xref: /XiangShan/src/main/scala/xiangshan/backend/fu/CSR.scala (revision 9477429f7dc92dfd72de3908b8e953de2886a01d)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.fu
18
19import org.chipsalliance.cde.config.Parameters
20import chisel3._
21import chisel3.util._
22import difftest._
23import freechips.rocketchip.util._
24import utility.MaskedRegMap.WritableMask
25import utils._
26import utility._
27import xiangshan.ExceptionNO._
28import xiangshan._
29import xiangshan.backend.fu.util._
30import xiangshan.cache._
31import xiangshan.backend.Bundles.ExceptionInfo
32import xiangshan.backend.fu.util.CSR.CSRNamedConstant.ContextStatus
33import utils.MathUtils.{BigIntGenMask, BigIntNot}
34
35class FpuCsrIO extends Bundle {
36  val fflags = Output(Valid(UInt(5.W)))
37  val isIllegal = Output(Bool())
38  val dirty_fs = Output(Bool())
39  val frm = Input(UInt(3.W))
40}
41
42class VpuCsrIO(implicit p: Parameters) extends XSBundle {
43  val vstart = Input(UInt(XLEN.W))
44  val vxsat = Input(UInt(1.W))
45  val vxrm = Input(UInt(2.W))
46  val vcsr = Input(UInt(XLEN.W))
47  val vl = Input(UInt(XLEN.W))
48  val vtype = Input(UInt(XLEN.W))
49  val vlenb = Input(UInt(XLEN.W))
50
51  val vill = Input(UInt(1.W))
52  val vma = Input(UInt(1.W))
53  val vta = Input(UInt(1.W))
54  val vsew = Input(UInt(3.W))
55  val vlmul = Input(UInt(3.W))
56
57  val set_vstart = Output(Valid(UInt(XLEN.W)))
58  val set_vl = Output(Valid(UInt(XLEN.W)))
59  val set_vtype = Output(Valid(UInt(XLEN.W)))
60  val set_vxsat = Output(Valid(UInt(1.W)))
61
62  val dirty_vs = Output(Bool())
63}
64
65
66class PerfCounterIO(implicit p: Parameters) extends XSBundle {
67  val perfEventsFrontend  = Vec(numCSRPCntFrontend, new PerfEvent)
68  val perfEventsCtrl      = Vec(numCSRPCntCtrl, new PerfEvent)
69  val perfEventsLsu       = Vec(numCSRPCntLsu, new PerfEvent)
70  val perfEventsHc        = Vec(numPCntHc * coreParams.L2NBanks, new PerfEvent)
71  val retiredInstr = UInt(3.W)
72  val frontendInfo = new Bundle {
73    val ibufFull  = Bool()
74    val bpuInfo = new Bundle {
75      val bpRight = UInt(XLEN.W)
76      val bpWrong = UInt(XLEN.W)
77    }
78  }
79  val ctrlInfo = new Bundle {
80    val robFull   = Bool()
81    val intdqFull = Bool()
82    val fpdqFull  = Bool()
83    val lsdqFull  = Bool()
84  }
85  val memInfo = new Bundle {
86    val sqFull = Bool()
87    val lqFull = Bool()
88    val dcacheMSHRFull = Bool()
89  }
90}
91
92class CSRFileIO(implicit p: Parameters) extends XSBundle {
93  val hartId = Input(UInt(8.W))
94  // output (for func === CSROpType.jmp)
95  val perf = Input(new PerfCounterIO)
96  val isPerfCnt = Output(Bool())
97  // to FPU
98  val fpu = Flipped(new FpuCsrIO)
99  // to VPU
100  val vpu = Flipped(new VpuCsrIO)
101  // from rob
102  val exception = Flipped(ValidIO(new ExceptionInfo))
103  // to ROB
104  val isXRet = Output(Bool())
105  val trapTarget = Output(UInt(VAddrBits.W))
106  val interrupt = Output(Bool())
107  val wfi_event = Output(Bool())
108  // from LSQ
109  val memExceptionVAddr = Input(UInt(VAddrBits.W))
110  // from outside cpu,externalInterrupt
111  val externalInterrupt = new ExternalInterruptIO
112  // TLB
113  val tlb = Output(new TlbCsrBundle)
114  // Debug Mode
115  // val singleStep = Output(Bool())
116  val debugMode = Output(Bool())
117  // to Fence to disable sfence
118  val disableSfence = Output(Bool())
119  // Custom microarchiture ctrl signal
120  val customCtrl = Output(new CustomCSRCtrlIO)
121  // distributed csr write
122  val distributedUpdate = Vec(2, Flipped(new DistributedCSRUpdateReq))
123}
124
125class VtypeStruct(implicit p: Parameters) extends XSBundle {
126  val vill = UInt(1.W)
127  val reserved = UInt((XLEN - 9).W)
128  val vma = UInt(1.W)
129  val vta = UInt(1.W)
130  val vsew = UInt(3.W)
131  val vlmul = UInt(3.W)
132}
133
134class CSR(cfg: FuConfig)(implicit p: Parameters) extends FuncUnit(cfg)
135  with HasCSRConst
136  with PMPMethod
137  with PMAMethod
138  with HasXSParameter
139  with SdtrigExt
140  with DebugCSR
141{
142  val csrio = io.csrio.get
143
144  val flushPipe = Wire(Bool())
145
146  val (valid, src1, src2, func) = (
147    io.in.valid,
148    io.in.bits.data.src(0),
149    io.in.bits.data.imm,
150    io.in.bits.ctrl.fuOpType
151  )
152
153  // CSR define
154
155  class Priv extends Bundle {
156    val m = Output(Bool())
157    val h = Output(Bool())
158    val s = Output(Bool())
159    val u = Output(Bool())
160  }
161
162  class MstatusStruct extends Bundle {
163    val sd = Output(UInt(1.W))
164
165    val pad1 = if (XLEN == 64) Output(UInt(25.W)) else null
166    val mbe  = if (XLEN == 64) Output(UInt(1.W)) else null
167    val sbe  = if (XLEN == 64) Output(UInt(1.W)) else null
168    val sxl  = if (XLEN == 64) Output(UInt(2.W))  else null
169    val uxl  = if (XLEN == 64) Output(UInt(2.W))  else null
170    val pad0 = if (XLEN == 64) Output(UInt(9.W))  else Output(UInt(8.W))
171
172    val tsr = Output(UInt(1.W))
173    val tw = Output(UInt(1.W))
174    val tvm = Output(UInt(1.W))
175    val mxr = Output(UInt(1.W))
176    val sum = Output(UInt(1.W))
177    val mprv = Output(UInt(1.W))
178    val xs = Output(UInt(2.W))
179    val fs = Output(UInt(2.W))
180    val mpp = Output(UInt(2.W))
181    val vs = Output(UInt(2.W))
182    val spp = Output(UInt(1.W))
183    val pie = new Priv
184    val ie = new Priv
185    assert(this.getWidth == XLEN)
186
187    def ube = pie.h // a little ugly
188    def ube_(r: UInt): Unit = {
189      pie.h := r(0)
190    }
191  }
192
193  class Interrupt extends Bundle {
194//  val d = Output(Bool())    // Debug
195    val e = new Priv
196    val t = new Priv
197    val s = new Priv
198  }
199
200  val csrNotImplemented = RegInit(UInt(XLEN.W), 0.U)
201
202  // Debug CSRs
203  val dcsr = RegInit(UInt(32.W), DcsrStruct.init)
204  val dpc = Reg(UInt(64.W))
205  val dscratch0 = Reg(UInt(64.W))
206  val dscratch1 = Reg(UInt(64.W))
207  val debugMode = RegInit(false.B)
208  val debugIntrEnable = RegInit(true.B) // debug interrupt will be handle only when debugIntrEnable
209  csrio.debugMode := debugMode
210
211  val dpcPrev = RegNext(dpc)
212  XSDebug(dpcPrev =/= dpc, "Debug Mode: dpc is altered! Current is %x, previous is %x\n", dpc, dpcPrev)
213
214  val dcsrData = Wire(new DcsrStruct)
215  dcsrData := dcsr.asTypeOf(new DcsrStruct)
216  val dcsrMask = ZeroExt(GenMask(15) | GenMask(13, 11) | GenMask(4) | GenMask(2, 0), XLEN)// Dcsr write mask
217  def dcsrUpdateSideEffect(dcsr: UInt): UInt = {
218    val dcsrOld = WireInit(dcsr.asTypeOf(new DcsrStruct))
219    val dcsrNew = dcsr | (dcsrOld.prv(0) | dcsrOld.prv(1)).asUInt // turn 10 priv into 11
220    dcsrNew
221  }
222  // csrio.singleStep := dcsrData.step
223  csrio.customCtrl.singlestep := dcsrData.step && !debugMode
224
225  // Trigger CSRs
226  private val tselectPhy = RegInit(0.U(log2Up(TriggerNum).W))
227
228  private val tdata1RegVec = RegInit(VecInit(Seq.fill(TriggerNum)(Tdata1Bundle.default)))
229  private val tdata2RegVec = RegInit(VecInit(Seq.fill(TriggerNum)(0.U(64.W))))
230  private val tdata1WireVec = tdata1RegVec.map(_.asTypeOf(new Tdata1Bundle))
231  private val tdata2WireVec = tdata2RegVec
232  private val tdata1Selected = tdata1RegVec(tselectPhy).asTypeOf(new Tdata1Bundle)
233  private val tdata2Selected = tdata2RegVec(tselectPhy)
234  private val newTriggerChainVec = UIntToOH(tselectPhy, TriggerNum).asBools | tdata1WireVec.map(_.data.asTypeOf(new MControlData).chain)
235  private val newTriggerChainIsLegal = TriggerCheckChainLegal(newTriggerChainVec, TriggerChainMaxLength)
236  val tinfo = RegInit((BigInt(1) << TrigTypeEnum.MCONTROL.litValue.toInt).U(XLEN.W)) // This value should be 4.U
237
238
239  def WriteTselect(wdata: UInt) = {
240    Mux(wdata < TriggerNum.U, wdata(3, 0), tselectPhy)
241  }
242
243  def GenTdataDistribute(tdata1: Tdata1Bundle, tdata2: UInt): MatchTriggerIO = {
244    val res = Wire(new MatchTriggerIO)
245    val mcontrol: MControlData = WireInit(tdata1.data.asTypeOf(new MControlData))
246    res.matchType := mcontrol.match_.asUInt
247    res.select    := mcontrol.select
248    res.timing    := mcontrol.timing
249    res.action    := mcontrol.action.asUInt
250    res.chain     := mcontrol.chain
251    res.execute   := mcontrol.execute
252    res.load      := mcontrol.load
253    res.store     := mcontrol.store
254    res.tdata2    := tdata2
255    res
256  }
257
258  csrio.customCtrl.frontend_trigger.tUpdate.bits.addr := tselectPhy
259  csrio.customCtrl.mem_trigger.tUpdate.bits.addr := tselectPhy
260  csrio.customCtrl.frontend_trigger.tUpdate.bits.tdata := GenTdataDistribute(tdata1Selected, tdata2Selected)
261  csrio.customCtrl.mem_trigger.tUpdate.bits.tdata := GenTdataDistribute(tdata1Selected, tdata2Selected)
262
263  // Machine-Level CSRs
264  // mtvec: {BASE (WARL), MODE (WARL)} where mode is 0 or 1
265  val mtvecMask = ~(0x2.U(XLEN.W))
266  val mtvec = RegInit(UInt(XLEN.W), 0.U)
267  val mcounteren = RegInit(UInt(XLEN.W), 0.U)
268  val mcause = RegInit(UInt(XLEN.W), 0.U)
269  val mtval = RegInit(UInt(XLEN.W), 0.U)
270  val mepc = Reg(UInt(XLEN.W))
271  // Page 36 in riscv-priv: The low bit of mepc (mepc[0]) is always zero.
