1package xiangshan.backend.decode 2 3import org.chipsalliance.cde.config.Parameters 4import chisel3._ 5import chisel3.util.BitPat.bitPatToUInt 6import chisel3.util._ 7import freechips.rocketchip.util.uintToBitPat 8import freechips.rocketchip.rocket.Instructions._ 9import utils._ 10import xiangshan.ExceptionNO.illegalInstr 11import xiangshan.backend.fu.FuType 12import xiangshan._ 13import yunsuan.{VfpuType, VipuType, VimacType, VpermType, VialuFixType, VfaluType, VfmaType, VfdivType, VfcvtType} 14 15abstract class VecDecode extends XSDecodeBase { 16 def generate() : List[BitPat] 17 def asOldDecodeOutput(): List[BitPat] = { 18 val src1::src2::src3::fu::fuOp::xWen::fWen::vWen::mWen::vxsatWen::xsTrap::noSpec::blockBack::flushPipe::selImm::Nil = generate() 19 List (src1, src2, src3, fu, fuOp, xWen, fWen, xsTrap, noSpec, blockBack, flushPipe, selImm) 20 } 21 def asFirstStageDecodeOutput(): List[BitPat] = { 22 val src1::src2::src3::fu::fuOp::xWen::fWen::vWen::mWen::vxsatWen::xsTrap::noSpec::blockBack::flushPipe::selImm::Nil = generate() 23 List (src1, src2, src3, fu, fuOp, xWen, fWen, bitPatToUInt(vWen) | bitPatToUInt(mWen), xsTrap, noSpec, blockBack, flushPipe, selImm) 24 } 25} 26 27case class OPIVV( 28 fu: FuType.OHType, 29 fuOp: BitPat, 30 vWen: Boolean, 31 mWen: Boolean, 32 vxsatWen: Boolean, 33 uopSplitType: BitPat = UopSplitType.VEC_VVV, 34 src1: BitPat = SrcType.vp, 35 src2: BitPat = SrcType.vp, 36 src3: BitPat = SrcType.vp 37) extends XSDecodeBase { 38 def generate() : List[BitPat] = { 39 XSDecode(src1, src2, src3, fu, fuOp, SelImm.X, uopSplitType, 40 xWen = F, fWen = F, vWen = vWen, mWen = mWen, xsTrap = F, noSpec = F, blockBack = F, flushPipe = F).generate() 41 } 42} 43 44case class OPIVX( 45 fu: FuType.OHType, 46 fuOp: BitPat, 47 vWen: Boolean, 48 mWen: Boolean, 49 vxsatWen: Boolean, 50 uopSplitType: BitPat = UopSplitType.VEC_VXV, 51 src1: BitPat = SrcType.xp, 52 src2: BitPat = SrcType.vp, 53 src3: BitPat = SrcType.vp 54) extends XSDecodeBase { 55 def generate() : List[BitPat] = { 56 XSDecode(src1, src2, src3, fu, fuOp, SelImm.X, uopSplitType, 57 xWen = F, fWen = F, vWen = vWen, mWen = mWen, xsTrap = F, noSpec = F, blockBack = F, flushPipe = F).generate() 58 } 59} 60 61case class OPIVI( 62 fu: FuType.OHType, 63 fuOp: BitPat, 64 vWen: Boolean, 65 mWen: Boolean, 66 vxsatWen: Boolean, 67 selImm: BitPat = SelImm.IMM_OPIVIS, 68 uopSplitType: BitPat = UopSplitType.VEC_VXV, 69 src1: BitPat = SrcType.imm, 70 src2: BitPat = SrcType.vp, 71 src3: BitPat = SrcType.vp 72) extends XSDecodeBase { 73 def generate() : List[BitPat] = { 74 XSDecode(src1, src2, src3, fu, fuOp, selImm, uopSplitType, 75 xWen = F, fWen = F, vWen = vWen, mWen = mWen, xsTrap = F, noSpec = F, blockBack = F, flushPipe = F).generate() 76 } 77} 78 79case class