 val sxl = if (XLEN == 64) Output(UInt(2.W)) else null 178 val uxl = if (XLEN == 64) Output(UInt(2.W)) else null 179 val pad0 = if (XLEN == 64) Output(UInt(9.W)) else Output(UInt(8.W)) 180 181 val tsr = Output(UInt(1.W)) 182 val tw = Output(UInt(1.W)) 183 val tvm = Output(UInt(1.W)) 184 val mxr = Output(UInt(1.W)) 185 val sum = Output(UInt(1.W)) 186 val mprv = Output(UInt(1.W)) 187 val xs = Output(UInt(2.W)) 188 val fs = Output(UInt(2.W)) 189 val mpp = Output(UInt(2.W)) 190 val vs = Output(UInt(2.W)) 191 val spp = Output(UInt(1.W)) 192 val pie = new Priv 193 val ie = new Priv 194 assert(this.getWidth == XLEN) 195 196 def ube = pie.h // a little ugly 197 def ube_(r: UInt): Unit = { 198 pie.h := r(0) 199 } 200 } 201 202 class Interrupt extends Bundle { 203// val d = Output(Bool()) // Debug 204 val e = new Priv 205 val t = new Priv 206 val s = new Priv 207 } 208 209 val csrNotImplemented = RegInit(UInt(XLEN.W), 0.U) 210 211 // Debug CSRs 212 val dcsr = RegInit(UInt(32.W), DcsrStruct.init) 213 val dpc = Reg(UInt(64.W)) 214 val dscratch0 = Reg(UInt(64.W)) 215 val dscratch1 = Reg(UInt(64.W)) 216 val debugMode = RegInit(false.B) 217 val debugIntrEnable = RegInit(true.B) // debug interrupt will be handle only when debugIntrEnable 218 csrio.debugMode := debugMode 219 220 val dpcPrev = RegNext(dpc) 221 XSDebug(dpcPrev =/= dpc, "Debug Mode: dpc is altered! Current is %x, previous is %x\n", dpc, dpcPrev) 222 223 val dcsrData = Wire(new DcsrStruct) 224 dcsrData := dcsr.asTypeOf(new DcsrStruct) 225 val dcsrMask = ZeroExt(GenMask(15) | GenMask(13, 11) | GenMask(4) | GenMask(2, 0), XLEN)// Dcsr write mask 226 def dcsrUpdateSideEffect(dcsr: UInt): UInt = { 227 val dcsrOld = WireInit(dcsr.asTypeOf(new DcsrStruct)) 228 val dcsrNew = dcsr | (dcsrOld.prv(0) | dcsrOld.prv(1)).asUInt // turn 10 priv into 11 229 dcsrNew 230 } 231 // csrio.singleStep := dcsrData.step 232 csrio.customCtrl.singlestep := dcsrData.step && !debugMode 233 234 // Trigger CSRs 235 private val tselectPhy = RegInit(0.U(log2Up(TriggerNum).W)) 236 237 private val tdata1RegVec = RegInit(VecInit(Seq.fill(TriggerNum)(Tdata1Bundle.default))) 238 private val tdata2RegVec = RegInit(VecInit(Seq.fill(TriggerNum)(0.U(64.W)))) 239 private val tdata1WireVec = tdata1RegVec.map(_.asTypeOf(new Tdata1Bundle)) 240 private val tdata2WireVec = tdata2RegVec 241 private val tdata1Selected = tdata1RegVec(tselectPhy).asTypeOf(new Tdata1Bundle) 242 private val tdata2Selected = tdata2RegVec(tselectPhy) 243 private val newTriggerChainVec = UIntToOH(tselectPhy, TriggerNum).asBools | tdata1WireVec.map(_.data.asTypeOf(new MControlData).chain) 244 private val newTriggerChainIsLegal = TriggerCheckChainLegal(newTriggerChainVec, TriggerChainMaxLength) 245 val tinfo = RegInit((BigInt(1) << TrigTypeEnum.MCONTROL.litValue.toInt).U(XLEN.W)) // This value should be 4.U 246 247 248 def WriteTselect(wdata: UInt) = { 249 Mux(wdata < TriggerNum.U, wdata(3, 0), tselectPhy) 250 } 251 252 def GenTdataDistribute(tdata1: Tdata1Bundle, tdata2: UInt): MatchTriggerIO = { 253 val res = Wire(new MatchTriggerIO) 254 val mcontrol: MControlData = WireInit(tdata1.data.asTypeOf(new MControlData)) 255 res.matchType := mcontrol.match_.asUInt 256 res.select := mcontrol.select 257 res.timing := mcontrol.timing 258 res.action := mcontrol.action.asUInt 259 res.chain := mcontrol.chain 260 res.execute := mcontrol.execute 261 res.load := mcontrol.load 262 res.store := mcontrol.store 263 res.tdata2 := tdata2 264 res 265 } 266 267 csrio.customCtrl.frontend_trigger.tUpdate.bits.addr := tselectPhy 268 csrio.customCtrl.mem_trigger.tUpdate.bits.addr := tselectPhy 269 csrio.customCtrl.frontend_trigger.tUpdate.bits.tdata := GenTdataDistribute(tdata1Selected, tdata2Selected) 270 csrio.customCtrl.mem_trigger.tUpdate.bits.tdata := GenTdataDistribute(tdata1Selected, tdata2Selected) 271 272 // Machine-Level CSRs 273 // mtvec: {BASE (WARL), MODE (WARL)} where mode is 0 or 1 274 val mtvecMask = ~(0x2.U(XLEN.W)) 275 val mtvec = RegInit(UInt(XLEN.W), 0.U) 276 val mcounteren = RegInit(UInt(XLEN.W), 0.U) 277 val mcause = RegInit(UInt(XLEN.W), 0.U) 278 val mtval = RegInit(UInt(XLEN.W), 0.U) 279 val mepc = Reg(UInt(XLEN.W)) 280 // Page 36 in riscv-priv: The low bit of mepc (mepc[0]) is always zero. 281 val mepcMask = ~(0x1.U(XLEN.W)) 282 283 val mie = RegInit(0.U(XLEN.W)) 284 val mipWire = WireInit(0.U.asTypeOf(new Interrupt)) 285 val mipReg = RegInit(0.U(XLEN.W)) 286 val mipFixMask = ZeroExt(GenMask(9) | GenMask(5) | GenMask(1), XLEN) 287 val mip = (mipWire.asUInt | mipReg).asTypeOf(new Interrupt) 288 289 def getMisaMxl(mxl: BigInt): BigInt = mxl << (XLEN - 2) 290 def getMisaExt(ext: Char): Long = 1 << (ext.toInt - 'a'.toInt) 291 var extList = List('a', 's', 'i', 'u') 292 if (HasMExtension) { extList = extList :+ 'm' } 293 if (HasCExtension) { extList = extList :+ 'c' } 294 if (HasFPU) { extList = extList ++ List('f', 'd') } 295 if (HasVPU) { extList = extList :+ 'v' } 296 val misaInitVal = getMisaMxl(2) | extList.foldLeft(0L)((sum, i) => sum | getMisaExt(i)) //"h8000000000141105".U 297 val misa = RegInit(UInt(XLEN.W), misaInitVal.U) 298 println(s"[CSR] supported isa ext: $extList") 299 300 // MXL = 2 | 0 | EXT = b 00 0000 0100 0001 0001 0000 0101 301 // (XLEN-1, XLEN-2) | |(25, 0) ZY XWVU TSRQ PONM LKJI HGFE DCBA 302 303 val mvendorid = RegInit(UInt(XLEN.W), 0.U) // this is a non-commercial implementation 304 val marchid = RegInit(UInt(XLEN.W), 25.U) // architecture id for XiangShan is 25; see https://github.com/riscv/riscv-isa-manual/blob/master/marchid.md 305 val mimpid = RegInit(UInt(XLEN.W), 0.U) // provides a unique encoding of the version of the processor implementation 306 val mhartid = Reg(UInt(XLEN.W)) // the hardware thread running the code 307 when (RegNext(RegNext(reset.asBool) && !reset.asBool)) { 308 mhartid := csrio.hartId 309 } 310 val mconfigptr = RegInit(UInt(XLEN.W), 0.U) // the read-only pointer pointing to the platform config structure, 0 for not supported. 