272  val mepcMask = ~(0x1.U(XLEN.W))
273
274  val mie = RegInit(0.U(XLEN.W))
275  val mipWire = WireInit(0.U.asTypeOf(new Interrupt))
276  val mipReg  = RegInit(0.U(XLEN.W))
277  val mipFixMask = ZeroExt(GenMask(9) | GenMask(5) | GenMask(1), XLEN)
278  val mip = (mipWire.asUInt | mipReg).asTypeOf(new Interrupt)
279
280  def getMisaMxl(mxl: BigInt): BigInt = mxl << (XLEN - 2)
281  def getMisaExt(ext: Char): Long = 1 << (ext.toInt - 'a'.toInt)
282  var extList = List('a', 's', 'i', 'u')
283  if (HasMExtension) { extList = extList :+ 'm' }
284  if (HasCExtension) { extList = extList :+ 'c' }
285  if (HasFPU) { extList = extList ++ List('f', 'd') }
286  if (HasVPU) { extList = extList :+ 'v' }
287  val misaInitVal = getMisaMxl(2) | extList.foldLeft(0L)((sum, i) => sum | getMisaExt(i)) //"h8000000000141105".U
288  val misa = RegInit(UInt(XLEN.W), misaInitVal.U)
289  println(s"[CSR] supported isa ext: $extList")
290
291  // MXL = 2          | 0 | EXT = b 00 0000 0100 0001 0001 0000 0101
292  // (XLEN-1, XLEN-2) |   |(25, 0)  ZY XWVU TSRQ PONM LKJI HGFE DCBA
293
294  val mvendorid = RegInit(UInt(XLEN.W), 0.U) // this is a non-commercial implementation
295  val marchid = RegInit(UInt(XLEN.W), 25.U) // architecture id for XiangShan is 25; see https://github.com/riscv/riscv-isa-manual/blob/master/marchid.md
296  val mimpid = RegInit(UInt(XLEN.W), 0.U) // provides a unique encoding of the version of the processor implementation
297  val mhartid = Reg(UInt(XLEN.W)) // the hardware thread running the code
298  when (RegNext(RegNext(reset.asBool) && !reset.asBool)) {
299    mhartid := csrio.hartId
300  }
301  val mconfigptr = RegInit(UInt(XLEN.W), 0.U) // the read-only pointer pointing to the platform config structure, 0 for not supported.
302  val mstatus = RegInit("ha00002200".U(XLEN.W))
303
304  // mstatus Value Table
305  // | sd   | Read Only
306  // | pad1 | WPRI
307  // | sxl  | hardlinked to 10, use 00 to pass xv6 test
308  // | uxl  | hardlinked to 10
309  // | pad0 |
310  // | tsr  |
311  // | tw   |
312  // | tvm  |
313  // | mxr  |
314  // | sum  |
315  // | mprv |
316  // | xs   | 00 |
317  // | fs   | 01 |
318  // | mpp  | 00 |
319  // | vs   | 01 |
320  // | spp  | 0 |
321  // | pie  | 0000 | pie.h is used as UBE
322  // | ie   | 0000 | uie hardlinked to 0, as N ext is not implemented
323
324  val mstatusStruct = mstatus.asTypeOf(new MstatusStruct)
325  def mstatusUpdateSideEffect(mstatus: UInt): UInt = {
326    val mstatusOld = WireInit(mstatus.asTypeOf(new MstatusStruct))
327    // Cat(sd, other)
328    val mstatusNew = Cat(
329      mstatusOld.xs === ContextStatus.dirty || mstatusOld.fs === ContextStatus.dirty || mstatusOld.vs === ContextStatus.dirty,
330      mstatus(XLEN-2, 0)
331    )
332    mstatusNew
333  }
334
335  val mstatusWMask = (~ZeroExt((
336    GenMask(63)           | // SD is read-only
337    GenMask(62, 36)       | // WPRI
338    GenMask(35, 32)       | // SXL and UXL cannot be changed
339    GenMask(31, 23)       | // WPRI
340    GenMask(16, 15)       | // XS is read-only
341    GenMask(6)            | // UBE, always little-endian (0)
342    GenMask(4)            | // WPRI
343    GenMask(2)            | // WPRI
344    GenMask(0)              // WPRI
345  ), 64)).asUInt
346
347  val medeleg = RegInit(UInt(XLEN.W), 0.U)
348  val mideleg = RegInit(UInt(XLEN.W), 0.U)
349  val mscratch = RegInit(UInt(XLEN.W), 0.U)
350
351  // PMP Mapping
352  val pmp = Wire(Vec(NumPMP, new PMPEntry())) // just used for method parameter
353  val pma = Wire(Vec(NumPMA, new PMPEntry())) // just used for method parameter
354  val pmpMapping = pmp_gen_mapping(pmp_init, NumPMP, PmpcfgBase, PmpaddrBase, pmp)
355  val pmaMapping = pmp_gen_mapping(pma_init, NumPMA, PmacfgBase, PmaaddrBase, pma)
356
357  // Superviser-Level CSRs
358
359  val sstatusWNmask: BigInt = (
360    BigIntGenMask(63)     | // SD is read-only
361    BigIntGenMask(62, 34) | // WPRI
362    BigIntGenMask(33, 32) | // UXL is hard-wired to 64(b10)
363    BigIntGenMask(31, 20) | // WPRI
364    BigIntGenMask(17)     | // WPRI
365    BigIntGenMask(16, 15) | // XS is read-only to zero
366    BigIntGenMask(12, 11) | // WPRI
367    BigIntGenMask(7)      | // WPRI
368    BigIntGenMask(6)      | // UBE is always little-endian (0)
369    BigIntGenMask(4, 2)   | // WPRI
370    BigIntGenMask(0)        // WPRI
371  )
372
373  val sstatusWmask = BigIntNot(sstatusWNmask).U(XLEN.W)
374  val sstatusRmask = (
375    BigIntGenMask(63)     | // SD
376    BigIntGenMask(33, 32) | // UXL
377    BigIntGenMask(19)     | // MXR
378    BigIntGenMask(18)     | // SUM
379    BigIntGenMask(16, 15) | // XS
380    BigIntGenMask(14, 13) | // FS
381    BigIntGenMask(10, 9 ) | // VS
382    BigIntGenMask(8)      | // SPP
383    BigIntGenMask(6)      | // UBE: hard wired to 0
384    BigIntGenMask(5)      | // SPIE
385    BigIntGenMask(1)
386  ).U(XLEN.W)
387
388  println(s"sstatusWNmask: 0x${sstatusWNmask.toString(16)}")
389  println(s"sstatusWmask: 0x${sstatusWmask.litValue.toString(16)}")
390  println(s"sstatusRmask: 0x${sstatusRmask.litValue.toString(16)}")
391
392  // stvec: {BASE (WARL), MODE (WARL)} where mode is 0 or 1
393  val stvecMask = ~(0x2.U(XLEN.W))
394  val stvec = RegInit(UInt(XLEN.W), 0.U)
395  // val sie = RegInit(0.U(XLEN.W))
396  val sieMask = "h222".U & mideleg
397  val sipMask = "h222".U & mideleg
398  val sipWMask = "h2".U(XLEN.W) // ssip is writeable in smode
399  val satp = if(EnbaleTlbDebug) RegInit(UInt(XLEN.W), "h8000000000087fbe".U) else RegInit(0.U(XLEN.W))
400  // val satp = RegInit(UInt(XLEN.W), "h8000000000087fbe".U) // only use for tlb naive debug
401  // val satpMask = "h80000fffffffffff".U(XLEN.W) // disable asid, mode can only be 8 / 0
402  // TODO: use config to control the length of asid
403  // val satpMask = "h8fffffffffffffff".U(XLEN.W) // enable asid, mode can only be 8 / 0
404  val satpMask = Cat("h8".U(Satp_Mode_len.W), satp_part_wmask(Satp_Asid_len, AsidLength), satp_part_wmask(Satp_Addr_len, PAddrBits-12))
405  val sepc = RegInit(UInt(XLEN.W), 0.U)
406  // Page 60 in riscv-priv: The low bit of sepc (sepc[0]) is always zero.