OPMVV( 80 vdRen: Boolean, 81 fu: FuType.OHType, 82 fuOp: BitPat, 83 xWen: Boolean, 84 vWen: Boolean, 85 mWen: Boolean, 86 uopSplitType: BitPat = UopSplitType.dummy, 87 src1: BitPat = SrcType.vp, 88 src2: BitPat = SrcType.vp 89) extends XSDecodeBase { 90 private def src3: BitPat = if (vdRen) SrcType.vp else SrcType.X 91 def generate() : List[BitPat] = { 92 XSDecode(src1, src2, src3, fu, fuOp, SelImm.X, uopSplitType, xWen, F, vWen, mWen, F, F, F, F).generate() 93 } 94} 95 96case class OPMVX( 97 vdRen: Boolean, 98 fu: FuType.OHType, 99 fuOp: BitPat, 100 xWen: Boolean, 101 vWen: Boolean, 102 mWen: Boolean, 103 uopSplitType: BitPat = UopSplitType.dummy, 104 src1: BitPat = SrcType.xp, 105 src2: BitPat = SrcType.vp 106) extends XSDecodeBase { 107 private def src3: BitPat = if (vdRen) SrcType.vp else SrcType.X 108 def generate() : List[BitPat] = { 109 XSDecode(src1, src2, src3, fu, fuOp, SelImm.X, uopSplitType, 110 xWen = xWen, fWen = F, vWen = vWen, mWen = mWen, xsTrap = F, noSpec = F, blockBack = F, flushPipe = F).generate() 111 } 112} 113 114case class OPFVV( 115 src1: BitPat, 116 src3: BitPat, 117 fu: FuType.OHType, 118 fuOp: BitPat, 119 fWen: Boolean, 120 vWen: Boolean, 121 mWen: Boolean, 122 uopSplitType: BitPat = UopSplitType.dummy, 123 src2: BitPat = SrcType.vp 124) extends XSDecodeBase { 125 def generate() : List[BitPat] = { 126 XSDecode(src1, src2, src3, fu, fuOp, SelImm.X, uopSplitType, 127 xWen = F, fWen = fWen, vWen = vWen, mWen = mWen, xsTrap = F, noSpec = F, blockBack = F, flushPipe = F).generate() 128 } 129} 130 131case class OPFFF(src1: BitPat, src3: BitPat, fu: FuType.OHType, fuOp: BitPat, xWen: Boolean, fWen: Boolean, vWen: Boolean, uopSplitType: BitPat = UopSplitType.dummy) extends XSDecodeBase { 132 def generate() : List[BitPat] = { 133 XSDecode(src1, SrcType.fp, src3, fu, fuOp, SelImm.X, uopSplitType, 134 xWen = xWen, fWen = fWen, vWen = vWen, mWen = F, xsTrap = F, noSpec = F, blockBack = F, flushPipe = F, canRobCompress = T).generate() 135 } 136} 137 138case class OPFVF( 139 src1: BitPat, 140 src3: BitPat, 141 fu: FuType.OHType, 142 fuOp: BitPat, 143 fWen: Boolean, 144 vWen: Boolean, 145 mWen: Boolean, 146 uopSplitType: BitPat = UopSplitType.dummy, 147 src2: BitPat = SrcType.vp 148) extends XSDecodeBase { 149 def generate() : List[BitPat] = { 150 XSDecode(src1, src2, src3, fu, fuOp, SelImm.X, uopSplitType, 151 xWen = F, fWen = fWen, vWen = vWen, mWen = mWen, xsTrap = F, noSpec = F, blockBack = F, flushPipe = F).generate() 152 } 153} 154 155case class VSET(vli: Boolean, vtypei: Boolean, fuOp: BitPat, flushPipe: Boolean, selImm: BitPat, uopSplitType: BitPat = UopSplitType.VSET) extends XSDecodeBase { 156 def generate() : List[BitPat] = { 157 val src1 = if (vli) SrcType.imm else SrcType.xp 158 val src2 = if (vtypei) SrcType.imm else SrcType.xp 159 XSDecode(src1, src2, SrcType.X, FuType.vsetiwf, fuOp, selImm, uopSplitType, 160 xWen = F, fWen = F, vWen = F, mWen = F, xsTrap = F, noSpec = F, blockBack = F, flushPipe = flushPipe).generate() 161 } 162} 163 164case class VLD(src2: BitPat, fuOp: BitPat, strided: Boolean = false, indexed: Boolean = false, ff: Boolean = false, 165 mask: Boolean = false, whole: Boolean = false, ordered: Boolean = false, uopSplitType: BitPat = UopSplitType.VEC_US_LDST) extends XSDecodeBase { 166 def generate() : List[BitPat] = { 167 val fu = FuType.vldu 168 val src1 = SrcType.xp 169 val src3 = SrcType.vp 170 XSDecode(src1, src2, src3, fu, fuOp, SelImm.X, uopSplitType, 171 xWen = F, fWen = F, vWen = T, mWen = F, xsTrap = F, noSpec = F, blockBack = F, flushPipe = F).generate() 172 } 173} 174 175case class VST(src2: BitPat, fuOp: BitPat, strided: Boolean = false, indexed: Boolean = false, 176 mask: Boolean = false, whole: Boolean = false, ordered: Boolean = false, uopSplitType: BitPat = UopSplitType.VEC_US_LDST) extends XSDecodeBase { 177 def generate() : List[BitPat] = { 178 val fu = FuType.vstu 179 val src1 = SrcType.xp 180 val src3 = SrcType.vp 181 XSDecode(src1, src2, src3, fu, fuOp, SelImm.X, uopSplitType, 182 xWen = F, fWen = F, vWen = F, mWen = F, xsTrap = F, noSpec = F, blockBack = F, flushPipe = F).generate() 183 } 184} 185 186object VecDecoder extends DecodeConstants { 187 val opivv: Array[(BitPat, XSDecodeBase)] = Array( 188 VADD_VV -> OPIVV(FuType.vialuF, VialuFixType.vadd_vv, T, F, F), 189 VSUB_VV -> OPIVV(FuType.vialuF, VialuFixType.vsub_vv, T, F, F), 190 191 VMINU_VV -> OPIVV(FuType.vialuF, VialuFixType.vminu_vv, T, F, F), 192 VMIN_VV -> OPIVV(FuType.vialuF, VialuFixType.vmin_vv, T, F, F), 193 VMAXU_VV -> OPIVV(FuType.vialuF, VialuFixType.vmaxu_vv, T, F, F), 194 VMAX_VV -> OPIVV(FuType.vialuF, VialuFixType.vmax_vv, T, F, F), 195 196 VAND_VV -> OPIVV(FuType.vialuF, VialuFixType.vand_vv, T, F, F), 197 VOR_VV -> OPIVV(FuType.vialuF, VialuFixType.vor_vv, T, F, F), 198 VXOR_VV -> OPIVV(FuType.vialuF, VialuFixType.vxor_vv, T, F, F), 199 200 VRGATHER_VV -> OPIVV(FuType.vppu, VpermType.vrgather, T, F, F, UopSplitType.VEC_RGATHER), 201 VRGATHEREI16_VV -> OPIVV(FuType.vppu, VpermType.vrgatherei16, T, F, F, UopSplitType.VEC_RGATHEREI16), 202 203 VADC_VVM -> OPIVV(FuType.vialuF, VialuFixType.vadc_vvm, T, F, F), 204 VMADC_VVM -> OPIVV(FuType.vialuF, VialuFixType.vmadc_vvm, F, T, F, UopSplitType.VEC_VVM), 205 VMADC_VV -> OPIVV(FuType.vialuF, VialuFixType.vmadc_vv, F, T, F, UopSplitType.VEC_VVM), 206 207 VSBC_VVM -> OPIVV(FuType.vialuF, VialuFixType.vsbc_vvm, T, F, F), 208 VMSBC_VV -> OPIVV(FuType.vialuF, VialuFixType.vmsbc_vv, F, T, F, UopSplitType.VEC_VVM), 209 VMSBC_VVM -> OPIVV(FuType.vialuF, VialuFixType.vmsbc_vvm, F, T, F, UopSplitType.VEC_VVM), 210 211 VMERGE_VVM -> OPIVV(FuType.vialuF, VialuFixType.vmerge_vvm, T, F, F), 212 213 VMV_V_V -> OPIVV(FuType.vialuF, VialuFixType.vmv_v_v, T, F, F, src2 = SrcType.no), // vd[i] = vs1[i], vs2=v0 214 215 VMSEQ_VV -> OPIVV(FuType.vialuF, VialuFixType.vmseq_vv, F, T, F, UopSplitType.VEC_VVM), 216 VMSNE_VV -> OPIVV(FuType.vialuF, VialuFixType.vmsne_vv, F, T, F, UopSplitType.VEC_VVM), 217 VMSLTU_VV -> OPIVV(FuType.vialuF, VialuFixType.vmsltu_vv, F, T, F, UopSplitType.VEC_VVM), 218 VMSLT_VV -> OPIVV(FuType.vialuF, VialuFixType.vmslt_vv, F, T, F, UopSplitType.VEC_VVM), 219 VMSLEU_VV -> OPIVV(FuType.vialuF, VialuFixType.vmsleu_vv, F, T, F, UopSplitType.VEC_VVM), 220 VMSLE_VV -> OPIVV(FuType.vialuF, VialuFixType.vmsle_vv, F, T, F, UopSplitType.VEC_VVM), 221 222 VSLL_VV -> OPIVV(FuType.vialuF, VialuFixType.vsll_vv, T, F, F), 223 VSRL_VV -> OPIVV(FuType.vialuF, VialuFixType.vsrl_vv, T, F, F), 224 VSRA_VV -> OPIVV(FuType.vialuF, VialuFixType.vsra_vv, T, F, F), 225 VNSRL_WV -> OPIVV(FuType.vialuF, VialuFixType.vnsrl_wv, T, F, F, UopSplitType.VEC_WVV), 226 VNSRA_WV -> OPIVV(FuType.vialuF, VialuFixType.vnsra_wv, T, F, F, UopSplitType.VEC_WVV), 227 228 VSADDU_VV -> OPIVV(FuType.vialuF, VialuFixType.vsaddu_vv, T, F, T), 229 VSADD_VV -> OPIVV(FuType.vialuF, VialuFixType.vsadd_vv, T, F, T), 230 VSSUBU_VV -> OPIVV(FuType.vialuF, VialuFixType.vssubu_vv, T, F, T), 231 VSSUB_VV -> OPIVV(FuType.vialuF, VialuFixType.vssub_vv, T, F, T), 232 233 VSMUL_VV -> OPIVV(FuType.vimac, VimacType.vsmul, T, F, T), 234 235 VSSRL_VV -> OPIVV(FuType.vialuF, VialuFixType.vssrl_vv, T, F, F), 236 VSSRA_VV -> OPIVV(FuType.vialuF, VialuFixType.vssra_vv, T, F, F), 237 238 VNCLIPU_WV -> OPIVV(FuType.vialuF, VialuFixType.vnclipu_wv, T, F, T, UopSplitType.VEC_WVV), 239 VNCLIP_WV -> OPIVV(FuType.vialuF, VialuFixType.vnclip_wv, T, F, T, UopSplitType.VEC_WVV), 240 241 VWREDSUMU_VS -> OPIVV(FuType.vipu, VipuType.vwredsumu_vs, T, F, F, UopSplitType.VEC_VWW), 242 VWREDSUM_VS -> OPIVV(FuType.vipu, VipuType.vwredsum_vs, T, F, F, UopSplitType.VEC_VWW), 243 ) 244 245 val opivx: Array[(BitPat, XSDecodeBase)] = Array( 246 VADD_VX -> OPIVX(FuType.vialuF, VialuFixType.vadd_vv, T, F, F), 247 VSUB_VX -> OPIVX(FuType.vialuF, VialuFixType.vsub_vv, T, F, F), 248 VRSUB_VX -> OPIVX(FuType.vialuF, VialuFixType.vrsub_vv, T, F, F), 249 250 VMINU_VX -> OPIVX(FuType.vialuF, VialuFixType.vminu_vv, T, F, F), 251 VMIN_VX -> OPIVX(FuType.vialuF, VialuFixType.vmin_vv, T, F, F), 252 VMAXU_VX -> OPIVX(FuType.vialuF, VialuFixType.vmaxu_vv, T, F, F), 253 VMAX_VX -> OPIVX(FuType.vialuF, VialuFixType.vmax_vv, T, F, F), 254 255 VAND_VX -> OPIVX(FuType.vialuF, VialuFixType.vand_vv, T, F, F), 256 VOR_VX -> OPIVX(FuType.vialuF, VialuFixType.vor_vv, T, F, F), 257 