311 val mstatus = RegInit("ha00002200".U(XLEN.W)) 312 313 // mstatus Value Table 314 // | sd | Read Only 315 // | pad1 | WPRI 316 // | sxl | hardlinked to 10, use 00 to pass xv6 test 317 // | uxl | hardlinked to 10 318 // | pad0 | 319 // | tsr | 320 // | tw | 321 // | tvm | 322 // | mxr | 323 // | sum | 324 // | mprv | 325 // | xs | 00 | 326 // | fs | 01 | 327 // | mpp | 00 | 328 // | vs | 01 | 329 // | spp | 0 | 330 // | pie | 0000 | pie.h is used as UBE 331 // | ie | 0000 | uie hardlinked to 0, as N ext is not implemented 332 333 val mstatusStruct = mstatus.asTypeOf(new MstatusStruct) 334 def mstatusUpdateSideEffect(mstatus: UInt): UInt = { 335 val mstatusOld = WireInit(mstatus.asTypeOf(new MstatusStruct)) 336 // Cat(sd, other) 337 val mstatusNew = Cat( 338 mstatusOld.xs === ContextStatus.dirty || mstatusOld.fs === ContextStatus.dirty || mstatusOld.vs === ContextStatus.dirty, 339 mstatus(XLEN-2, 0) 340 ) 341 mstatusNew 342 } 343 344 val mstatusWMask = (~ZeroExt(( 345 GenMask(63) | // SD is read-only 346 GenMask(62, 36) | // WPRI 347 GenMask(35, 32) | // SXL and UXL cannot be changed 348 GenMask(31, 23) | // WPRI 349 GenMask(16, 15) | // XS is read-only 350 GenMask(6) | // UBE, always little-endian (0) 351 GenMask(4) | // WPRI 352 GenMask(2) | // WPRI 353 GenMask(0) // WPRI 354 ), 64)).asUInt 355 356 val medeleg = RegInit(UInt(XLEN.W), 0.U) 357 val mideleg = RegInit(UInt(XLEN.W), 0.U) 358 val mscratch = RegInit(UInt(XLEN.W), 0.U) 359 360 // PMP Mapping 361 val pmp = Wire(Vec(NumPMP, new PMPEntry())) // just used for method parameter 362 val pma = Wire(Vec(NumPMA, new PMPEntry())) // just used for method parameter 363 val pmpMapping = pmp_gen_mapping(pmp_init, NumPMP, PmpcfgBase, PmpaddrBase, pmp) 364 val pmaMapping = pmp_gen_mapping(pma_init, NumPMA, PmacfgBase, PmaaddrBase, pma) 365 366 // Superviser-Level CSRs 367 368 val sstatusWNmask: BigInt = ( 369 BigIntGenMask(63) | // SD is read-only 370 BigIntGenMask(62, 34) | // WPRI 371 BigIntGenMask(33, 32) | // UXL is hard-wired to 64(b10) 372 BigIntGenMask(31, 20) | // WPRI 373 BigIntGenMask(17) | // WPRI 374 BigIntGenMask(16, 15) | // XS is read-only to zero 375 BigIntGenMask(12, 11) | // WPRI 376 BigIntGenMask(7) | // WPRI 377 BigIntGenMask(6) | // UBE is always little-endian (0) 378 BigIntGenMask(4, 2) | // WPRI 379 BigIntGenMask(0) // WPRI 380 ) 381 382 val sstatusWmask = BigIntNot(sstatusWNmask).U(XLEN.W) 383 val sstatusRmask = ( 384 BigIntGenMask(63) | // SD 385 BigIntGenMask(33, 32) | // UXL 386 BigIntGenMask(19) | // MXR 387 BigIntGenMask(18) | // SUM 388 BigIntGenMask(16, 15) | // XS 389 BigIntGenMask(14, 13) | // FS 390 BigIntGenMask(10, 9 ) | // VS 391 BigIntGenMask(8) | // SPP 392 BigIntGenMask(6) | // UBE: hard wired to 0 393 BigIntGenMask(5) | // SPIE 394 BigIntGenMask(1) 395 ).U(XLEN.W) 396 397 println(s"sstatusWNmask: 0x${sstatusWNmask.toString(16)}") 398 println(s"sstatusWmask: 0x${sstatusWmask.litValue.toString(16)}") 399 println(s"sstatusRmask: 0x${sstatusRmask.litValue.toString(16)}") 400 401 // stvec: {BASE (WARL), MODE (WARL)} where mode is 0 or 1 402 val stvecMask = ~(0x2.U(XLEN.W)) 403 val stvec = RegInit(UInt(XLEN.W), 0.U) 404 // val sie = RegInit(0.U(XLEN.W)) 405 val sieMask = "h222".U & mideleg 406 val sipMask = "h222".U & mideleg 407 val sipWMask = "h2".U(XLEN.W) // ssip is writeable in smode 408 val satp = if(EnbaleTlbDebug) RegInit(UInt(XLEN.W), "h8000000000087fbe".U) else RegInit(0.U(XLEN.W)) 409 // val satp = RegInit(UInt(XLEN.W), "h8000000000087fbe".U) // only use for tlb naive debug 410 // val satpMask = "h80000fffffffffff".U(XLEN.W) // disable asid, mode can only be 8 / 0 411 // TODO: use config to control the length of asid 412 // val satpMask = "h8fffffffffffffff".U(XLEN.W) // enable asid, mode can only be 8 / 0 413 val satpMask = Cat("h8".U(Satp_Mode_len.W), satp_part_wmask(Satp_Asid_len, AsidLength), satp_part_wmask(Satp_Addr_len, PAddrBits-12)) 414 val sepc = RegInit(UInt(XLEN.W), 0.U) 415 // Page 60 in riscv-priv: The low bit of sepc (sepc[0]) is always zero. 416 val sepcMask = ~(0x1.U(XLEN.W)) 417 val scause = RegInit(UInt(XLEN.W), 0.U) 418 val stval = Reg(UInt(XLEN.W)) 419 val sscratch = RegInit(UInt(XLEN.W), 0.U) 420 val scounteren = RegInit(UInt(XLEN.W), 0.U) 421 422 // sbpctl 423 // Bits 0-7: {LOOP, RAS, SC, TAGE, BIM, BTB, uBTB} 424 val sbpctl = RegInit(UInt(XLEN.W), "h7f".U) 425 csrio.customCtrl.bp_ctrl.ubtb_enable := sbpctl(0) 426 csrio.customCtrl.bp_ctrl.btb_enable := sbpctl(1) 427 csrio.customCtrl.bp_ctrl.bim_enable := sbpctl(2) 428 csrio.customCtrl.bp_ctrl.tage_enable := sbpctl(3) 429 csrio.customCtrl.bp_ctrl.sc_enable := sbpctl(4) 430 csrio.customCtrl.bp_ctrl.ras_enable := sbpctl(5) 431 csrio.customCtrl.bp_ctrl.loop_enable := sbpctl(6) 432 433 // spfctl Bit 0: L1I Cache Prefetcher Enable 434 // spfctl Bit 1: L2Cache Prefetcher Enable 435 // spfctl Bit 2: L1D Cache Prefetcher Enable 436 // spfctl Bit 3: L1D train prefetch on hit 437 // spfctl Bit 4: L1D prefetch enable agt 438 // spfctl Bit 5: L1D prefetch enable pht 439 // spfctl Bit [9:6]: L1D prefetch active page threshold 440 // spfctl Bit [15:10]: L1D prefetch active page stride 441 // turn off L2 BOP, turn on L1 SMS by default 442 val spfctl = RegInit(UInt(XLEN.W), Seq( 443 0 << 17, // L2 pf store only [17] init: false 444 1 << 16, // L1D pf enable stride [16] init: true 445 30 << 10, // L1D active page stride [15:10] init: 30 446 12 << 6, // L1D active page threshold [9:6] init: 12 447 1 << 5, // L1D enable pht [5] init: true 448 1 << 4, // L1D enable agt [4] init: true 449 0 << 3, // L1D train on hit [3] init: false 450 1 << 2, // L1D pf enable [2] init: true 451 1 << 1, // L2 pf enable [1] init: true 452 1 << 0, // L1I pf enable [0] init: true 453 ).reduce(_|_).U(XLEN.W)) 454 csrio.customCtrl.l1I_pf_enable := spfctl(0) 455 csrio.customCtrl.l2_pf_enable := spfctl(1) 456 csrio.customCtrl.l1D_pf_enable := spfctl(2) 457 csrio.customCtrl.l1D_pf_train_on_hit := spfctl(3) 458 csrio.customCtrl.l1D_pf_enable_agt := spfctl(4) 459 csrio.customCtrl.l1D_pf_enable_pht := spfctl(5) 460 csrio.customCtrl.l1D_pf_active_threshold := spfctl(9, 6) 461 csrio.customCtrl.l1D_pf_active_stride := spfctl(15, 10) 462 csrio.customCtrl.l1D_pf_enable_stride := spfctl(16) 463 csrio.customCtrl.l2_pf_store_only := spfctl(17) 464 465 // sfetchctl Bit 0: L1I Cache Parity check enable 466 val sfetchctl = RegInit(UInt(XLEN.W), "b0".U) 467 csrio.customCtrl.icache_parity_enable := sfetchctl(0) 468 469 // sdsid: Differentiated Services ID 470 val sdsid = RegInit(UInt(XLEN.W), 0.U) 471 csrio.customCtrl.dsid := sdsid 472 473 // slvpredctl: load violation predict settings 474 // Default reset period: 2^16 475 // Why this number: reset more frequently while keeping the overhead low 476 // Overhead: extra two redirections in every 64K cycles => ~0.1% overhead 477 val slvpredctl = Reg(UInt(XLEN.W)) 478 when(reset.asBool) { 479 slvpredctl := Constantin.createRecord("slvpredctl", "h60".U) 480 } 481 csrio.customCtrl.lvpred_disable := slvpredctl(0) 482 csrio.customCtrl.no_spec_load := slvpredctl(1) 483 csrio.customCtrl.storeset_wait_store := slvpredctl(2) 484 csrio.customCtrl.storeset_no_fast_wakeup := slvpredctl(3) 485 csrio.customCtrl.lvpred_timeout := slvpredctl(8, 4) 486 487 // smblockctl: memory block configurations 488 // +------------------------------+---+----+----+-----+--------+ 489 // |XLEN-1 8| 7 | 6 | 5 | 4 |3 0| 490 // +------------------------------+---+----+----+-----+--------+ 491 // | Reserved | O | CE | SP | LVC | Th | 492 // +------------------------------+---+----+----+-----+--------+ 493 // Description: 494 // Bit 3-0 : Store buffer flush threshold (Th). 