407  val sepcMask = ~(0x1.U(XLEN.W))
408  val scause = RegInit(UInt(XLEN.W), 0.U)
409  val stval = Reg(UInt(XLEN.W))
410  val sscratch = RegInit(UInt(XLEN.W), 0.U)
411  val scounteren = RegInit(UInt(XLEN.W), 0.U)
412
413  // sbpctl
414  // Bits 0-7: {LOOP, RAS, SC, TAGE, BIM, BTB, uBTB}
415  val sbpctl = RegInit(UInt(XLEN.W), "h7f".U)
416  csrio.customCtrl.bp_ctrl.ubtb_enable := sbpctl(0)
417  csrio.customCtrl.bp_ctrl.btb_enable  := sbpctl(1)
418  csrio.customCtrl.bp_ctrl.bim_enable  := sbpctl(2)
419  csrio.customCtrl.bp_ctrl.tage_enable := sbpctl(3)
420  csrio.customCtrl.bp_ctrl.sc_enable   := sbpctl(4)
421  csrio.customCtrl.bp_ctrl.ras_enable  := sbpctl(5)
422  csrio.customCtrl.bp_ctrl.loop_enable := sbpctl(6)
423
424  // spfctl Bit 0: L1I Cache Prefetcher Enable
425  // spfctl Bit 1: L2Cache Prefetcher Enable
426  // spfctl Bit 2: L1D Cache Prefetcher Enable
427  // spfctl Bit 3: L1D train prefetch on hit
428  // spfctl Bit 4: L1D prefetch enable agt
429  // spfctl Bit 5: L1D prefetch enable pht
430  // spfctl Bit [9:6]: L1D prefetch active page threshold
431  // spfctl Bit [15:10]: L1D prefetch active page stride
432  // turn off L2 BOP, turn on L1 SMS by default
433  val spfctl = RegInit(UInt(XLEN.W), Seq(
434    0 << 17,    // L2 pf store only [17] init: false
435    1 << 16,    // L1D pf enable stride [16] init: true
436    30 << 10,   // L1D active page stride [15:10] init: 30
437    12 << 6,    // L1D active page threshold [9:6] init: 12
438    1  << 5,    // L1D enable pht [5] init: true
439    1  << 4,    // L1D enable agt [4] init: true
440    0  << 3,    // L1D train on hit [3] init: false
441    1  << 2,    // L1D pf enable [2] init: true
442    1  << 1,    // L2 pf enable [1] init: true
443    1  << 0,    // L1I pf enable [0] init: true
444  ).reduce(_|_).U(XLEN.W))
445  csrio.customCtrl.l1I_pf_enable := spfctl(0)
446  csrio.customCtrl.l2_pf_enable := spfctl(1)
447  csrio.customCtrl.l1D_pf_enable := spfctl(2)
448  csrio.customCtrl.l1D_pf_train_on_hit := spfctl(3)
449  csrio.customCtrl.l1D_pf_enable_agt := spfctl(4)
450  csrio.customCtrl.l1D_pf_enable_pht := spfctl(5)
451  csrio.customCtrl.l1D_pf_active_threshold := spfctl(9, 6)
452  csrio.customCtrl.l1D_pf_active_stride := spfctl(15, 10)
453  csrio.customCtrl.l1D_pf_enable_stride := spfctl(16)
454  csrio.customCtrl.l2_pf_store_only := spfctl(17)
455
456  // sfetchctl Bit 0: L1I Cache Parity check enable
457  val sfetchctl = RegInit(UInt(XLEN.W), "b0".U)
458  csrio.customCtrl.icache_parity_enable := sfetchctl(0)
459
460  // sdsid: Differentiated Services ID
461  val sdsid = RegInit(UInt(XLEN.W), 0.U)
462  csrio.customCtrl.dsid := sdsid
463
464  // slvpredctl: load violation predict settings
465  // Default reset period: 2^16
466  // Why this number: reset more frequently while keeping the overhead low
467  // Overhead: extra two redirections in every 64K cycles => ~0.1% overhead
468  val slvpredctl = Reg(UInt(XLEN.W))
469  when(reset.asBool) {
470    slvpredctl := Constantin.createRecord("slvpredctl", "h60".U)
471  }
472  csrio.customCtrl.lvpred_disable := slvpredctl(0)
473  csrio.customCtrl.no_spec_load := slvpredctl(1)
474  csrio.customCtrl.storeset_wait_store := slvpredctl(2)
475  csrio.customCtrl.storeset_no_fast_wakeup := slvpredctl(3)
476  csrio.customCtrl.lvpred_timeout := slvpredctl(8, 4)
477
478  //  smblockctl: memory block configurations
479  //  +------------------------------+---+----+----+-----+--------+
480  //  |XLEN-1                       8| 7 | 6  | 5  |  4  |3      0|
481  //  +------------------------------+---+----+----+-----+--------+
482  //  |           Reserved           | O | CE | SP | LVC |   Th   |
483  //  +------------------------------+---+----+----+-----+--------+
484  //  Description:
485  //  Bit 3-0   : Store buffer flush threshold (Th).
486  //  Bit 4     : Enable load violation check after reset (LVC).
487  //  Bit 5     : Enable soft-prefetch after reset (SP).
488  //  Bit 6     : Enable cache error after reset (CE).
489  //  Bit 7     : Enable uncache write outstanding (O).
490  //  Others    : Reserved.
491
492  val smblockctl_init_val =
493    (0xf & StoreBufferThreshold) |
494    (EnableLdVioCheckAfterReset.toInt << 4) |
495    (EnableSoftPrefetchAfterReset.toInt << 5) |
496    (EnableCacheErrorAfterReset.toInt << 6) |
497    (EnableUncacheWriteOutstanding.toInt << 7)
498  val smblockctl = RegInit(UInt(XLEN.W), smblockctl_init_val.U)
499  csrio.customCtrl.sbuffer_threshold := smblockctl(3, 0)
500  // bits 4: enable load load violation check
501  csrio.customCtrl.ldld_vio_check_enable := smblockctl(4)
502  csrio.customCtrl.soft_prefetch_enable := smblockctl(5)
503  csrio.customCtrl.cache_error_enable := smblockctl(6)
504  csrio.customCtrl.uncache_write_outstanding_enable := smblockctl(7)
505
506  println("CSR smblockctl init value:")
507  println("  Store buffer replace threshold: " + StoreBufferThreshold)
508  println("  Enable ld-ld vio check after reset: " + EnableLdVioCheckAfterReset)
509  println("  Enable soft prefetch after reset: " + EnableSoftPrefetchAfterReset)
510  println("  Enable cache error after reset: " + EnableCacheErrorAfterReset)
511  println("  Enable uncache write outstanding: " + EnableUncacheWriteOutstanding)
512
513  val srnctl = RegInit(UInt(XLEN.W), "h7".U)
514  csrio.customCtrl.fusion_enable := srnctl(0)
515  csrio.customCtrl.svinval_enable := srnctl(1)
516  csrio.customCtrl.wfi_enable := srnctl(2)
517
518  val tlbBundle = Wire(new TlbCsrBundle)
519  tlbBundle.satp.apply(satp)
520
521  csrio.tlb := tlbBundle
522
523  // User-Level CSRs
524  val uepc = Reg(UInt(XLEN.W))
525
526  // fcsr
527  class FcsrStruct extends Bundle {
528    val reserved = UInt((XLEN-3-5).W)
529    val frm = UInt(3.W)
530    val fflags = UInt(5.W)
531    assert(this.getWidth == XLEN)
532  }
533  val fcsr = RegInit(0.U(XLEN.W))
534  // set mstatus->sd and mstatus->fs when true
535  val csrw_dirty_fp_state = WireInit(false.B)
536
537  def frm_wfn(wdata: UInt): UInt = {
538    val fcsrOld = WireInit(fcsr.asTypeOf(new FcsrStruct))
539    csrw_dirty_fp_state := true.B
540    fcsrOld.frm := wdata(2,0)
541    fcsrOld.asUInt
542  }
543  def frm_rfn(rdata: UInt): UInt = rdata(7,5)
544
545  def fflags_wfn(update: Boolean)(wdata: UInt): UInt = {
546    val fcsrOld = fcsr.asTypeOf(new FcsrStruct)
547    val fcsrNew = WireInit(fcsrOld)
548    if (update) {
549      fcsrNew.fflags := wdata(4,0) | fcsrOld.fflags
550    } else {
551      fcsrNew.fflags := wdata(4,0)
552    }
553    fcsrNew.asUInt
554  }
555  def fflags_rfn(rdata:UInt): UInt = rdata(4,0)
556
557  def fcsr_wfn(wdata: UInt): UInt = {
558    val fcsrOld = WireInit(fcsr.asTypeOf(new FcsrStruct))
559    csrw_dirty_fp_state := true.B
560    Cat(fcsrOld.reserved, wdata.asTypeOf(fcsrOld).frm, wdata.asTypeOf(fcsrOld).fflags)
561  }
562
563  val fcsrMapping = Map(
564    MaskedRegMap(Fflags, fcsr, wfn = fflags_wfn(update = false), rfn = fflags_rfn),
565    MaskedRegMap(Frm, fcsr, wfn = frm_wfn, rfn = frm_rfn),
566    MaskedRegMap(Fcsr, fcsr, wfn = fcsr_wfn)
567  )
568
569  // Vector extension CSRs