495 // Bit 4 : Enable load violation check after reset (LVC). 496 // Bit 5 : Enable soft-prefetch after reset (SP). 497 // Bit 6 : Enable cache error after reset (CE). 498 // Bit 7 : Enable uncache write outstanding (O). 499 // Others : Reserved. 500 501 val smblockctl_init_val = 502 (0xf & StoreBufferThreshold) | 503 (EnableLdVioCheckAfterReset.toInt << 4) | 504 (EnableSoftPrefetchAfterReset.toInt << 5) | 505 (EnableCacheErrorAfterReset.toInt << 6) | 506 (EnableUncacheWriteOutstanding.toInt << 7) 507 val smblockctl = RegInit(UInt(XLEN.W), smblockctl_init_val.U) 508 csrio.customCtrl.sbuffer_threshold := smblockctl(3, 0) 509 // bits 4: enable load load violation check 510 csrio.customCtrl.ldld_vio_check_enable := smblockctl(4) 511 csrio.customCtrl.soft_prefetch_enable := smblockctl(5) 512 csrio.customCtrl.cache_error_enable := smblockctl(6) 513 csrio.customCtrl.uncache_write_outstanding_enable := smblockctl(7) 514 515 println("CSR smblockctl init value:") 516 println(" Store buffer replace threshold: " + StoreBufferThreshold) 517 println(" Enable ld-ld vio check after reset: " + EnableLdVioCheckAfterReset) 518 println(" Enable soft prefetch after reset: " + EnableSoftPrefetchAfterReset) 519 println(" Enable cache error after reset: " + EnableCacheErrorAfterReset) 520 println(" Enable uncache write outstanding: " + EnableUncacheWriteOutstanding) 521 522 val srnctl = RegInit(UInt(XLEN.W), "h7".U) 523 csrio.customCtrl.fusion_enable := srnctl(0) 524 csrio.customCtrl.svinval_enable := srnctl(1) 525 csrio.customCtrl.wfi_enable := srnctl(2) 526 527 val tlbBundle = Wire(new TlbCsrBundle) 528 tlbBundle.satp.apply(satp) 529 530 csrio.tlb := tlbBundle 531 532 // User-Level CSRs 533 val uepc = Reg(UInt(XLEN.W)) 534 535 // fcsr 536 class FcsrStruct extends Bundle { 537 val reserved = UInt((XLEN-3-5).W) 538 val frm = UInt(3.W) 539 val fflags = UInt(5.W) 540 assert(this.getWidth == XLEN) 541 } 542 val fcsr = RegInit(0.U(XLEN.W)) 543 // set mstatus->sd and mstatus->fs when true 544 val csrw_dirty_fp_state = WireInit(false.B) 545 546 def frm_wfn(wdata: UInt): UInt = { 547 val fcsrOld = WireInit(fcsr.asTypeOf(new FcsrStruct)) 548 csrw_dirty_fp_state := true.B 549 fcsrOld.frm := wdata(2,0) 550 fcsrOld.asUInt 551 } 552 def frm_rfn(rdata: UInt): UInt = rdata(7,5) 553 554 def fflags_wfn(update: Boolean)(wdata: UInt): UInt = { 555 val fcsrOld = fcsr.asTypeOf(new FcsrStruct) 556 val fcsrNew = WireInit(fcsrOld) 557 if (update) { 558 fcsrNew.fflags := wdata(4,0) | fcsrOld.fflags 559 } else { 560 fcsrNew.fflags := wdata(4,0) 561 } 562 fcsrNew.asUInt 563 } 564 def fflags_rfn(rdata:UInt): UInt = rdata(4,0) 565 566 def fcsr_wfn(wdata: UInt): UInt = { 567 val fcsrOld = WireInit(fcsr.asTypeOf(new FcsrStruct)) 568 csrw_dirty_fp_state := true.B 569 Cat(fcsrOld.reserved, wdata.asTypeOf(fcsrOld).frm, wdata.asTypeOf(fcsrOld).fflags) 570 } 571 572 val fcsrMapping = Map( 573 MaskedRegMap(Fflags, fcsr, wfn = fflags_wfn(update = false), rfn = fflags_rfn), 574 MaskedRegMap(Frm, fcsr, wfn = frm_wfn, rfn = frm_rfn), 575 MaskedRegMap(Fcsr, fcsr, wfn = fcsr_wfn) 576 ) 577 578 // Vector extension CSRs 579 val vstart = RegInit(0.U(XLEN.W)) 580 val vcsr = RegInit(0.U(XLEN.W)) 581 val vl = Reg(UInt(XLEN.W)) 582 val vtype = Reg(UInt(XLEN.W)) 583 val vlenb = RegInit((VLEN / 8).U(XLEN.W)) 584 585 // set mstatus->sd and mstatus->vs when true 586 val csrw_dirty_vs_state = WireInit(false.B) 587 588 // vcsr is mapped to vxrm and vxsat 589 class VcsrStruct extends Bundle { 590 val reserved = UInt((XLEN-3).W) 591 val vxrm = UInt(2.W) 592 val vxsat = UInt(1.W) 593 assert(this.getWidth == XLEN) 594 } 595 596 def vxrm_wfn(wdata: UInt): UInt = { 597 val vcsrOld = WireInit(vcsr.asTypeOf(new VcsrStruct)) 598 csrw_dirty_vs_state := true.B 599 vcsrOld.vxrm := wdata(1,0) 600 vcsrOld.asUInt 601 } 602 def vxrm_rfn(rdata: UInt): UInt = rdata(2,1) 603 604 def vxsat_wfn(update: Boolean)(wdata: UInt): UInt = { 605 val vcsrOld = WireInit(vcsr.asTypeOf(new VcsrStruct)) 606 val vcsrNew = WireInit(vcsrOld) 607 csrw_dirty_vs_state := true.B 608 if (update) { 609 vcsrNew.vxsat := wdata(0) | vcsrOld.vxsat 610 } else { 611 vcsrNew.vxsat := wdata(0) 612 } 613 vcsrNew.asUInt 614 } 615 def vxsat_rfn(rdata: UInt): UInt = rdata(0) 616 617 def vcsr_wfn(wdata: UInt): UInt = { 618 val vcsrOld = WireInit(vcsr.asTypeOf(new VcsrStruct)) 619 csrw_dirty_vs_state := true.B 620 vcsrOld.vxrm := wdata.asTypeOf(vcsrOld).vxrm 621 vcsrOld.vxsat := wdata.asTypeOf(vcsrOld).vxsat 622 vcsrOld.asUInt 623 } 624 625 val vcsrMapping = Map( 626 MaskedRegMap(Vstart, vstart), 627 MaskedRegMap(Vxrm, vcsr, wfn = vxrm_wfn, rfn = vxrm_rfn), 628 MaskedRegMap(Vxsat, vcsr, wfn = vxsat_wfn(false), rfn = vxsat_rfn), 629 MaskedRegMap(Vcsr, vcsr, wfn = vcsr_wfn), 630 MaskedRegMap(Vl, vl), 631 MaskedRegMap(Vtype, vtype), 632 MaskedRegMap(Vlenb, vlenb), 633 ) 634 635 // Hart Priviledge Mode 636 val priviledgeMode = RegInit(UInt(2.W), ModeM) 637 638 //val perfEventscounten = List.fill(nrPerfCnts)(RegInit(false(Bool()))) 639 // Perf Counter 640 val nrPerfCnts = 29 // 3...31 641 val priviledgeModeOH = UIntToOH(priviledgeMode) 642 val perfEventscounten = RegInit(0.U.asTypeOf(Vec(nrPerfCnts, Bool()))) 643 val perfCnts = List.fill(nrPerfCnts)(RegInit(0.U(XLEN.W))) 644 val perfEvents = List.fill(8)(RegInit("h0000000000".U(XLEN.W))) ++ 645 List.fill(8)(RegInit("h4010040100".U(XLEN.W))) ++ 646 List.fill(8)(RegInit("h8020080200".U(XLEN.W))) ++ 647 List.fill(5)(RegInit("hc0300c0300".U(XLEN.W))) 648 for (i <-0 until nrPerfCnts) { 649 perfEventscounten(i) := (perfEvents(i)(63,60) & priviledgeModeOH).orR 650 } 651 652 val hpmEvents = Wire(Vec(numPCntHc * coreParams.L2NBanks, new PerfEvent)) 653 for (i <- 0 until numPCntHc * coreParams.L2NBanks) { 654 hpmEvents(i) := csrio.perf.perfEventsHc(i) 655 } 656 657 // print perfEvents 658 val allPerfEvents = hpmEvents.map(x => (s"Hc", x.value)) 659 if (printEventCoding) { 660 for (((name, inc), i) <- allPerfEvents.zipWithIndex) { 661 println("CSR perfEvents Set", name, inc, i) 662 } 663 } 664 665 val csrevents = perfEvents.slice(24, 29) 666 val hpm_hc = HPerfMonitor(csrevents, hpmEvents) 667 val mcountinhibit = RegInit(0.U(XLEN.W)) 668 val mcycle = RegInit(0.U(XLEN.W)) 669 mcycle := mcycle + 1.U 670 val minstret = RegInit(0.U(XLEN.W)) 671 val perf_events = csrio.perf.perfEventsFrontend ++ 672 csrio.perf.perfEventsCtrl ++ 673 csrio.perf.perfEventsLsu ++ 674 hpm_hc.getPerf 675 minstret := minstret + RegNext(csrio.perf.retiredInstr) 676 for(i <- 0 until 29){ 677 perfCnts(i) := Mux(mcountinhibit(i+3) | !perfEventscounten(i), perfCnts(i), perfCnts(i) + perf_events(i).value) 678 } 679 680 // CSR reg map 681 val basicPrivMapping = Map( 682 683 // Unprivileged Floating-Point CSRs 684 // Has been mapped above 685 686 // Unprivileged Counter/Timers 687 MaskedRegMap(Cycle, mcycle), 688 // We don't support read time CSR. 689 // MaskedRegMap(Time, mtime), 690 MaskedRegMap(Instret, minstret), 691 692 //--- Supervisor Trap Setup --- 693 MaskedRegMap(Sstatus, mstatus, sstatusWmask, mstatusUpdateSideEffect, sstatusRmask), 694 // MaskedRegMap(Sedeleg, Sedeleg), 695 // MaskedRegMap(Sideleg, Sideleg), 696 MaskedRegMap(Sie, mie, sieMask, MaskedRegMap.NoSideEffect, sieMask), 697 MaskedRegMap(Stvec, stvec, stvecMask, MaskedRegMap.NoSideEffect, stvecMask), 698 MaskedRegMap(Scounteren, scounteren), 699 700 //--- Supervisor Trap Handling --- 701 MaskedRegMap(Sscratch, sscratch), 702 MaskedRegMap(Sepc, sepc, sepcMask, MaskedRegMap.NoSideEffect, sepcMask), 703 MaskedRegMap(Scause, scause), 704 MaskedRegMap(Stval, stval), 705 MaskedRegMap(Sip, mip.asUInt, sipWMask, MaskedRegMap.Unwritable, sipMask), 706 707 //--- Supervisor Protection and Translation --- 708 MaskedRegMap(Satp, satp, satpMask, MaskedRegMap.NoSideEffect, satpMask), 709 710 //--- Supervisor Custom Read/Write Registers 711 MaskedRegMap(Sbpctl, sbpctl), 712 MaskedRegMap(Spfctl, spfctl), 713 MaskedRegMap(Sfetchctl, sfetchctl), 714 MaskedRegMap(Sdsid, sdsid), 715 MaskedRegMap(Slvpredctl, slvpredctl), 716 MaskedRegMap(Smblockctl, smblockctl), 717 MaskedRegMap(Srnctl, srnctl), 718 719 //--- Machine Information Registers --- 720 MaskedRegMap(Mvendorid, mvendorid, 0.U(XLEN.W), MaskedRegMap.Unwritable), 721 MaskedRegMap(Marchid, marchid, 0.U(XLEN.W), MaskedRegMap.Unwritable), 722 MaskedRegMap(Mimpid, mimpid, 0.U(XLEN.W), MaskedRegMap.Unwritable), 723 MaskedRegMap(Mhartid, mhartid, 0.U(XLEN.W), MaskedRegMap.Unwritable), 724 MaskedRegMap(Mconfigptr, mconfigptr, 0.U(XLEN.W), MaskedRegMap.Unwritable), 725 726 //--- Machine Trap Setup --- 727 MaskedRegMap(Mstatus, mstatus, mstatusWMask, mstatusUpdateSideEffect), 728 MaskedRegMap(Misa, misa, 0.U, MaskedRegMap.Unwritable), // now whole misa is unchangeable 729 MaskedRegMap(Medeleg, medeleg, "hb3ff".U(XLEN.W)), 730 MaskedRegMap(Mideleg, mideleg, "h222".U(XLEN.W)), 731 MaskedRegMap(Mie, mie, "haaa".U(XLEN.W)), 732 MaskedRegMap(Mtvec, mtvec, mtvecMask, MaskedRegMap.NoSideEffect, mtvecMask), 733 MaskedRegMap(Mcounteren, mcounteren), 734 735 //--- Machine Trap Handling --- 736 MaskedRegMap(Mscratch, mscratch), 737 MaskedRegMap(Mepc, mepc, mepcMask, MaskedRegMap.NoSideEffect, mepcMask), 738 MaskedRegMap(Mcause, mcause), 739 MaskedRegMap(Mtval, mtval), 740 MaskedRegMap(Mip, mip.asUInt, 0.U(XLEN.W), MaskedRegMap.Unwritable), 741 742 //--- Trigger --- 743 MaskedRegMap(Tselect, tselectPhy, WritableMask, WriteTselect), 744 // Todo: support chain length = 2 745 MaskedRegMap(Tdata1, tdata1RegVec(tselectPhy), 746 WritableMask, 747 x => Tdata1Bundle.Write(x, tdata1RegVec(tselectPhy), newTriggerChainIsLegal, debug_mode = debugMode), 748 WritableMask, 749 x => Tdata1Bundle.Read(x)), 750 MaskedRegMap(Tdata2, tdata2RegVec(tselectPhy)), 751 MaskedRegMap(Tinfo, tinfo, 0.U(XLEN.W), MaskedRegMap.Unwritable), 752 753 //--- Debug Mode --- 754 MaskedRegMap(Dcsr, dcsr, dcsrMask, dcsrUpdateSideEffect), 755 MaskedRegMap(Dpc, dpc), 756 MaskedRegMap(Dscratch0, dscratch0), 757 MaskedRegMap(Dscratch1, dscratch1), 758 MaskedRegMap(Mcountinhibit, mcountinhibit), 759 MaskedRegMap(Mcycle, mcycle), 760 MaskedRegMap(Minstret, minstret), 761 ) 762 763 val perfCntMapping = (0 until 29).map(i => {Map( 764 MaskedRegMap(addr = Mhpmevent3 +i, 765 reg = perfEvents(i), 766 wmask = "hf87fff3fcff3fcff".U(XLEN.W)), 767 MaskedRegMap(addr = Mhpmcounter3 +i, 768 reg = perfCnts(i)), 769 MaskedRegMap(addr = Hpmcounter3 + i, 770 reg = perfCnts(i)) 771 )}).fold(Map())((a,b) => a ++ b) 772 // TODO: mechanism should be implemented later 773 // val MhpmcounterStart = Mhpmcounter3 774 // val MhpmeventStart = Mhpmevent3 775 // for (i <- 0 until nrPerfCnts) { 776 // perfCntMapping += MaskedRegMap(MhpmcounterStart + i, perfCnts(i)) 777 // perfCntMapping += MaskedRegMap(MhpmeventStart + i, perfEvents(i)) 778 // } 779 780 val cacheopRegs = CacheInstrucion.CacheInsRegisterList.map{case (name, attribute) => { 781 name -> RegInit(0.U(attribute("width").toInt.W)) 782 }} 783 val cacheopMapping = CacheInstrucion.CacheInsRegisterList.map{case (name, attribute) => { 784 MaskedRegMap( 785 Scachebase + attribute("offset").toInt, 786 cacheopRegs(name) 787 ) 788 }} 789 790 val mapping = basicPrivMapping ++ 791 perfCntMapping ++ 792 pmpMapping ++ 793 pmaMapping ++ 794 (if (HasFPU) fcsrMapping else Nil) ++ 795 (if (HasVPU) vcsrMapping else Nil) ++ 796 (if (HasCustomCSRCacheOp) cacheopMapping else Nil) 797 798 799 println("XiangShan CSR Lists") 800 801 for (addr <- mapping.keys.toSeq.sorted) { 802 println(f"$addr%#03x ${mapping(addr)._1}") 803 } 804 805 val addr = src2(11, 0) 806 val csri = ZeroExt(src2(16, 12), XLEN) 807 val rdata = Wire(UInt(XLEN.W)) 808 val wdata = LookupTree(func, List( 809 CSROpType.wrt -> src1, 810 CSROpType.set -> (rdata | src1), 811 CSROpType.clr -> (rdata & (~src1).asUInt), 812 CSROpType.wrti -> csri, 813 CSROpType.seti -> (rdata | csri), 814 CSROpType.clri -> (rdata & (~csri).asUInt) 815 )) 816 817 val addrInPerfCnt = (addr >= Mcycle.U) && (addr <= Mhpmcounter31.U) || 818 (addr >= Mcountinhibit.U) && (addr <= Mhpmevent31.U) || 819 (addr >= Cycle.U) && (addr <= Hpmcounter31.U) || 820 addr === Mip.U 821 csrio.isPerfCnt := addrInPerfCnt && valid && func =/= CSROpType.jmp 822 823 // satp wen check 824 val satpLegalMode = (wdata.asTypeOf(new SatpStruct).mode===0.U) || (wdata.asTypeOf(new SatpStruct).mode===8.U) 825 826 // csr access check, special case 827 val tvmNotPermit = (priviledgeMode === ModeS && mstatusStruct.tvm.asBool) 828 val accessPermitted = !