570  val vstart = RegInit(0.U(XLEN.W))
571  val vcsr = RegInit(0.U(XLEN.W))
572  val vl = Reg(UInt(XLEN.W))
573  val vtype = Reg(UInt(XLEN.W))
574  val vlenb = RegInit((VLEN / 8).U(XLEN.W))
575
576  // set mstatus->sd and mstatus->vs when true
577  val csrw_dirty_vs_state = WireInit(false.B)
578
579  // vcsr is mapped to vxrm and vxsat
580  class VcsrStruct extends Bundle {
581    val reserved = UInt((XLEN-3).W)
582    val vxrm = UInt(2.W)
583    val vxsat = UInt(1.W)
584    assert(this.getWidth == XLEN)
585  }
586
587  def vxrm_wfn(wdata: UInt): UInt = {
588    val vcsrOld = WireInit(vcsr.asTypeOf(new VcsrStruct))
589    csrw_dirty_vs_state := true.B
590    vcsrOld.vxrm := wdata(1,0)
591    vcsrOld.asUInt
592  }
593  def vxrm_rfn(rdata: UInt): UInt = rdata(2,1)
594
595  def vxsat_wfn(update: Boolean)(wdata: UInt): UInt = {
596    val vcsrOld = WireInit(vcsr.asTypeOf(new VcsrStruct))
597    val vcsrNew = WireInit(vcsrOld)
598    csrw_dirty_vs_state := true.B
599    if (update) {
600      vcsrNew.vxsat := wdata(0) | vcsrOld.vxsat
601    } else {
602      vcsrNew.vxsat := wdata(0)
603    }
604    vcsrNew.asUInt
605  }
606  def vxsat_rfn(rdata: UInt): UInt = rdata(0)
607
608  def vcsr_wfn(wdata: UInt): UInt = {
609    val vcsrOld = WireInit(vcsr.asTypeOf(new VcsrStruct))
610    csrw_dirty_vs_state := true.B
611    vcsrOld.vxrm := wdata.asTypeOf(vcsrOld).vxrm
612    vcsrOld.vxsat := wdata.asTypeOf(vcsrOld).vxsat
613    vcsrOld.asUInt
614  }
615
616  val vcsrMapping = Map(
617    MaskedRegMap(Vstart, vstart),
618    MaskedRegMap(Vxrm, vcsr, wfn = vxrm_wfn, rfn = vxrm_rfn),
619    MaskedRegMap(Vxsat, vcsr, wfn = vxsat_wfn(false), rfn = vxsat_rfn),
620    MaskedRegMap(Vcsr, vcsr, wfn = vcsr_wfn),
621    MaskedRegMap(Vl, vl),
622    MaskedRegMap(Vtype, vtype),
623    MaskedRegMap(Vlenb, vlenb),
624  )
625
626  // Hart Priviledge Mode
627  val priviledgeMode = RegInit(UInt(2.W), ModeM)
628
629  //val perfEventscounten = List.fill(nrPerfCnts)(RegInit(false(Bool())))
630  // Perf Counter
631  val nrPerfCnts = 29  // 3...31
632  val priviledgeModeOH = UIntToOH(priviledgeMode)
633  val perfEventscounten = RegInit(0.U.asTypeOf(Vec(nrPerfCnts, Bool())))
634  val perfCnts   = List.fill(nrPerfCnts)(RegInit(0.U(XLEN.W)))
635  val perfEvents = List.fill(8)(RegInit("h0000000000".U(XLEN.W))) ++
636                   List.fill(8)(RegInit("h4010040100".U(XLEN.W))) ++
637                   List.fill(8)(RegInit("h8020080200".U(XLEN.W))) ++
638                   List.fill(5)(RegInit("hc0300c0300".U(XLEN.W)))
639  for (i <-0 until nrPerfCnts) {
640    perfEventscounten(i) := (perfEvents(i)(63,60) & priviledgeModeOH).orR
641  }
642
643  val hpmEvents = Wire(Vec(numPCntHc * coreParams.L2NBanks, new PerfEvent))
644  for (i <- 0 until numPCntHc * coreParams.L2NBanks) {
645    hpmEvents(i) := csrio.perf.perfEventsHc(i)
646  }
647
648  // print perfEvents
649  val allPerfEvents = hpmEvents.map(x => (s"Hc", x.value))
650  if (printEventCoding) {
651    for (((name, inc), i) <- allPerfEvents.zipWithIndex) {
652      println("CSR perfEvents Set", name, inc, i)
653    }
654  }
655
656  val csrevents = perfEvents.slice(24, 29)
657  val hpm_hc = HPerfMonitor(csrevents, hpmEvents)
658  val mcountinhibit = RegInit(0.U(XLEN.W))
659  val mcycle = RegInit(0.U(XLEN.W))
660  mcycle := mcycle + 1.U
661  val minstret = RegInit(0.U(XLEN.W))
662  val perf_events = csrio.perf.perfEventsFrontend ++
663                    csrio.perf.perfEventsCtrl ++
664                    csrio.perf.perfEventsLsu ++
665                    hpm_hc.getPerf
666  minstret := minstret + RegNext(csrio.perf.retiredInstr)
667  for(i <- 0 until 29){
668    perfCnts(i) := Mux(mcountinhibit(i+3) | !perfEventscounten(i), perfCnts(i), perfCnts(i) + perf_events(i).value)
669  }
670
671  // CSR reg map
672  val basicPrivMapping = Map(
673
674    // Unprivileged Floating-Point CSRs
675    // Has been mapped above
676
677    // Unprivileged Counter/Timers
678    MaskedRegMap(Cycle, mcycle),
679    // We don't support read time CSR.
680    // MaskedRegMap(Time, mtime),
681    MaskedRegMap(Instret, minstret),
682
683    //--- Supervisor Trap Setup ---
684    MaskedRegMap(Sstatus, mstatus, sstatusWmask, mstatusUpdateSideEffect, sstatusRmask),
685    // MaskedRegMap(Sedeleg, Sedeleg),
686    // MaskedRegMap(Sideleg, Sideleg),
687    MaskedRegMap(Sie, mie, sieMask, MaskedRegMap.NoSideEffect, sieMask),
688    MaskedRegMap(Stvec, stvec, stvecMask, MaskedRegMap.NoSideEffect, stvecMask),
689    MaskedRegMap(Scounteren, scounteren),
690
691    //--- Supervisor Trap Handling ---
692    MaskedRegMap(Sscratch, sscratch),
693    MaskedRegMap(Sepc, sepc, sepcMask, MaskedRegMap.NoSideEffect, sepcMask),
694    MaskedRegMap(Scause, scause),
695    MaskedRegMap(Stval, stval),
696    MaskedRegMap(Sip, mip.asUInt, sipWMask, MaskedRegMap.Unwritable, sipMask),
697
698    //--- Supervisor Protection and Translation ---
699    MaskedRegMap(Satp, satp, satpMask, MaskedRegMap.NoSideEffect, satpMask),
700
701    //--- Supervisor Custom Read/Write Registers
702    MaskedRegMap(Sbpctl, sbpctl),
703    MaskedRegMap(Spfctl, spfctl),
704    MaskedRegMap(Sfetchctl, sfetchctl),
705    MaskedRegMap(Sdsid, sdsid),
706    MaskedRegMap(Slvpredctl, slvpredctl),
707    MaskedRegMap(Smblockctl, smblockctl),
708    MaskedRegMap(Srnctl, srnctl),
709
710    //--- Machine Information Registers ---
711    MaskedRegMap(Mvendorid, mvendorid, 0.U(XLEN.W), MaskedRegMap.Unwritable),
712    MaskedRegMap(Marchid, marchid, 0.U(XLEN.W), MaskedRegMap.Unwritable),
713    MaskedRegMap(Mimpid, mimpid, 0.U(XLEN.W), MaskedRegMap.Unwritable),
714    MaskedRegMap(Mhartid, mhartid, 0.U(XLEN.W), MaskedRegMap.Unwritable),
715    MaskedRegMap(Mconfigptr, mconfigptr, 0.U(XLEN.W), MaskedRegMap.Unwritable),
716
717    //--- Machine Trap Setup ---
718    MaskedRegMap(Mstatus, mstatus, mstatusWMask, mstatusUpdateSideEffect),
719    MaskedRegMap(Misa, misa, 0.U, MaskedRegMap.Unwritable), // now whole misa is unchangeable
720    MaskedRegMap(Medeleg, medeleg, "hb3ff".U(XLEN.W)),
721    MaskedRegMap(Mideleg, mideleg, "h222".U(XLEN.W)),
722    MaskedRegMap(Mie, mie, "haaa".U(XLEN.W)),
723    MaskedRegMap(Mtvec, mtvec, mtvecMask, MaskedRegMap.NoSideEffect, mtvecMask),
724    MaskedRegMap(Mcounteren, mcounteren),
725
726    //--- Machine Trap Handling ---
727    MaskedRegMap(Mscratch, mscratch),
728    MaskedRegMap(Mepc, mepc, mepcMask, MaskedRegMap.NoSideEffect, mepcMask),
729    MaskedRegMap(Mcause, mcause),
730    MaskedRegMap(Mtval, mtval),
731    MaskedRegMap(Mip, mip.asUInt, 0.U(XLEN.W), MaskedRegMap.Unwritable),
732
733    //--- Trigger ---
734    MaskedRegMap(Tselect, tselectPhy, WritableMask, WriteTselect),
735    // Todo: support chain length = 2
736    MaskedRegMap(Tdata1, tdata1RegVec(tselectPhy),
737      WritableMask,
738      x => Tdata1Bundle.Write(x, tdata1RegVec(tselectPhy), newTriggerChainIsLegal, debug_mode = debugMode),
739      WritableMask,
740      x => Tdata1Bundle.Read(x)),
741    MaskedRegMap(Tdata2, tdata2RegVec(tselectPhy)),
742    MaskedRegMap(Tinfo, tinfo, 0.U(XLEN.W), MaskedRegMap.Unwritable),