(addr === Satp.U && tvmNotPermit) 829 csrio.disableSfence := tvmNotPermit || priviledgeMode === ModeU 830 831 // general CSR wen check 832 val wen = valid && CSROpType.needAccess(func) && (addr=/=Satp.U || satpLegalMode) 833 val dcsrPermitted = dcsrPermissionCheck(addr, false.B, debugMode) 834 val triggerPermitted = triggerPermissionCheck(addr, true.B, debugMode) // todo dmode 835 val modePermitted = csrAccessPermissionCheck(addr, false.B, priviledgeMode) && dcsrPermitted && triggerPermitted 836 val perfcntPermitted = perfcntPermissionCheck(addr, priviledgeMode, mcounteren, scounteren) 837 val permitted = Mux(addrInPerfCnt, perfcntPermitted, modePermitted) && accessPermitted 838 839 MaskedRegMap.generate(mapping, addr, rdata, wen && permitted, wdata) 840 io.out.bits.res.data := rdata 841 io.out.bits.ctrl.flushPipe.get := flushPipe 842 connect0LatencyCtrlSingal 843 844 // send distribute csr a w signal 845 csrio.customCtrl.distribute_csr.w.valid := wen && permitted 846 csrio.customCtrl.distribute_csr.w.bits.data := wdata 847 csrio.customCtrl.distribute_csr.w.bits.addr := addr 848 849 // Fix Mip/Sip write 850 val fixMapping = Map( 851 MaskedRegMap(Mip, mipReg.asUInt, mipFixMask), 852 MaskedRegMap(Sip, mipReg.asUInt, sipWMask, MaskedRegMap.NoSideEffect, sipMask) 853 ) 854 val rdataFix = Wire(UInt(XLEN.W)) 855 val wdataFix = LookupTree(func, List( 856 CSROpType.wrt -> src1, 857 CSROpType.set -> (rdataFix | src1), 858 CSROpType.clr -> (rdataFix & (~src1).asUInt), 859 CSROpType.wrti -> csri, 860 CSROpType.seti -> (rdataFix | csri), 861 CSROpType.clri -> (rdataFix & (~csri).asUInt) 862 )) 863 MaskedRegMap.generate(fixMapping, addr, rdataFix, wen && permitted, wdataFix) 864 865 when (RegNext(csrio.fpu.fflags.valid)) { 866 fcsr := fflags_wfn(update = true)(RegEnable(csrio.fpu.fflags.bits, csrio.fpu.fflags.valid)) 867 } 868 when(RegNext(csrio.vpu.set_vxsat.valid)) { 869 vcsr := vxsat_wfn(update = true)(RegEnable(csrio.vpu.set_vxsat.bits, csrio.vpu.set_vxsat.valid)) 870 } 871 // set fs and sd in mstatus 872 when (csrw_dirty_fp_state || RegNext(csrio.fpu.dirty_fs)) { 873 val mstatusNew = WireInit(mstatus.asTypeOf(new MstatusStruct)) 874 mstatusNew.fs := "b11".U 875 mstatusNew.sd := true.B 876 mstatus := mstatusNew.asUInt 877 } 878 csrio.fpu.frm := fcsr.asTypeOf(new FcsrStruct).frm 879 880 when (RegNext(csrio.vpu.set_vstart.valid)) { 881 vstart := RegEnable(csrio.vpu.set_vstart.bits, csrio.vpu.set_vstart.valid) 882 } 883 when (RegNext(csrio.vpu.set_vtype.valid)) { 884 vtype := RegEnable(csrio.vpu.set_vtype.bits, csrio.vpu.set_vtype.valid) 885 } 886 when (RegNext(csrio.vpu.set_vl.valid)) { 887 vl := RegEnable(csrio.vpu.set_vl.bits, csrio.vpu.set_vl.valid) 888 } 889 // set vs and sd in mstatus 890 when(csrw_dirty_vs_state || RegNext(csrio.vpu.dirty_vs)) { 891 val mstatusNew = WireInit(mstatus.asTypeOf(new MstatusStruct)) 892 mstatusNew.vs := ContextStatus.dirty 893 mstatusNew.sd := true.B 894 mstatus := mstatusNew.asUInt 895 } 896 897 csrio.vpu.vstart := vstart 898 csrio.vpu.vxrm := vcsr.asTypeOf(new VcsrStruct).vxrm 899 csrio.vpu.vxsat := vcsr.asTypeOf(new VcsrStruct).vxsat 900 csrio.vpu.vcsr := vcsr 901 csrio.vpu.vtype := vtype 902 csrio.vpu.vl := vl 903 csrio.vpu.vlenb := vlenb 904 csrio.vpu.vill := vtype.asTypeOf(new VtypeStruct).vill 905 csrio.vpu.vma := vtype.asTypeOf(new VtypeStruct).vma 906 csrio.vpu.vta := vtype.asTypeOf(new VtypeStruct).vta 907 csrio.vpu.vsew := vtype.asTypeOf(new VtypeStruct).vsew 908 csrio.vpu.vlmul := vtype.asTypeOf(new VtypeStruct).vlmul 909 910 // Trigger Ctrl 911 val triggerEnableVec = tdata1RegVec.map { tdata1 => 912 val mcontrolData = tdata1.asTypeOf(new Tdata1Bundle).data.asTypeOf(new MControlData) 913 tdata1.asTypeOf(new Tdata1Bundle).type_.asUInt === TrigTypeEnum.MCONTROL && ( 914 mcontrolData.m && priviledgeMode === ModeM || 915 mcontrolData.s && priviledgeMode === ModeS || 916 mcontrolData.u && priviledgeMode === ModeU) 917 } 918 val fetchTriggerEnableVec = triggerEnableVec.zip(tdata1WireVec).map { 919 case (tEnable, tdata1) => tEnable && tdata1.asTypeOf(new Tdata1Bundle).data.asTypeOf(new MControlData).isFetchTrigger 920 } 921 val memAccTriggerEnableVec = triggerEnableVec.zip(tdata1WireVec).map { 922 case (tEnable, tdata1) => tEnable && tdata1.asTypeOf(new Tdata1Bundle).data.asTypeOf(new MControlData).isMemAccTrigger 923 } 924 csrio.customCtrl.frontend_trigger.tEnableVec := fetchTriggerEnableVec 925 csrio.customCtrl.mem_trigger.tEnableVec := memAccTriggerEnableVec 926 927 val tdata1Update = wen && (addr === Tdata1.U) 928 val tdata2Update = wen && (addr === Tdata2.U) 929 val triggerUpdate = wen && (addr === Tdata1.U || addr === Tdata2.U) 930 val frontendTriggerUpdate = 931 tdata1Update && wdata.asTypeOf(new Tdata1Bundle).type_.asUInt === TrigTypeEnum.MCONTROL && 932 wdata.asTypeOf(new Tdata1Bundle).data.asTypeOf(new MControlData).isFetchTrigger || 933 tdata1Selected.data.asTypeOf(new MControlData).isFetchTrigger && triggerUpdate 934 val memTriggerUpdate = 935 tdata1Update && wdata.asTypeOf(new Tdata1Bundle).type_.asUInt === TrigTypeEnum.MCONTROL && 936 wdata.asTypeOf(new Tdata1Bundle).data.asTypeOf(new MControlData).isMemAccTrigger || 937 tdata1Selected.data.asTypeOf(new MControlData).isMemAccTrigger && triggerUpdate 938 939 csrio.customCtrl.frontend_trigger.tUpdate.valid := RegNext(RegNext(frontendTriggerUpdate)) 940 csrio.customCtrl.mem_trigger.tUpdate.valid := RegNext(RegNext(memTriggerUpdate)) 941 XSDebug(triggerEnableVec.reduce(_ || _), p"Debug Mode: At least 1 trigger is enabled," + 942 p"trigger enable is ${Binary(triggerEnableVec.asUInt)}\n") 943 944 // CSR inst decode 945 val isEbreak = addr === privEbreak && func === CSROpType.jmp 946 val isEcall = addr === privEcall && func === CSROpType.jmp 947 val isMret = addr === privMret && func === CSROpType.jmp 948 val isSret = addr === privSret && func === CSROpType.jmp 949 val isUret = addr === privUret && func === CSROpType.jmp 950 val isDret = addr === privDret && func === CSROpType.jmp 951 val isWFI = func === CSROpType.wfi 952 953 // Illegal priviledged operation list 954 val illegalMret = valid && isMret && priviledgeMode < ModeM 955 val illegalSret = valid && isSret && priviledgeMode < ModeS 956 val illegalSModeSret = valid && isSret && priviledgeMode === ModeS && mstatusStruct.tsr.asBool 957 // When TW=1, then if WFI is executed in any less-privileged mode, 958 // and it does not complete within an implementation-specific, bounded time limit, 959 // the WFI instruction causes an illegal instruction exception. 960 // The time limit may always be 0, in which case WFI always causes 961 // an illegal instruction exception in less-privileged modes when TW=1. 962 val illegalWFI = valid && isWFI && priviledgeMode < ModeM && mstatusStruct.tw === 1.U 963 964 // Illegal priviledged instruction check 965 val isIllegalAddr = valid && CSROpType.needAccess(func) && MaskedRegMap.isIllegalAddr(mapping, addr) 966 val isIllegalAccess = wen && !permitted 967 val isIllegalPrivOp = illegalMret || illegalSret || illegalSModeSret || illegalWFI 968 969 // expose several csr bits for tlb 970 tlbBundle.priv.mxr := mstatusStruct.mxr.asBool 971 tlbBundle.priv.sum := mstatusStruct.sum.asBool 972 tlbBundle.priv.imode := priviledgeMode 973 tlbBundle.priv.dmode := Mux(debugMode && dcsr.asTypeOf(new DcsrStruct).mprven, ModeM, Mux(mstatusStruct.mprv.asBool, mstatusStruct.mpp, priviledgeMode)) 974 975 // Branch control 976 val retTarget = WireInit(0.U) 977 val resetSatp = addr === Satp.U && wen // write to satp will cause the pipeline be flushed 978 979 val w_fcsr_change_rm = wen && addr === Fcsr.U && wdata(7, 5) =/= fcsr(7, 5) 980 val w_frm_change_rm = wen && addr === Frm.U && wdata(2, 0) =/= fcsr(7, 5) 981 val frm_change = w_fcsr_change_rm || w_frm_change_rm 982 val isXRet = valid && func === CSROpType.jmp && !isEcall && !isEbreak 983 flushPipe := resetSatp || frm_change || isXRet || frontendTriggerUpdate 984 985 986 private val illegalRetTarget = WireInit(false.B) 987 988 // Mux tree for wires 989 when(valid) { 990 when(isDret) { 991 retTarget := dpc(VAddrBits - 1, 0) 992 }.elsewhen(isMret && !illegalMret) { 993 retTarget := mepc(VAddrBits - 1, 0) 994 }.elsewhen(isSret && !illegalSret && !illegalSModeSret) { 995 retTarget := sepc(VAddrBits - 1, 0) 996 }.elsewhen(isUret) { 997 retTarget := uepc(VAddrBits - 1, 0) 998 }.otherwise { 999 illegalRetTarget := true.B 1000 } 1001 }.otherwise { 1002 illegalRetTarget := true.B // when illegalRetTarget setted, retTarget should never be used 1003 } 1004 1005 // Mux tree for regs 1006 when(valid) { 1007 when(isDret) { 1008 val mstatusNew = WireInit(mstatus.asTypeOf(new MstatusStruct)) 1009 val debugModeNew = WireInit(debugMode) 1010 when(dcsr.asTypeOf(new DcsrStruct).prv =/= ModeM) { 1011 mstatusNew.mprv := 0.U 1012 } //If the new privilege mode is less privileged than M-mode, MPRV in mstatus is cleared. 1013 mstatus := mstatusNew.asUInt 1014 priviledgeMode := dcsr.asTypeOf(new DcsrStruct).prv 1015 debugModeNew := false.B 1016 debugIntrEnable := true.B 1017 debugMode := debugModeNew 1018 XSDebug("Debug Mode: Dret executed, returning to %x.", retTarget) 1019 }.elsewhen(isMret && !illegalMret) { 1020 val mstatusOld = WireInit(mstatus.asTypeOf(new MstatusStruct)) 1021 val mstatusNew = WireInit(mstatus.asTypeOf(new MstatusStruct)) 1022 mstatusNew.ie.m := mstatusOld.pie.m 1023 priviledgeMode := mstatusOld.mpp 1024 mstatusNew.pie.m := true.B 1025 mstatusNew.mpp := ModeU 1026 when(mstatusOld.mpp =/= ModeM) { 1027 mstatusNew.mprv := 0.U 1028 } 1029 mstatus := mstatusNew.asUInt 1030 }.elsewhen(isSret && !illegalSret && !illegalSModeSret) { 1031 val mstatusOld = WireInit(mstatus.asTypeOf(new MstatusStruct)) 1032 val mstatusNew = WireInit(mstatus.asTypeOf(new MstatusStruct)) 1033 mstatusNew.ie.s := mstatusOld.pie.s 1034 priviledgeMode := Cat(0.U(1.W), mstatusOld.spp) 1035 mstatusNew.pie.s := true.B 1036 mstatusNew.spp := ModeU 1037 mstatus := mstatusNew.asUInt 1038 when(mstatusOld.spp =/= ModeM) { 1039 mstatusNew.mprv := 0.U 1040 } 1041 }.elsewhen(isUret) { 1042 val mstatusOld = WireInit(mstatus.asTypeOf(new MstatusStruct)) 1043 val mstatusNew = WireInit(mstatus.asTypeOf(new MstatusStruct)) 1044 // mstatusNew.mpp.m := ModeU //TODO: add mode U 1045 mstatusNew.ie.u := mstatusOld.pie.u 1046 priviledgeMode := ModeU 1047 mstatusNew.pie.u := true.B 1048 mstatus := mstatusNew.asUInt 1049 } 1050 } 1051 1052 io.in.ready := true.B 1053 io.out.valid := valid 1054 1055 // In this situation, hart will enter debug mode instead of handling a breakpoint exception simply. 1056 // Ebreak block instructions backwards, so it's ok to not keep extra info to distinguish between breakpoint 1057 // exception and enter-debug-mode exception. 1058 val ebreakEnterDebugMode = 1059 (priviledgeMode === ModeM && dcsrData.ebreakm) || 1060 (priviledgeMode === ModeS && dcsrData.ebreaks) || 1061 (priviledgeMode === ModeU && dcsrData.ebreaku) 1062 1063 // raise a debug exception waiting to enter debug mode, instead of a breakpoint exception 1064 val raiseDebugException = !debugMode && isEbreak && ebreakEnterDebugMode 1065 1066 val csrExceptionVec = WireInit(0.U.asTypeOf(ExceptionVec())) 1067 csrExceptionVec(breakPoint) := io.in.valid && isEbreak 1068 csrExceptionVec(ecallM) := priviledgeMode === ModeM && io.in.valid && isEcall 1069 csrExceptionVec(ecallS) := priviledgeMode === ModeS && io.in.valid && isEcall 1070 csrExceptionVec(ecallU) := priviledgeMode === ModeU && io.in.valid && isEcall 1071 // Trigger an illegal instr exception when: 1072 // * unimplemented csr is being read/written 1073 // * csr access is illegal 1074 csrExceptionVec(illegalInstr) := isIllegalAddr || isIllegalAccess || isIllegalPrivOp 1075 io.out.bits.ctrl.exceptionVec.get := csrExceptionVec 1076 1077 XSDebug(io.in.valid, s"Debug Mode: an Ebreak is executed, ebreak cause enter-debug-mode exception ? ${raiseDebugException}\n") 1078 1079 /** 1080 * Exception and Intr 1081 */ 1082 val ideleg = (mideleg & mip.asUInt) 1083 def priviledgedEnableDetect(x: Bool): Bool = Mux(x, ((priviledgeMode === ModeS) && mstatusStruct.ie.s) || (priviledgeMode < ModeS), 1084 ((priviledgeMode === ModeM) && mstatusStruct.ie.m) || (priviledgeMode < ModeM)) 1085 1086 val debugIntr = csrio.externalInterrupt.debug & debugIntrEnable 1087 XSDebug(debugIntr, "Debug Mode: debug interrupt is asserted and valid!") 1088 // send interrupt information to ROB 1089 val intrVecEnable = Wire(Vec(12, Bool())) 1090 val disableInterrupt = debugMode || (dcsrData.step && !dcsrData.stepie) 1091 intrVecEnable.zip(ideleg.asBools).map{case(x,y) => x := priviledgedEnableDetect(y) && !disableInterrupt} 1092 val intrVec = Cat(debugIntr && !debugMode, (mie(11,0) & mip.asUInt & intrVecEnable.asUInt)) 1093 val intrBitSet = intrVec.orR 1094 csrio.interrupt := intrBitSet 1095 // Page 45 in RISC-V Privileged Specification 1096 // The WFI instruction can also be executed when interrupts are disabled. The operation of WFI 1097 // must be unaffected by the global interrupt bits in mstatus (MIE and SIE) and the delegation 1098 // register mideleg, but should honor the individual interrupt enables (e.g, MTIE). 