743
744    //--- Debug Mode ---
745    MaskedRegMap(Dcsr, dcsr, dcsrMask, dcsrUpdateSideEffect),
746    MaskedRegMap(Dpc, dpc),
747    MaskedRegMap(Dscratch0, dscratch0),
748    MaskedRegMap(Dscratch1, dscratch1),
749    MaskedRegMap(Mcountinhibit, mcountinhibit),
750    MaskedRegMap(Mcycle, mcycle),
751    MaskedRegMap(Minstret, minstret),
752  )
753
754  val perfCntMapping = (0 until 29).map(i => {Map(
755    MaskedRegMap(addr = Mhpmevent3 +i,
756                 reg  = perfEvents(i),
757                 wmask = "hf87fff3fcff3fcff".U(XLEN.W)),
758    MaskedRegMap(addr = Mhpmcounter3 +i,
759                 reg = perfCnts(i)),
760    MaskedRegMap(addr = Hpmcounter3 + i,
761                 reg  = perfCnts(i))
762  )}).fold(Map())((a,b) => a ++ b)
763  // TODO: mechanism should be implemented later
764  // val MhpmcounterStart = Mhpmcounter3
765  // val MhpmeventStart   = Mhpmevent3
766  // for (i <- 0 until nrPerfCnts) {
767  //   perfCntMapping += MaskedRegMap(MhpmcounterStart + i, perfCnts(i))
768  //   perfCntMapping += MaskedRegMap(MhpmeventStart + i, perfEvents(i))
769  // }
770
771  val cacheopRegs = CacheInstrucion.CacheInsRegisterList.map{case (name, attribute) => {
772    name -> RegInit(0.U(attribute("width").toInt.W))
773  }}
774  val cacheopMapping = CacheInstrucion.CacheInsRegisterList.map{case (name, attribute) => {
775    MaskedRegMap(
776      Scachebase + attribute("offset").toInt,
777      cacheopRegs(name)
778    )
779  }}
780
781  val mapping = basicPrivMapping ++
782                perfCntMapping ++
783                pmpMapping ++
784                pmaMapping ++
785                (if (HasFPU) fcsrMapping else Nil) ++
786                (if (HasVPU) vcsrMapping else Nil) ++
787                (if (HasCustomCSRCacheOp) cacheopMapping else Nil)
788
789
790  println("XiangShan CSR Lists")
791
792  for (addr <- mapping.keys.toSeq.sorted) {
793    println(f"$addr%#03x ${mapping(addr)._1}")
794  }
795
796  val addr = src2(11, 0)
797  val csri = ZeroExt(src2(16, 12), XLEN)
798  val rdata = Wire(UInt(XLEN.W))
799  val wdata = LookupTree(func, List(
800    CSROpType.wrt  -> src1,
801    CSROpType.set  -> (rdata | src1),
802    CSROpType.clr  -> (rdata & (~src1).asUInt),
803    CSROpType.wrti -> csri,
804    CSROpType.seti -> (rdata | csri),
805    CSROpType.clri -> (rdata & (~csri).asUInt)
806  ))
807
808  val addrInPerfCnt = (addr >= Mcycle.U) && (addr <= Mhpmcounter31.U) ||
809    (addr >= Mcountinhibit.U) && (addr <= Mhpmevent31.U) ||
810    (addr >= Cycle.U) && (addr <= Hpmcounter31.U) ||
811    addr === Mip.U
812  csrio.isPerfCnt := addrInPerfCnt && valid && func =/= CSROpType.jmp
813
814  // satp wen check
815  val satpLegalMode = (wdata.asTypeOf(new SatpStruct).mode===0.U) || (wdata.asTypeOf(new SatpStruct).mode===8.U)
816
817  // csr access check, special case
818  val tvmNotPermit = (priviledgeMode === ModeS && mstatusStruct.tvm.asBool)
819  val accessPermitted = !(addr === Satp.U && tvmNotPermit)
820  csrio.disableSfence := tvmNotPermit || priviledgeMode === ModeU
821
822  // general CSR wen check
823  val wen = valid && CSROpType.needAccess(func) && (addr=/=Satp.U || satpLegalMode)
824  val dcsrPermitted = dcsrPermissionCheck(addr, false.B, debugMode)
825  val triggerPermitted = triggerPermissionCheck(addr, true.B, debugMode) // todo dmode
826  val modePermitted = csrAccessPermissionCheck(addr, false.B, priviledgeMode) && dcsrPermitted && triggerPermitted
827  val perfcntPermitted = perfcntPermissionCheck(addr, priviledgeMode, mcounteren, scounteren)
828  val permitted = Mux(addrInPerfCnt, perfcntPermitted, modePermitted) && accessPermitted
829
830  MaskedRegMap.generate(mapping, addr, rdata, wen && permitted, wdata)
831  io.out.bits.res.data := rdata
832  io.out.bits.ctrl.flushPipe.get := flushPipe
833  connect0LatencyCtrlSingal
834
835  // send distribute csr a w signal
836  csrio.customCtrl.distribute_csr.w.valid := wen && permitted
837  csrio.customCtrl.distribute_csr.w.bits.data := wdata
838  csrio.customCtrl.distribute_csr.w.bits.addr := addr
839
840  // Fix Mip/Sip write
841  val fixMapping = Map(
842    MaskedRegMap(Mip, mipReg.asUInt, mipFixMask),
843    MaskedRegMap(Sip, mipReg.asUInt, sipWMask, MaskedRegMap.NoSideEffect, sipMask)
844  )
845  val rdataFix = Wire(UInt(XLEN.W))
846  val wdataFix = LookupTree(func, List(
847    CSROpType.wrt  -> src1,
848    CSROpType.set  -> (rdataFix | src1),
849    CSROpType.clr  -> (rdataFix & (~src1).asUInt),
850    CSROpType.wrti -> csri,
851    CSROpType.seti -> (rdataFix | csri),
852    CSROpType.clri -> (rdataFix & (~csri).asUInt)
853  ))
854  MaskedRegMap.generate(fixMapping, addr, rdataFix, wen && permitted, wdataFix)
855
856  when (RegNext(csrio.fpu.fflags.valid)) {
857    fcsr := fflags_wfn(update = true)(RegEnable(csrio.fpu.fflags.bits, csrio.fpu.fflags.valid))
858  }
859  when(RegNext(csrio.vpu.set_vxsat.valid)) {
860    vcsr := vxsat_wfn(update = true)(RegEnable(csrio.vpu.set_vxsat.bits, csrio.vpu.set_vxsat.valid))
861  }
862  // set fs and sd in mstatus
863  when (csrw_dirty_fp_state || RegNext(csrio.fpu.dirty_fs)) {
864    val mstatusNew = WireInit(mstatus.asTypeOf(new MstatusStruct))
865    mstatusNew.fs := "b11".U
866    mstatusNew.sd := true.B
867    mstatus := mstatusNew.asUInt
868  }
869  csrio.fpu.frm := fcsr.asTypeOf(new FcsrStruct).frm
870
871  when (RegNext(csrio.vpu.set_vstart.valid)) {
872    vstart := RegEnable(csrio.vpu.set_vstart.bits, csrio.vpu.set_vstart.valid)
873  }
874  when (RegNext(csrio.vpu.set_vtype.valid)) {
875    vtype := RegEnable(csrio.vpu.set_vtype.bits, csrio.vpu.set_vtype.valid)
876  }
877  when (RegNext(csrio.vpu.set_vl.valid)) {
878    vl := RegEnable(csrio.vpu.set_vl.bits, csrio.vpu.set_vl.valid)
879  }
880  // set vs and sd in mstatus
881  when(csrw_dirty_vs_state || RegNext(csrio.vpu.dirty_vs)) {
882    val mstatusNew = WireInit(mstatus.asTypeOf(new MstatusStruct))
883    mstatusNew.vs := ContextStatus.dirty
884    mstatusNew.sd := true.B
885    mstatus := mstatusNew.asUInt
886  }
887
888  csrio.vpu.vstart := vstart
889  csrio.vpu.vxrm := vcsr.asTypeOf(new VcsrStruct).vxrm
890  csrio.vpu.vxsat := vcsr.asTypeOf(new VcsrStruct).vxsat
891  csrio.vpu.vcsr := vcsr
892  csrio.vpu.vtype := vtype
893  csrio.vpu.vl := vl
894  csrio.vpu.vlenb := vlenb
895  csrio.vpu.vill := vtype.asTypeOf(new VtypeStruct).vill
896  csrio.vpu.vma := vtype.asTypeOf(new VtypeStruct).vma
897  csrio.vpu.vta := vtype.asTypeOf(new VtypeStruct).vta
898  csrio.vpu.vsew := vtype.asTypeOf(new VtypeStruct).vsew
899  csrio.vpu.vlmul := vtype.asTypeOf(new VtypeStruct).vlmul
900
901  // Trigger Ctrl
902  val triggerEnableVec = tdata1RegVec.map { tdata1 =>
903    val mcontrolData = tdata1.asTypeOf(new Tdata1Bundle).data.asTypeOf(new MControlData)
904    tdata1.asTypeOf(new Tdata1Bundle).type_.asUInt === TrigTypeEnum.MCONTROL && (
905      mcontrolData.m && priviledgeMode === ModeM ||
906        mcontrolData.s && priviledgeMode === ModeS ||
907        mcontrolData.u && priviledgeMode === ModeU)
908  }
909  val fetchTriggerEnableVec = triggerEnableVec.zip(tdata1WireVec).map {
910    case (tEnable, tdata1) => tEnable && tdata1.asTypeOf(new Tdata1Bundle).data.asTypeOf(new MControlData).isFetchTrigger
911  }
912  val memAccTriggerEnableVec = triggerEnableVec.zip(tdata1WireVec).map {
913    case (tEnable, tdata1) => tEnable && tdata1.asTypeOf(new Tdata1Bundle).data.asTypeOf(new MControlData).isMemAccTrigger
914  }
915  csrio.customCtrl.frontend_trigger.tEnableVec := fetchTriggerEnableVec
916  csrio.customCtrl.mem_trigger.tEnableVec := memAccTriggerEnableVec
917
918  val tdata1Update = wen && (addr === Tdata1.U)
919  val tdata2Update = wen && (addr === Tdata2.U)
920  val triggerUpdate = wen && (addr === Tdata1.U || addr === Tdata2.U)
921  val frontendTriggerUpdate =
922    tdata1Update && wdata.asTypeOf(new Tdata1Bundle).type_.asUInt === TrigTypeEnum.MCONTROL &&
923      wdata.asTypeOf(new Tdata1Bundle).data.asTypeOf(new MControlData).isFetchTrigger ||
924      tdata1Selected.data.asTypeOf(new MControlData).isFetchTrigger && triggerUpdate
925  val memTriggerUpdate =
926    tdata1Update && wdata.asTypeOf(new Tdata1Bundle).type_.asUInt === TrigTypeEnum.MCONTROL &&
927      wdata.asTypeOf(new Tdata1Bundle).data.asTypeOf(new MControlData).isMemAccTrigger ||
928      tdata1Selected.data.asTypeOf(new MControlData).isMemAccTrigger && triggerUpdate
929
930  csrio.customCtrl.frontend_trigger.tUpdate.valid := RegNext(RegNext(frontendTriggerUpdate))
931  csrio.customCtrl.mem_trigger.tUpdate.valid := RegNext(RegNext(memTriggerUpdate))
932  XSDebug(triggerEnableVec.reduce(_ || _), p"Debug Mode: At least 1 trigger is enabled," +
933    p"trigger enable is ${Binary(triggerEnableVec.asUInt)}\n")
934
935  // CSR inst decode
936  val isEbreak = addr === privEbreak && func === CSROpType.jmp
937  val isEcall  = addr === privEcall  && func === CSROpType.jmp
938  val isMret   = addr === privMret   && func === CSROpType.jmp
939  val isSret   = addr === privSret   && func === CSROpType.jmp
940  val isUret   = addr === privUret   && func === CSROpType.jmp
941  val isDret   = addr === privDret   && func === CSROpType.jmp
942  val isWFI    = func === CSROpType.wfi
943
944  // Illegal priviledged operation list
945  val illegalMret = valid && isMret && priviledgeMode < ModeM
946  val illegalSret = valid && isSret && priviledgeMode < ModeS
947  val illegalSModeSret = valid && isSret && priviledgeMode === ModeS && mstatusStruct.tsr.asBool
948  // When TW=1, then if WFI is executed in any less-privileged mode,
949  // and it does not complete within an implementation-specific, bounded time limit,
950  // the WFI instruction causes an illegal instruction exception.
951  // The time limit may always be 0, in which case WFI always causes
952  // an illegal instruction exception in less-privileged modes when TW=1.
953  val illegalWFI = valid && isWFI && priviledgeMode < ModeM && mstatusStruct.tw === 1.U
954
955  // Illegal priviledged instruction check
956  val isIllegalAddr = valid && CSROpType.needAccess(func) && MaskedRegMap.isIllegalAddr(mapping, addr)
957  val isIllegalAccess = wen && !permitted
958  val isIllegalPrivOp = illegalMret || illegalSret || illegalSModeSret || illegalWFI
959
960  // expose several csr bits for tlb
961  tlbBundle.priv.mxr   := mstatusStruct.mxr.asBool
962  tlbBundle.priv.sum   := mstatusStruct.sum.asBool
963  tlbBundle.priv.imode := priviledgeMode
964  tlbBundle.priv.dmode := Mux((debugMode && dcsr.asTypeOf(new DcsrStruct).mprven || !debugMode) && mstatusStruct.mprv.asBool, mstatusStruct.mpp, priviledgeMode)
965
966  // Branch control
967  val retTarget = WireInit(0.U)
968  val resetSatp = addr === Satp.U && wen // write to satp will cause the pipeline be flushed
969
970  val w_fcsr_change_rm = wen && addr === Fcsr.U && wdata(7, 5) =/= fcsr(7, 5)
971  val w_frm_change_rm = wen && addr === Frm.U && wdata(2, 0) =/= fcsr(7, 5)
972  val frm_change = w_fcsr_change_rm || w_frm_change_rm
973  val isXRet = valid && func === CSROpType.jmp && !isEcall && !isEbreak
974  flushPipe := resetSatp || frm_change || isXRet || frontendTriggerUpdate
975
976
977  private val illegalRetTarget = WireInit(false.B)
978
979  // Mux tree for wires
980  when(valid) {
981    when(isDret) {
982      retTarget := dpc(VAddrBits - 1, 0)
983    }.elsewhen(isMret && !illegalMret) {
984      retTarget := mepc(VAddrBits - 1, 0)
985    }.elsewhen(isSret && !illegalSret && !illegalSModeSret) {
986      retTarget := sepc(VAddrBits - 1, 0)
987    }.elsewhen(isUret) {
988      retTarget := uepc(VAddrBits - 1, 0)
989    }.otherwise {
990      illegalRetTarget := true.B
991    }
992  }.otherwise {
993    illegalRetTarget := true.B // when illegalRetTarget setted, retTarget should never be used
994  }
995
996  // Mux tree for regs
997  when(valid) {
998    when(isDret) {
999      val mstatusNew = WireInit(mstatus.asTypeOf(new MstatusStruct))
1000      val debugModeNew = WireInit(debugMode)
1001      when(dcsr.asTypeOf(new DcsrStruct).prv =/= ModeM) {
1002        mstatusNew.mprv := 0.U
1003      } //If the new privilege mode is less privileged than M-mode, MPRV in mstatus is cleared.
1004      mstatus := mstatusNew.asUInt
1005      priviledgeMode := dcsr.asTypeOf(new DcsrStruct).prv
1006      debugModeNew := false.B
1007      debugIntrEnable := true.B
1008      debugMode := debugModeNew
1009      XSDebug("Debug Mode: Dret executed, returning to %x.", retTarget)
1010    }.elsewhen(isMret && !illegalMret) {
1011      val mstatusOld = WireInit(mstatus.asTypeOf(new MstatusStruct))
1012      val mstatusNew = WireInit(mstatus.asTypeOf(new MstatusStruct))
1013      mstatusNew.ie.m := mstatusOld.pie.m
1014      priviledgeMode := mstatusOld.mpp
1015      mstatusNew.pie.m := true.B
1016      mstatusNew.mpp := ModeU
1017      when(mstatusOld.mpp =/= ModeM) {
1018        mstatusNew.mprv := 0.U
1019      }
1020      mstatus := mstatusNew.asUInt
1021    }.elsewhen(isSret && !illegalSret && !illegalSModeSret) {
1022      val mstatusOld = WireInit(mstatus.asTypeOf(new MstatusStruct))
1023      val mstatusNew = WireInit(mstatus.asTypeOf(new MstatusStruct))
1024      mstatusNew.ie.s := mstatusOld.pie.s
1025      priviledgeMode := Cat(0.U(1.W), mstatusOld.spp)
1026      mstatusNew.pie.s := true.B
1027      mstatusNew.spp := ModeU
1028      mstatus := mstatusNew.asUInt
1029      when(mstatusOld.spp =/= ModeM) {
1030        mstatusNew.mprv := 0.U
1031      }
1032    }.elsewhen(isUret) {
1033      val mstatusOld = WireInit(mstatus.asTypeOf(new MstatusStruct))
1034      val mstatusNew = WireInit(mstatus.asTypeOf(new MstatusStruct))
1035      // mstatusNew.mpp.m := ModeU //TODO: add mode U
1036      mstatusNew.ie.u := mstatusOld.pie.u
1037      priviledgeMode := ModeU
1038      mstatusNew.pie.u := true.B
1039      mstatus := mstatusNew.asUInt
1040    }
1041  }
1042
1043  io.in.ready := true.B
1044  io.out.valid := valid
1045
1046  // In this situation, hart will enter debug mode instead of handling a breakpoint exception simply.
1047  // Ebreak block instructions backwards, so it's ok to not keep extra info to distinguish between breakpoint
1048  // exception and enter-debug-mode exception.