1099 csrio.wfi_event := debugIntr || (mie(11, 0) & mip.asUInt).orR 1100 mipWire.t.m := csrio.externalInterrupt.mtip 1101 mipWire.s.m := csrio.externalInterrupt.msip 1102 mipWire.e.m := csrio.externalInterrupt.meip 1103 mipWire.e.s := csrio.externalInterrupt.seip 1104 1105 // interrupts 1106 val intrNO = IntPriority.foldRight(0.U)((i: Int, sum: UInt) => Mux(intrVec(i), i.U, sum)) 1107 val hasIntr = csrio.exception.valid && csrio.exception.bits.isInterrupt 1108 val ivmEnable = tlbBundle.priv.imode < ModeM && satp.asTypeOf(new SatpStruct).mode === 8.U 1109 val iexceptionPC = Mux(ivmEnable, SignExt(csrio.exception.bits.pc, XLEN), csrio.exception.bits.pc) 1110 val dvmEnable = tlbBundle.priv.dmode < ModeM && satp.asTypeOf(new SatpStruct).mode === 8.U 1111 val dexceptionPC = Mux(dvmEnable, SignExt(csrio.exception.bits.pc, XLEN), csrio.exception.bits.pc) 1112 XSDebug(hasIntr, "interrupt: pc=0x%x, %d\n", dexceptionPC, intrNO) 1113 val hasDebugIntr = intrNO === IRQ_DEBUG.U && hasIntr 1114 1115 // exceptions from rob need to handle 1116 val exceptionVecFromRob = csrio.exception.bits.exceptionVec 1117 val hasException = csrio.exception.valid && !csrio.exception.bits.isInterrupt 1118 val hasInstrPageFault = hasException && exceptionVecFromRob(instrPageFault) 1119 val hasLoadPageFault = hasException && exceptionVecFromRob(loadPageFault) 1120 val hasStorePageFault = hasException && exceptionVecFromRob(storePageFault) 1121 val hasStoreAddrMisalign = hasException && exceptionVecFromRob(storeAddrMisaligned) 1122 val hasLoadAddrMisalign = hasException && exceptionVecFromRob(loadAddrMisaligned) 1123 val hasInstrAccessFault = hasException && exceptionVecFromRob(instrAccessFault) 1124 val hasLoadAccessFault = hasException && exceptionVecFromRob(loadAccessFault) 1125 val hasStoreAccessFault = hasException && exceptionVecFromRob(storeAccessFault) 1126 val hasBreakPoint = hasException && exceptionVecFromRob(breakPoint) 1127 val hasSingleStep = hasException && csrio.exception.bits.singleStep 1128 val hasTriggerFire = hasException && csrio.exception.bits.trigger.canFire 1129 val triggerFrontendHitVec = csrio.exception.bits.trigger.frontendHit 1130 val triggerMemHitVec = csrio.exception.bits.trigger.backendHit 1131 val triggerHitVec = triggerFrontendHitVec | triggerMemHitVec // Todo: update mcontrol.hit 1132 val triggerCanFireVec = csrio.exception.bits.trigger.frontendCanFire | csrio.exception.bits.trigger.backendCanFire 1133 // More than one triggers can hit at the same time, but only fire one 1134 // We select the first hit trigger to fire 1135 val triggerFireOH = PriorityEncoderOH(triggerCanFireVec) 1136 val triggerFireAction = PriorityMux(triggerFireOH, tdata1WireVec.map(_.getTriggerAction)).asUInt 1137 1138 1139 XSDebug(hasSingleStep, "Debug Mode: single step exception\n") 1140 XSDebug(hasTriggerFire, p"Debug Mode: trigger fire, frontend hit vec ${Binary(csrio.exception.bits.trigger.frontendHit.asUInt)} " + 1141 p"backend hit vec ${Binary(csrio.exception.bits.trigger.backendHit.asUInt)}\n") 1142 1143 val hasExceptionVec = csrio.exception.bits.exceptionVec 1144 val regularExceptionNO = ExceptionNO.priorities.foldRight(0.U)((i: Int, sum: UInt) => Mux(hasExceptionVec(i), i.U, sum)) 1145 val exceptionNO = Mux(hasSingleStep || hasTriggerFire, 3.U, regularExceptionNO) 1146 val causeNO = (hasIntr << (XLEN - 1)).asUInt | Mux(hasIntr, intrNO, exceptionNO) 1147 1148 1149 val hasExceptionIntr = csrio.exception.valid 1150 1151 val hasDebugEbreakException = hasBreakPoint && ebreakEnterDebugMode 1152 val hasDebugTriggerException = hasTriggerFire && triggerFireAction === TrigActionEnum.DEBUG_MODE 1153 val hasDebugException = hasDebugEbreakException || hasDebugTriggerException || hasSingleStep 1154 val hasDebugTrap = hasDebugException || hasDebugIntr 1155 val ebreakEnterParkLoop = debugMode && hasExceptionIntr 1156 1157 XSDebug(hasExceptionIntr, "int/exc: pc %x int (%d):%x exc: (%d):%x\n", 1158 dexceptionPC, intrNO, intrVec, exceptionNO, hasExceptionVec.asUInt 1159 ) 1160 XSDebug(hasExceptionIntr, 1161 "pc %x mstatus %x mideleg %x medeleg %x mode %x\n", 1162 dexceptionPC, 1163 mstatus, 1164 mideleg, 1165 medeleg, 1166 priviledgeMode 1167 ) 1168 1169 // mtval write logic 1170 // Due to timing reasons of memExceptionVAddr, we delay the write of mtval and stval 1171 val memExceptionAddr = SignExt(csrio.memExceptionVAddr, XLEN) 1172 val updateTval = VecInit(Seq( 1173 hasInstrPageFault, 1174 hasLoadPageFault, 1175 hasStorePageFault, 1176 hasInstrAccessFault, 1177 hasLoadAccessFault, 1178 hasStoreAccessFault, 1179 hasLoadAddrMisalign, 1180 hasStoreAddrMisalign 1181 )).asUInt.orR 1182 when (RegNext(RegNext(updateTval))) { 1183 val tval = Mux( 1184 RegNext(RegNext(hasInstrPageFault || hasInstrAccessFault)), 1185 RegNext(RegNext(Mux( 1186 csrio.exception.bits.crossPageIPFFix, 1187 SignExt(csrio.exception.bits.pc + 2.U, XLEN), 1188 iexceptionPC 1189 ))), 1190 memExceptionAddr 1191 ) 1192 when (RegNext(priviledgeMode === ModeM)) { 1193 mtval := tval 1194 }.otherwise { 1195 stval := tval 1196 } 1197 } 1198 1199 val debugTrapTarget = Mux(!isEbreak && debugMode, 0x38020808.U, 0x38020800.U) // 0x808 is when an exception occurs in debug mode prog buf exec 1200 val deleg = Mux(hasIntr, mideleg , medeleg) 1201 // val delegS = ((deleg & (1 << (causeNO & 0xf))) != 0) && (priviledgeMode < ModeM); 1202 val delegS = deleg(causeNO(3,0)) && (priviledgeMode < ModeM) 1203 val clearTval = !updateTval || hasIntr 1204 1205 // ctrl block will use theses later for flush 1206 val isXRetFlag = RegInit(false.B) 1207 when (DelayN(io.flush.valid, 5)) { 1208 isXRetFlag := false.B 1209 }.elsewhen (isXRet) { 1210 isXRetFlag := true.B 1211 } 1212 csrio.isXRet := isXRetFlag 1213 private val retTargetReg = RegEnable(retTarget, isXRet && !illegalRetTarget) 1214 private val illegalXret = RegEnable(illegalMret || illegalSret || illegalSModeSret, isXRet) 1215 1216 private val xtvec = Mux(delegS, stvec, mtvec) 1217 private val xtvecBase = xtvec(VAddrBits - 1, 2) 1218 // When MODE=Vectored, all synchronous exceptions into M/S mode 1219 // cause the pc to be set to the address in the BASE field, whereas 1220 // interrupts cause the pc to be set to the address in the BASE field 1221 // plus four times the interrupt cause number. 1222 private val pcFromXtvec = Cat(xtvecBase + Mux(xtvec(0) && hasIntr, causeNO(3, 0), 0.U), 0.U(2.W)) 1223 1224 // XRet sends redirect instead of Flush and isXRetFlag is true.B before redirect.valid. 1225 // ROB sends exception at T0 while CSR receives at T2. 1226 // We add a RegNext here and trapTarget is valid at T3. 