1049  val ebreakEnterDebugMode =
1050    (priviledgeMode === ModeM && dcsrData.ebreakm) ||
1051    (priviledgeMode === ModeS && dcsrData.ebreaks) ||
1052    (priviledgeMode === ModeU && dcsrData.ebreaku)
1053
1054  // raise a debug exception waiting to enter debug mode, instead of a breakpoint exception
1055  val raiseDebugException = !debugMode && isEbreak && ebreakEnterDebugMode
1056
1057  val csrExceptionVec = WireInit(0.U.asTypeOf(ExceptionVec()))
1058  csrExceptionVec(breakPoint) := io.in.valid && isEbreak
1059  csrExceptionVec(ecallM) := priviledgeMode === ModeM && io.in.valid && isEcall
1060  csrExceptionVec(ecallS) := priviledgeMode === ModeS && io.in.valid && isEcall
1061  csrExceptionVec(ecallU) := priviledgeMode === ModeU && io.in.valid && isEcall
1062  // Trigger an illegal instr exception when:
1063  // * unimplemented csr is being read/written
1064  // * csr access is illegal
1065  csrExceptionVec(illegalInstr) := isIllegalAddr || isIllegalAccess || isIllegalPrivOp
1066  io.out.bits.ctrl.exceptionVec.get := csrExceptionVec
1067
1068  XSDebug(io.in.valid, s"Debug Mode: an Ebreak is executed, ebreak cause enter-debug-mode exception ? ${raiseDebugException}\n")
1069
1070  /**
1071    * Exception and Intr
1072    */
1073  val ideleg =  (mideleg & mip.asUInt)
1074  def priviledgedEnableDetect(x: Bool): Bool = Mux(x, ((priviledgeMode === ModeS) && mstatusStruct.ie.s) || (priviledgeMode < ModeS),
1075    ((priviledgeMode === ModeM) && mstatusStruct.ie.m) || (priviledgeMode < ModeM))
1076
1077  val debugIntr = csrio.externalInterrupt.debug & debugIntrEnable
1078  XSDebug(debugIntr, "Debug Mode: debug interrupt is asserted and valid!")
1079  // send interrupt information to ROB
1080  val intrVecEnable = Wire(Vec(12, Bool()))
1081  val disableInterrupt = debugMode || (dcsrData.step && !dcsrData.stepie)
1082  intrVecEnable.zip(ideleg.asBools).map{case(x,y) => x := priviledgedEnableDetect(y) && !disableInterrupt}
1083  val intrVec = Cat(debugIntr && !debugMode, (mie(11,0) & mip.asUInt & intrVecEnable.asUInt))
1084  val intrBitSet = intrVec.orR
1085  csrio.interrupt := intrBitSet
1086  // Page 45 in RISC-V Privileged Specification
1087  // The WFI instruction can also be executed when interrupts are disabled. The operation of WFI
1088  // must be unaffected by the global interrupt bits in mstatus (MIE and SIE) and the delegation
1089  // register mideleg, but should honor the individual interrupt enables (e.g, MTIE).
1090  csrio.wfi_event := debugIntr || (mie(11, 0) & mip.asUInt).orR
1091  mipWire.t.m := csrio.externalInterrupt.mtip
1092  mipWire.s.m := csrio.externalInterrupt.msip
1093  mipWire.e.m := csrio.externalInterrupt.meip
1094  mipWire.e.s := csrio.externalInterrupt.seip
1095
1096  // interrupts
1097  val intrNO = IntPriority.foldRight(0.U)((i: Int, sum: UInt) => Mux(intrVec(i), i.U, sum))
1098  val hasIntr = csrio.exception.valid && csrio.exception.bits.isInterrupt
1099  val ivmEnable = tlbBundle.priv.imode < ModeM && satp.asTypeOf(new SatpStruct).mode === 8.U
1100  val iexceptionPC = Mux(ivmEnable, SignExt(csrio.exception.bits.pc, XLEN), csrio.exception.bits.pc)
1101  val dvmEnable = tlbBundle.priv.dmode < ModeM && satp.asTypeOf(new SatpStruct).mode === 8.U
1102  val dexceptionPC = Mux(dvmEnable, SignExt(csrio.exception.bits.pc, XLEN), csrio.exception.bits.pc)
1103  XSDebug(hasIntr, "interrupt: pc=0x%x, %d\n", dexceptionPC, intrNO)
1104  val hasDebugIntr = intrNO === IRQ_DEBUG.U && hasIntr
1105
1106  // exceptions from rob need to handle
1107  val exceptionVecFromRob = csrio.exception.bits.exceptionVec
1108  val hasException = csrio.exception.valid && !csrio.exception.bits.isInterrupt
1109  val hasInstrPageFault = hasException && exceptionVecFromRob(instrPageFault)
1110  val hasLoadPageFault = hasException && exceptionVecFromRob(loadPageFault)
1111  val hasStorePageFault = hasException && exceptionVecFromRob(storePageFault)
1112  val hasStoreAddrMisalign = hasException && exceptionVecFromRob(storeAddrMisaligned)
1113  val hasLoadAddrMisalign = hasException && exceptionVecFromRob(loadAddrMisaligned)
1114  val hasInstrAccessFault = hasException && exceptionVecFromRob(instrAccessFault)
1115  val hasLoadAccessFault = hasException && exceptionVecFromRob(loadAccessFault)
1116  val hasStoreAccessFault = hasException && exceptionVecFromRob(storeAccessFault)
1117  val hasBreakPoint = hasException && exceptionVecFromRob(breakPoint)
1118  val hasSingleStep = hasException && csrio.exception.bits.singleStep
1119  val hasTriggerFire = hasException && csrio.exception.bits.trigger.canFire
1120  val triggerFrontendHitVec = csrio.exception.bits.trigger.frontendHit
1121  val triggerMemHitVec = csrio.exception.bits.trigger.backendHit
1122  val triggerHitVec = triggerFrontendHitVec | triggerMemHitVec // Todo: update mcontrol.hit
1123  val triggerCanFireVec = csrio.exception.bits.trigger.frontendCanFire | csrio.exception.bits.trigger.backendCanFire
1124  // More than one triggers can hit at the same time, but only fire one
1125  // We select the first hit trigger to fire
1126  val triggerFireOH = PriorityEncoderOH(triggerCanFireVec)
1127  val triggerFireAction = PriorityMux(triggerFireOH, tdata1WireVec.map(_.getTriggerAction)).asUInt
1128
1129
1130  XSDebug(hasSingleStep, "Debug Mode: single step exception\n")
1131  XSDebug(hasTriggerFire, p"Debug Mode: trigger fire, frontend hit vec ${Binary(csrio.exception.bits.trigger.frontendHit.asUInt)} " +
1132    p"backend hit vec ${Binary(csrio.exception.bits.trigger.backendHit.asUInt)}\n")
1133
1134  val hasExceptionVec = csrio.exception.bits.exceptionVec
1135  val regularExceptionNO = ExceptionNO.priorities.foldRight(0.U)((i: Int, sum: UInt) => Mux(hasExceptionVec(i), i.U, sum))
1136  val exceptionNO = Mux(hasSingleStep || hasTriggerFire, 3.U, regularExceptionNO)
1137  val causeNO = (hasIntr << (XLEN - 1)).asUInt | Mux(hasIntr, intrNO, exceptionNO)
1138
1139
1140  val hasExceptionIntr = csrio.exception.valid
1141
1142  val hasDebugEbreakException = hasBreakPoint && ebreakEnterDebugMode
1143  val hasDebugTriggerException = hasTriggerFire && triggerFireAction === TrigActionEnum.DEBUG_MODE
1144  val hasDebugException = hasDebugEbreakException || hasDebugTriggerException || hasSingleStep
1145  val hasDebugTrap = hasDebugException || hasDebugIntr
1146  val ebreakEnterParkLoop = debugMode && hasExceptionIntr
1147
1148  XSDebug(hasExceptionIntr, "int/exc: pc %x int (%d):%x exc: (%d):%x\n",
1149    dexceptionPC, intrNO, intrVec, exceptionNO, hasExceptionVec.asUInt
1150  )
1151  XSDebug(hasExceptionIntr,
1152    "pc %x mstatus %x mideleg %x medeleg %x mode %x\n",
1153    dexceptionPC,
1154    mstatus,
1155    mideleg,
1156    medeleg,
1157    priviledgeMode
1158  )
1159
1160  // mtval write logic
1161  // Due to timing reasons of memExceptionVAddr, we delay the write of mtval and stval
1162  val memExceptionAddr = SignExt(csrio.memExceptionVAddr, XLEN)
1163  val updateTval = VecInit(Seq(
1164    hasInstrPageFault,
1165    hasLoadPageFault,
1166    hasStorePageFault,
1167    hasInstrAccessFault,
1168    hasLoadAccessFault,
1169    hasStoreAccessFault,
1170    hasLoadAddrMisalign,
1171    hasStoreAddrMisalign
1172  )).asUInt.orR
1173  when (RegNext(RegNext(updateTval))) {
1174      val tval = Mux(
1175        RegNext(RegNext(hasInstrPageFault || hasInstrAccessFault)),
1176        RegNext(RegNext(Mux(
1177          csrio.exception.bits.crossPageIPFFix,
1178          SignExt(csrio.exception.bits.pc + 2.U, XLEN),
1179          iexceptionPC
1180        ))),
1181        memExceptionAddr
1182    )
1183    when (RegNext(priviledgeMode === ModeM)) {
1184      mtval := tval
1185    }.otherwise {
1186      stval := tval
1187    }
1188  }
1189
1190  val debugTrapTarget = Mux(!isEbreak && debugMode, 0x38020808.U, 0x38020800.U) // 0x808 is when an exception occurs in debug mode prog buf exec
1191  val deleg = Mux(hasIntr, mideleg , medeleg)
1192  // val delegS = ((deleg & (1 << (causeNO & 0xf))) != 0) && (priviledgeMode < ModeM);
1193  val delegS = deleg(causeNO(3,0)) && (priviledgeMode < ModeM)
1194  val clearTval = !updateTval || hasIntr
1195
1196  // ctrl block will use theses later for flush
1197  val isXRetFlag = RegInit(false.B)
1198  when (DelayN(io.flush.valid, 5)) {
1199    isXRetFlag := false.B
1200  }.elsewhen (isXRet) {
1201    isXRetFlag := true.B
1202  }
1203  csrio.isXRet := isXRetFlag
1204  private val retTargetReg = RegEnable(retTarget, isXRet && !illegalRetTarget)
1205  private val illegalXret = RegEnable(illegalMret || illegalSret || illegalSModeSret, isXRet)
1206
1207  private val xtvec = Mux(delegS, stvec, mtvec)
1208  private val xtvecBase = xtvec(VAddrBits - 1, 2)
1209  // When MODE=Vectored, all synchronous exceptions into M/S mode
1210  // cause the pc to be set to the address in the BASE field, whereas
1211  // interrupts cause the pc to be set to the address in the BASE field
1212  // plus four times the interrupt cause number.
1213  private val pcFromXtvec = Cat(xtvecBase + Mux(xtvec(0) && hasIntr, causeNO(3, 0), 0.U), 0.U(2.W))
1214
1215  // XRet sends redirect instead of Flush and isXRetFlag is true.B before redirect.valid.
1216  // ROB sends exception at T0 while CSR receives at T2.
1217  // We add a RegNext here and trapTarget is valid at T3.
1218  csrio.trapTarget := RegEnable(
1219    MuxCase(pcFromXtvec, Seq(
1220      (isXRetFlag && !illegalXret) -> retTargetReg,
1221      ((hasDebugTrap && !debugMode) || ebreakEnterParkLoop) -> debugTrapTarget
1222    )),
1223    isXRetFlag || csrio.exception.valid)
1224
1225  when(hasExceptionIntr) {
1226    val mstatusOld = WireInit(mstatus.asTypeOf(new MstatusStruct))
1227    val mstatusNew = WireInit(mstatus.asTypeOf(new MstatusStruct))
1228    val dcsrNew = WireInit(dcsr.asTypeOf(new DcsrStruct))
1229    val debugModeNew = WireInit(debugMode)
1230    when(hasDebugTrap && !debugMode) {
1231      import DcsrStruct._
1232      debugModeNew := true.B
1233      dcsrNew.prv := priviledgeMode
1234      priviledgeMode := ModeM
1235      when(hasDebugIntr) {
1236        dpc := iexceptionPC
1237        dcsrNew.cause := CAUSE_HALTREQ
1238        XSDebug(hasDebugIntr, "Debug Mode: Trap to %x at pc %x\n", debugTrapTarget, dpc)
1239      }.otherwise { // hasDebugException
1240        dpc := iexceptionPC // TODO: check it when hasSingleStep
1241        dcsrNew.cause := MuxCase(0.U, Seq(
1242          hasTriggerFire -> CAUSE_TRIGGER,
1243          hasBreakPoint -> CAUSE_HALTREQ,
1244          hasSingleStep -> CAUSE_STEP
1245        ))
1246      }
1247      dcsr := dcsrNew.asUInt
1248      debugIntrEnable := false.B
1249    }.elsewhen (debugMode) {
1250      //do nothing
1251    }.elsewhen (delegS) {
1252      scause := causeNO
1253      sepc := Mux(hasInstrPageFault || hasInstrAccessFault, iexceptionPC, dexceptionPC)
1254      mstatusNew.spp := priviledgeMode
1255      mstatusNew.pie.s := mstatusOld.ie.s
1256      mstatusNew.ie.s := false.B
1257      priviledgeMode := ModeS
1258      when (clearTval) { stval := 0.U }
1259    }.otherwise {
1260      mcause := causeNO
1261      mepc := Mux(hasInstrPageFault || hasInstrAccessFault, iexceptionPC, dexceptionPC)
1262      mstatusNew.mpp := priviledgeMode
1263      mstatusNew.pie.m := mstatusOld.ie.m
1264      mstatusNew.ie.m := false.B
1265      priviledgeMode := ModeM
1266      when (clearTval) { mtval := 0.U }
1267    }
1268    mstatus := mstatusNew.asUInt
1269    debugMode := debugModeNew
1270  }
1271
1272  // Distributed CSR update req
1273  //
1274  // For now we use it to implement customized cache op
1275  // It can be delayed if necessary
1276
1277  val delayedUpdate0 = DelayN(csrio.distributedUpdate(0), 2)
1278  val delayedUpdate1 = DelayN(csrio.distributedUpdate(1), 2)
1279  val distributedUpdateValid = delayedUpdate0.w.valid || delayedUpdate1.w.valid
1280  val distributedUpdateAddr = Mux(delayedUpdate0.w.valid,
1281    delayedUpdate0.w.bits.addr,
1282    delayedUpdate1.w.bits.addr
1283  )
1284  val distributedUpdateData = Mux(delayedUpdate0.w.valid,
1285    delayedUpdate0.w.bits.data,
1286    delayedUpdate1.w.bits.data
1287  )
1288
1289  assert(!(delayedUpdate0.w.valid && delayedUpdate1.w.valid))
1290
1291  when(distributedUpdateValid){
1292    // cacheopRegs can be distributed updated
1293    CacheInstrucion.CacheInsRegisterList.map{case (name, attribute) => {
1294      when((Scachebase + attribute("offset").toInt).U === distributedUpdateAddr){
1295        cacheopRegs(name) := distributedUpdateData
1296      }
1297    }}
1298  }
1299
1300  // Cache error debug support
1301  if(HasCustomCSRCacheOp){
1302    val cache_error_decoder = Module(new CSRCacheErrorDecoder)
1303    cache_error_decoder.io.encoded_cache_error := cacheopRegs("CACHE_ERROR")
1304  }
1305
1306  // Implicit add reset values for mepc[0] and sepc[0]
1307  // TODO: rewrite mepc and sepc using a struct-like style with the LSB always being 0
1308  when (RegNext(RegNext(reset.asBool) && !reset.asBool)) {
1309    mepc := Cat(mepc(XLEN - 1, 1), 0.U(1.W))
1310    sepc := Cat(sepc(XLEN - 1, 1), 0.U(1.W))
1311  }
1312
1313  def readWithScala(addr: Int): UInt = mapping(addr)._1
1314
1315  val difftestIntrNO = Mux(hasIntr, causeNO, 0.U)
1316
1317  // Always instantiate basic difftest modules.
1318  if (env.AlwaysBasicDiff || env.EnableDifftest) {
1319    val difftest = DifftestModule(new DiffArchEvent, delay = 3, dontCare = true)
1320    difftest.coreid      := csrio.hartId
1321    difftest.valid       := csrio.exception.valid
1322    difftest.interrupt   := Mux(hasIntr, causeNO, 0.U)
1323    difftest.exception   := Mux(hasException, causeNO, 0.U)
1324    difftest.exceptionPC := dexceptionPC
1325    if (env.EnableDifftest) {
1326      difftest.exceptionInst := csrio.exception.bits.instr
1327    }
1328  }
1329
1330  // Always instantiate basic difftest modules.
1331  if (env.AlwaysBasicDiff || env.EnableDifftest) {
1332    val difftest = DifftestModule(new DiffCSRState)
1333    difftest.coreid := csrio.hartId
1334    difftest.priviledgeMode := priviledgeMode
1335    difftest.mstatus := mstatus
1336    difftest.sstatus := mstatus & sstatusRmask
1337    difftest.mepc := mepc
1338    difftest.sepc := sepc
1339    difftest.mtval:= mtval
1340    difftest.stval:= stval
1341    difftest.mtvec := mtvec
1342    difftest.stvec := stvec
1343    difftest.mcause := mcause
1344    difftest.scause := scause
1345    difftest.satp := satp
1346    difftest.mip := mipReg
1347    difftest.mie := mie
1348    difftest.mscratch := mscratch
1349    difftest.sscratch := sscratch
1350    difftest.mideleg := mideleg
1351    difftest.medeleg := medeleg
1352  }
1353
1354  if(env.AlwaysBasicDiff || env.EnableDifftest) {
1355    val difftest = DifftestModule(new DiffDebugMode)
1356    difftest.coreid := csrio.hartId
1357    difftest.debugMode := debugMode
1358    difftest.dcsr := dcsr
1359    difftest.dpc := dpc
1360    difftest.dscratch0 := dscratch0
1361    difftest.dscratch1 := dscratch1
1362  }
1363
1364  if (env.AlwaysBasicDiff || env.EnableDifftest) {
1365    val difftest = DifftestModule(new DiffVecCSRState)
1366    difftest.coreid := csrio.hartId
1367    difftest.vstart := vstart
1368    difftest.vxsat := vcsr.asTypeOf(new VcsrStruct).vxsat
1369    difftest.vxrm := vcsr.asTypeOf(new VcsrStruct).vxrm
1370    difftest.vcsr := vcsr
1371    difftest.vl := vl
1372    difftest.vtype := vtype
1373    difftest.vlenb := vlenb
1374  }
1375}
1376
1377class PFEvent(implicit p: Parameters) extends XSModule with HasCSRConst  {
1378  val io = IO(new Bundle {
1379    val distribute_csr = Flipped(new DistributedCSRIO())
1380    val hpmevent = Output(Vec(29, UInt(XLEN.W)))
1381  })
1382
1383  val w = io.distribute_csr.w
1384
1385  val perfEvents = List.fill(8)(RegInit("h0000000000".U(XLEN.W))) ++
1386                   List.fill(8)(RegInit("h4010040100".U(XLEN.W))) ++
1387                   List.fill(8)(RegInit("h8020080200".U(XLEN.W))) ++
1388                   List.fill(5)(RegInit("hc0300c0300".U(XLEN.W)))
1389
1390  val perfEventMapping = (0 until 29).map(i => {Map(
1391    MaskedRegMap(addr = Mhpmevent3 +i,
1392                 reg  = perfEvents(i),
1393                 wmask = "hf87fff3fcff3fcff".U(XLEN.W))
1394  )}).fold(Map())((a,b) => a ++ b)
1395
1396  val rdata = Wire(UInt(XLEN.W))
1397  MaskedRegMap.generate(perfEventMapping, w.bits.addr, rdata, w.valid, w.bits.data)
1398  for(i <- 0 until 29){
1399    io.hpmevent(i) := perfEvents(i)
1400  }
1401}
1402