1227 csrio.trapTarget := RegEnable( 1228 MuxCase(pcFromXtvec, Seq( 1229 (isXRetFlag && !illegalXret) -> retTargetReg, 1230 ((hasDebugTrap && !debugMode) || ebreakEnterParkLoop) -> debugTrapTarget 1231 )), 1232 isXRetFlag || csrio.exception.valid) 1233 1234 when(hasExceptionIntr) { 1235 val mstatusOld = WireInit(mstatus.asTypeOf(new MstatusStruct)) 1236 val mstatusNew = WireInit(mstatus.asTypeOf(new MstatusStruct)) 1237 val dcsrNew = WireInit(dcsr.asTypeOf(new DcsrStruct)) 1238 val debugModeNew = WireInit(debugMode) 1239 when(hasDebugTrap && !debugMode) { 1240 import DcsrStruct._ 1241 debugModeNew := true.B 1242 dcsrNew.prv := priviledgeMode 1243 priviledgeMode := ModeM 1244 when(hasDebugIntr) { 1245 dpc := iexceptionPC 1246 dcsrNew.cause := CAUSE_HALTREQ 1247 XSDebug(hasDebugIntr, "Debug Mode: Trap to %x at pc %x\n", debugTrapTarget, dpc) 1248 }.otherwise { // hasDebugException 1249 dpc := iexceptionPC // TODO: check it when hasSingleStep 1250 dcsrNew.cause := MuxCase(0.U, Seq( 1251 hasTriggerFire -> CAUSE_TRIGGER, 1252 hasBreakPoint -> CAUSE_HALTREQ, 1253 hasSingleStep -> CAUSE_STEP 1254 )) 1255 } 1256 dcsr := dcsrNew.asUInt 1257 debugIntrEnable := false.B 1258 }.elsewhen (debugMode) { 1259 //do nothing 1260 }.elsewhen (delegS) { 1261 scause := causeNO 1262 sepc := Mux(hasInstrPageFault || hasInstrAccessFault, iexceptionPC, dexceptionPC) 1263 mstatusNew.spp := priviledgeMode 1264 mstatusNew.pie.s := mstatusOld.ie.s 1265 mstatusNew.ie.s := false.B 1266 priviledgeMode := ModeS 1267 when (clearTval) { stval := 0.U } 1268 }.otherwise { 1269 mcause := causeNO 1270 mepc := Mux(hasInstrPageFault || hasInstrAccessFault, iexceptionPC, dexceptionPC) 1271 mstatusNew.mpp := priviledgeMode 1272 mstatusNew.pie.m := mstatusOld.ie.m 1273 mstatusNew.ie.m := false.B 1274 priviledgeMode := ModeM 1275 when (clearTval) { mtval := 0.U } 1276 } 1277 mstatus := mstatusNew.asUInt 1278 debugMode := debugModeNew 1279 } 1280 1281 // Distributed CSR update req 1282 // 1283 // For now we use it to implement customized cache op 1284 // It can be delayed if necessary 1285 1286 val delayedUpdate0 = DelayN(csrio.distributedUpdate(0), 2) 1287 val delayedUpdate1 = DelayN(csrio.distributedUpdate(1), 2) 1288 val distributedUpdateValid = delayedUpdate0.w.valid || delayedUpdate1.w.valid 1289 val distributedUpdateAddr = Mux(delayedUpdate0.w.valid, 1290 delayedUpdate0.w.bits.addr, 1291 delayedUpdate1.w.bits.addr 1292 ) 1293 val distributedUpdateData = Mux(delayedUpdate0.w.valid, 1294 delayedUpdate0.w.bits.data, 1295 delayedUpdate1.w.bits.data 1296 ) 1297 1298 assert(!(delayedUpdate0.w.valid && delayedUpdate1.w.valid)) 1299 1300 when(distributedUpdateValid){ 1301 // cacheopRegs can be distributed updated 1302 CacheInstrucion.CacheInsRegisterList.map{case (name, attribute) => { 1303 when((Scachebase + attribute("offset").toInt).U === distributedUpdateAddr){ 1304 cacheopRegs(name) := distributedUpdateData 1305 } 1306 }} 1307 } 1308 1309 // Cache error debug support 1310 if(HasCustomCSRCacheOp){ 1311 val cache_error_decoder = Module(new CSRCacheErrorDecoder) 1312 cache_error_decoder.io.encoded_cache_error := cacheopRegs("CACHE_ERROR") 1313 } 1314 1315 // Implicit add reset values for mepc[0] and sepc[0] 1316 // TODO: rewrite mepc and sepc using a struct-like style with the LSB always being 0 1317 when (RegNext(RegNext(reset.asBool) && !reset.asBool)) { 1318 mepc := Cat(mepc(XLEN - 1, 1), 0.U(1.W)) 1319 sepc := Cat(sepc(XLEN - 1, 1), 0.U(1.W)) 1320 } 1321 1322 def readWithScala(addr: Int): UInt = mapping(addr)._1 1323 1324 val difftestIntrNO = Mux(hasIntr, causeNO, 0.U) 1325 1326 // Always instantiate basic difftest modules. 1327 if (env.AlwaysBasicDiff || env.EnableDifftest) { 1328 val difftest = DifftestModule(new DiffArchEvent, delay = 3, dontCare = true) 1329 difftest.coreid := csrio.hartId 1330 difftest.valid := csrio.exception.valid 1331 difftest.interrupt := Mux(hasIntr, causeNO, 0.U) 1332 difftest.exception := Mux(hasException, causeNO, 0.U) 1333 difftest.exceptionPC := dexceptionPC 1334 if (env.EnableDifftest) { 1335 difftest.exceptionInst := csrio.exception.bits.instr 1336 } 1337 } 1338 1339 // Always instantiate basic difftest modules. 1340 if (env.AlwaysBasicDiff || env.EnableDifftest) { 1341 val difftest = DifftestModule(new DiffCSRState) 1342 difftest.coreid := csrio.hartId 1343 difftest.priviledgeMode := priviledgeMode 1344 difftest.mstatus := mstatus 1345 difftest.sstatus := mstatus & sstatusRmask 1346 difftest.mepc := mepc 1347 difftest.sepc := sepc 1348 difftest.mtval:= mtval 1349 difftest.stval:= stval 1350 difftest.mtvec := mtvec 1351 difftest.stvec := stvec 1352 difftest.mcause := mcause 1353 difftest.scause := scause 1354 difftest.satp := satp 1355 difftest.mip := mipReg 1356 difftest.mie := mie 1357 difftest.mscratch := mscratch 1358 difftest.sscratch := sscratch 1359 difftest.mideleg := mideleg 1360 difftest.medeleg := medeleg 1361 } 1362 1363 if(env.AlwaysBasicDiff || env.EnableDifftest) { 1364 val difftest = DifftestModule(new DiffDebugMode) 1365 difftest.coreid := csrio.hartId 1366 difftest.debugMode := debugMode 1367 difftest.dcsr := dcsr 1368 difftest.dpc := dpc 1369 difftest.dscratch0 := dscratch0 1370 difftest.dscratch1 := dscratch1 1371 } 1372 1373 if (env.AlwaysBasicDiff || env.EnableDifftest) { 1374 val difftest = DifftestModule(new DiffVecCSRState) 1375 difftest.coreid := csrio.hartId 1376 difftest.vstart := vstart 1377 difftest.vxsat := vcsr.asTypeOf(new VcsrStruct).vxsat 1378 difftest.vxrm := vcsr.asTypeOf(new VcsrStruct).vxrm 1379 difftest.vcsr := vcsr 1380 difftest.vl := vl 1381 difftest.vtype := vtype 1382 difftest.vlenb := vlenb 1383 } 1384} 1385 1386class PFEvent(implicit p: Parameters) extends XSModule with HasCSRConst { 1387 val io = IO(new Bundle { 1388 val distribute_csr = Flipped(new DistributedCSRIO()) 1389 val hpmevent = Output(Vec(29, UInt(XLEN.W))) 1390 }) 1391 1392 val w = io.distribute_csr.w 1393 1394 val perfEvents = List.fill(8)(RegInit("h0000000000".U(XLEN.W))) ++ 1395 List.fill(8)(RegInit("h4010040100".U(XLEN.W))) ++ 1396 List.fill(8)(RegInit("h8020080200".U(XLEN.W))) ++ 1397 List.fill(5)(RegInit("hc0300c0300".U(XLEN.W))) 1398 1399 val perfEventMapping = (0 until 29).map(i => {Map( 1400 MaskedRegMap(addr = Mhpmevent3 +i, 1401 reg = perfEvents(i), 1402 wmask = "hf87fff3fcff3fcff".U(XLEN.W)) 1403 )}).fold(Map())((a,b) => a ++ b) 1404 1405 val rdata = Wire(UInt(XLEN.W)) 1406 MaskedRegMap.generate(perfEventMapping, w.bits.addr, rdata, w.valid, w.bits.data) 1407 for(i <- 0 until 29){ 1408 io.hpmevent(i) := perfEvents(i) 1409 } 1410} 1411