VXOR_VX -> OPIVX(FuType.vialuF, VialuFixType.vxor_vv, T, F, F), 258 259 VRGATHER_VX -> OPIVX(FuType.vppu, VpermType.vrgather_vx, T, F, F, UopSplitType.VEC_RGATHER_VX), 260 261 VSLIDEUP_VX -> OPIVX(FuType.vppu, VpermType.vslideup, T, F, F, UopSplitType.VEC_SLIDEUP), 262 VSLIDEDOWN_VX -> OPIVX(FuType.vppu, VpermType.vslidedown, T, F, F, UopSplitType.VEC_SLIDEDOWN), 263 264 VADC_VXM -> OPIVX(FuType.vialuF, VialuFixType.vadc_vvm, T, F, F), 265 VMADC_VXM -> OPIVX(FuType.vialuF, VialuFixType.vmadc_vvm, F, T, F, UopSplitType.VEC_VXM), 266 VMADC_VX -> OPIVX(FuType.vialuF, VialuFixType.vmadc_vv, F, T, F, UopSplitType.VEC_VXM), 267 VSBC_VXM -> OPIVX(FuType.vialuF, VialuFixType.vsbc_vvm, T, F, F), 268 VMSBC_VX -> OPIVX(FuType.vialuF, VialuFixType.vmsbc_vv, F, T, F, UopSplitType.VEC_VXM), 269 VMSBC_VXM -> OPIVX(FuType.vialuF, VialuFixType.vmsbc_vvm, F, T, F, UopSplitType.VEC_VXM), 270 271 VMERGE_VXM -> OPIVX(FuType.vialuF, VialuFixType.vmerge_vvm, T, F, F), 272 273 VMV_V_X -> OPIVX(FuType.vialuF, VialuFixType.vmv_v_v, T, F, F, src2 = SrcType.no), // vd[i] = x[rs1], vs2 = v0 274 275 VMSEQ_VX -> OPIVX(FuType.vialuF, VialuFixType.vmseq_vv, F, T, F, UopSplitType.VEC_VXM), 276 VMSNE_VX -> OPIVX(FuType.vialuF, VialuFixType.vmsne_vv, F, T, F, UopSplitType.VEC_VXM), 277 VMSLTU_VX -> OPIVX(FuType.vialuF, VialuFixType.vmsltu_vv, F, T, F, UopSplitType.VEC_VXM), 278 VMSLT_VX -> OPIVX(FuType.vialuF, VialuFixType.vmslt_vv, F, T, F, UopSplitType.VEC_VXM), 279 VMSLEU_VX -> OPIVX(FuType.vialuF, VialuFixType.vmsleu_vv, F, T, F, UopSplitType.VEC_VXM), 280 VMSLE_VX -> OPIVX(FuType.vialuF, VialuFixType.vmsle_vv, F, T, F, UopSplitType.VEC_VXM), 281 VMSGTU_VX -> OPIVX(FuType.vialuF, VialuFixType.vmsgtu_vv, F, T, F, UopSplitType.VEC_VXM), 282 VMSGT_VX -> OPIVX(FuType.vialuF, VialuFixType.vmsgt_vv, F, T, F, UopSplitType.VEC_VXM), 283 284 VSLL_VX -> OPIVX(FuType.vialuF, VialuFixType.vsll_vv, T, F, F), 285 VSRL_VX -> OPIVX(FuType.vialuF, VialuFixType.vsrl_vv, T, F, F), 286 VSRA_VX -> OPIVX(FuType.vialuF, VialuFixType.vsra_vv, T, F, F), 287 VNSRL_WX -> OPIVX(FuType.vialuF, VialuFixType.vnsrl_wv, T, F, F, UopSplitType.VEC_WXV), 288 VNSRA_WX -> OPIVX(FuType.vialuF, VialuFixType.vnsra_wv, T, F, F, UopSplitType.VEC_WXV), 289 290 VSADDU_VX -> OPIVX(FuType.vialuF, VialuFixType.vsaddu_vv, T, F, T), 291 VSADD_VX -> OPIVX(FuType.vialuF, VialuFixType.vsadd_vv, T, F, T), 292 VSSUBU_VX -> OPIVX(FuType.vialuF, VialuFixType.vssubu_vv, T, F, T), 293 VSSUB_VX -> OPIVX(FuType.vialuF, VialuFixType.vssub_vv, T, F, T), 294 295 VSMUL_VX -> OPIVX(FuType.vimac, VimacType.vsmul, T, F, T, UopSplitType.VEC_VXV), 296 297 VSSRL_VX -> OPIVX(FuType.vialuF, VialuFixType.vssrl_vv, T, F, F), 298 VSSRA_VX -> OPIVX(FuType.vialuF, VialuFixType.vssra_vv, T, F, F), 299 300 VNCLIPU_WX -> OPIVX(FuType.vialuF, VialuFixType.vnclipu_wv, T, F, T, UopSplitType.VEC_WXV), 301 VNCLIP_WX -> OPIVX(FuType.vialuF, VialuFixType.vnclip_wv, T, F, T, UopSplitType.VEC_WXV), 302 ) 303 304 val opivi: Array[(BitPat, XSDecodeBase)] = Array( 305 VADD_VI -> OPIVI(FuType.vialuF, VialuFixType.vadd_vv, T, F, F), 306 VRSUB_VI -> OPIVI(FuType.vialuF, VialuFixType.vrsub_vv, T, F, F), 307 308 VAND_VI -> OPIVI(FuType.vialuF, VialuFixType.vand_vv, T, F, F), 309 VOR_VI -> OPIVI(FuType.vialuF, VialuFixType.vor_vv, T, F, F), 310 VXOR_VI -> OPIVI(FuType.vialuF, VialuFixType.vxor_vv, T, F, F), 311 312 VRGATHER_VI -> OPIVI(FuType.vppu, VpermType.vrgather_vx, T, F, F, selImm = SelImm.IMM_OPIVIU, uopSplitType = UopSplitType.VEC_RGATHER_VX), 313 314 VSLIDEUP_VI -> OPIVI(FuType.vppu, VpermType.vslideup, T, F, F, selImm = SelImm.IMM_OPIVIU, uopSplitType = UopSplitType.VEC_SLIDEUP), 315 VSLIDEDOWN_VI -> OPIVI(FuType.vppu, VpermType.vslidedown, T, F, F, selImm = SelImm.IMM_OPIVIU, uopSplitType = UopSplitType.VEC_SLIDEDOWN), 316 317 VADC_VIM -> OPIVI(FuType.vialuF, VialuFixType.vadc_vvm, T, F, F), 318 VMADC_VIM -> OPIVI(FuType.vialuF, VialuFixType.vmadc_vvm, T, F, F, uopSplitType = UopSplitType.VEC_VXM), 319 VMADC_VI -> OPIVI(FuType.vialuF, VialuFixType.vmadc_vv, T, F, F, uopSplitType = UopSplitType.VEC_VXM), 320 321 VMERGE_VIM -> OPIVI(FuType.vialuF, VialuFixType.vmerge_vvm, T, F, F), 322 323 VMV_V_I -> OPIVI(FuType.vialuF, VialuFixType.vmv_v_v, T, F, F, src2 = SrcType.no), // vd[i] = imm, vs2 = v0 324 325 VMSEQ_VI -> OPIVI(FuType.vialuF, VialuFixType.vmseq_vv, F, T, F, uopSplitType = UopSplitType.VEC_VXM), 326 VMSNE_VI -> OPIVI(FuType.vialuF, VialuFixType.vmsne_vv, F, T, F, uopSplitType = UopSplitType.VEC_VXM), 327 VMSLEU_VI -> OPIVI(FuType.vialuF, VialuFixType.vmsleu_vv, F, T, F, selImm = SelImm.IMM_OPIVIS, uopSplitType = UopSplitType.VEC_VXM), 328 VMSLE_VI -> OPIVI(FuType.vialuF, VialuFixType.vmsle_vv, F, T, F, uopSplitType = UopSplitType.VEC_VXM), 329 VMSGTU_VI -> OPIVI(FuType.vialuF, VialuFixType.vmsgtu_vv, F, T, F, selImm = SelImm.IMM_OPIVIS, uopSplitType = UopSplitType.VEC_VXM), 330 VMSGT_VI -> OPIVI(FuType.vialuF, VialuFixType.vmsgt_vv, F, T, F, uopSplitType = UopSplitType.VEC_VXM), 331 332 VSLL_VI -> OPIVI(FuType.vialuF, VialuFixType.vsll_vv, T, F, F, selImm = SelImm.IMM_OPIVIU), 333 VSRL_VI -> OPIVI(FuType.vialuF, VialuFixType.vsrl_vv, T, F, F, selImm = SelImm.IMM_OPIVIU), 334 VSRA_VI -> OPIVI(FuType.vialuF, VialuFixType.vsra_vv, T, F, F, selImm = SelImm.IMM_OPIVIU), 335 VNSRL_WI -> OPIVI(FuType.vialuF, VialuFixType.vnsrl_wv, T, F, F, selImm = SelImm.IMM_OPIVIU, uopSplitType = UopSplitType.VEC_WXV), 336 VNSRA_WI -> OPIVI(FuType.vialuF, VialuFixType.vnsra_wv, T, F, F, selImm = SelImm.IMM_OPIVIU, uopSplitType = UopSplitType.VEC_WXV), 337 338 VSADDU_VI -> OPIVI(FuType.vialuF, VialuFixType.vsaddu_vv, T, F, T, selImm = SelImm.IMM_OPIVIS), 339 VSADD_VI -> OPIVI(FuType.vialuF, VialuFixType.vsadd_vv, T, F, T), 340 341 VSSRL_VI -> OPIVI(FuType.vialuF, VialuFixType.vssrl_vv, T, F, F, selImm = SelImm.IMM_OPIVIU), 342 VSSRA_VI -> OPIVI(FuType.vialuF, VialuFixType.vssra_vv, T, F, F, selImm = SelImm.IMM_OPIVIU), 343 344 VNCLIPU_WI -> OPIVI(FuType.vialuF, VialuFixType.vnclipu_wv, T, F, T, selImm = SelImm.IMM_OPIVIU, uopSplitType = UopSplitType.VEC_WXV), 345 VNCLIP_WI -> OPIVI(FuType.vialuF, VialuFixType.vnclip_wv, T, F, T, uopSplitType = UopSplitType.VEC_WXV), 346 347 VMV1R_V -> OPIVI(FuType.vppu, VpermType.vmv1r, T, F, F, uopSplitType = UopSplitType.VEC_MVNR, src1 = SrcType.no), // vmv1r.v vd, vs2 348 VMV2R_V -> OPIVI(FuType.vppu, VpermType.vmv2r, T, F, F, uopSplitType = UopSplitType.VEC_MVNR, src1 = SrcType.no), // vmv2r.v vd, vs2 349 VMV4R_V -> OPIVI(FuType.vppu, VpermType.vmv4r, T, F, F, uopSplitType = UopSplitType.VEC_MVNR, src1 = SrcType.no), // vmv4r.v vd, vs2 350 VMV8R_V -> OPIVI(FuType.vppu, VpermType.vmv8r, T, F, F, uopSplitType = UopSplitType.VEC_MVNR, src1 = SrcType.no), // vmv8r.v vd, vs2 351 ) 352 353 val opmvv: Array[(BitPat, XSDecodeBase)] = Array( 354 VAADD_VV -> OPMVV(T, FuType.vialuF, VialuFixType.vaadd_vv, F, T, F, UopSplitType.VEC_VVV), 355 VAADDU_VV -> OPMVV(T, FuType.vialuF, VialuFixType.vaaddu_vv, F, T, F, UopSplitType.VEC_VVV), 356 VASUB_VV -> OPMVV(T, FuType.vialuF, VialuFixType.vasub_vv, F, T, F, UopSplitType.VEC_VVV), 357 VASUBU_VV -> OPMVV(T, FuType.vialuF, VialuFixType.vasubu_vv, F, T, F, UopSplitType.VEC_VVV), 358 VCOMPRESS_VM -> OPMVV(T, FuType.vppu, VpermType.vcompress, F, T, F, UopSplitType.VEC_COMPRESS), 359 VCPOP_M -> OPMVV(T, FuType.vipu, VipuType.vcpop_m, T, F, F, UopSplitType.VEC_M0X, src1 = SrcType.no), // vcpop.m rd, vs2, vm 360 VDIV_VV -> OPMVV(T, FuType.vipu, VipuType.dummy, F, T, F), 361 VDIVU_VV -> OPMVV(T, FuType.vipu, VipuType.dummy, F, T, F), 362 VFIRST_M -> OPMVV(T, FuType.vipu, VipuType.vfirst_m, T, F, F, UopSplitType.VEC_M0X_VFIRST, src1 = SrcType.no), // vfirst.m rd, vs2, vm 363 VID_V -> OPMVV(T, FuType.vipu, VipuType.vid_v, F, T, F, UopSplitType.VEC_MVV, src1 = SrcType.no, src2 = SrcType.no), // vid.v vd, vm 364 VIOTA_M -> OPMVV(T, FuType.vipu, VipuType.viota_m, F, T, F, UopSplitType.VEC_MVV, src1 = SrcType.no), // viota.m vd, vs2, vm 365 366 VMACC_VV -> OPMVV(T, FuType.vimac, VimacType.vmacc, F, T, F, UopSplitType.VEC_VVV), 367 VMADD_VV -> OPMVV(T, FuType.vimac, VimacType.vmadd, F, T, F, UopSplitType.VEC_VVV), 368 VMAND_MM -> OPMVV(T, FuType.vialuF, VialuFixType.vmand_mm, F, T, F, UopSplitType.VEC_MMM), 369 VMANDN_MM -> OPMVV(T, FuType.vialuF, VialuFixType.vmandn_mm, F, T, F, UopSplitType.VEC_MMM), 370 VMNAND_MM -> OPMVV(T, FuType.vialuF, VialuFixType.vmnand_mm, F, T, F, UopSplitType.VEC_MMM), 371 VMNOR_MM -> OPMVV(T, FuType.vialuF, VialuFixType.vmnor_mm, F, T, F, UopSplitType.VEC_MMM), 372 VMOR_MM -> OPMVV(T, FuType.vialuF, VialuFixType.vmor_mm, F, T, F, UopSplitType.VEC_MMM), 373 VMORN_MM -> OPMVV(T, FuType.vialuF, VialuFixType.vmorn_mm, F, T, F, UopSplitType.VEC_MMM), 374 VMXNOR_MM -> OPMVV(T, FuType.vialuF, VialuFixType.vmxnor_mm, F, T, F, UopSplitType.VEC_MMM), 375 VMXOR_MM -> OPMVV(T, FuType.vialuF, VialuFixType.vmxor_mm, F, T, F, UopSplitType.VEC_MMM), 376 VMSBF_M -> OPMVV(T, FuType.vipu, VipuType.vmsbf_m, F, T, F, UopSplitType.VEC_M0M, src1 = SrcType.no), // vmsbf.m vd, vs2, vm 377 VMSIF_M -> OPMVV(T, FuType.vipu, VipuType.vmsif_m, F, T, F, UopSplitType.VEC_M0M, src1 = SrcType.no), // vmsif.m vd, vs2, vm 378 VMSOF_M -> OPMVV(T, FuType.vipu, VipuType.vmsof_m, F, T, F, UopSplitType.VEC_M0M, src1 = SrcType.no), // vmsof.m vd, vs2, vm 379 VMUL_VV -> OPMVV(T, FuType.vimac, VimacType.vmul, F, T, F, UopSplitType.VEC_VVV), 380 VMULH_VV -> OPMVV(T, FuType.vimac, VimacType.vmulh, F, T, F, UopSplitType.VEC_VVV), 381 VMULHSU_VV -> OPMVV(T, FuType.vimac, VimacType.vmulhsu, F, T, F, UopSplitType.VEC_VVV), 382 VMULHU_VV -> OPMVV(T, FuType.vimac, VimacType.vmulhu, F, T, F, UopSplitType.VEC_VVV), 383 384 VMV_X_S -> OPMVV(T, FuType.vipu, VipuType.vmv_x_s, T, F, F, src1 = SrcType.no), // vmv.x.s rd, vs2 # x[rd] = vs2[0] 385 VNMSAC_VV -> OPMVV(T, FuType.vimac, VimacType.vnmsac, F, T, F, UopSplitType.VEC_VVV), 386 VNMSUB_VV -> OPMVV(T, FuType.vimac, VimacType.vnmsub, F, T, F, UopSplitType.VEC_VVV), 387 VREDAND_VS -> OPMVV(T, FuType.vipu, VipuType.vredand_vs, F, T, F, UopSplitType.VEC_VRED), 388 VREDMAX_VS -> OPMVV(T, FuType.vipu, VipuType.vredmax_vs, F, T, F, UopSplitType.VEC_VRED), 389 VREDMAXU_VS -> OPMVV(T, FuType.vipu, VipuType.vredmaxu_vs, F, T, F, UopSplitType.VEC_VRED), 390 VREDMIN_VS -> OPMVV(T, FuType.vipu, VipuType.vredmin_vs, F, T, F, UopSplitType.VEC_VRED), 391 VREDMINU_VS -> OPMVV(T, FuType.vipu, VipuType.vredminu_vs, F, T, F, UopSplitType.VEC_VRED), 392 VREDOR_VS -> OPMVV(T, FuType.vipu, VipuType.vredor_vs, F, T, F, UopSplitType.VEC_VRED), 393 VREDSUM_VS -> OPMVV(T, FuType.vipu, VipuType.vredsum_vs, F, T, F, UopSplitType.VEC_VRED), 394 VREDXOR_VS -> OPMVV(T, FuType.vipu, VipuType.vredxor_vs, F, T, F, UopSplitType.VEC_VRED), 395 VREM_VV -> OPMVV(T, FuType.vipu, VipuType.dummy, F, T, F), 396 VREMU_VV -> OPMVV(T, FuType.vipu, VipuType.dummy, F, T, F), 397 VSEXT_VF2 -> OPMVV(T, FuType.vialuF, VialuFixType.vsext_vf2, F, T, F, UopSplitType.VEC_EXT2, src1 = SrcType.no), // vsext.vf2 vd, vs2, vm 398 VSEXT_VF4 -> OPMVV(T, FuType.vialuF, VialuFixType.vsext_vf4, F, T, F, UopSplitType.VEC_EXT4, src1 = SrcType.no), // vsext.vf4 vd, vs2, vm 399 VSEXT_VF8 -> OPMVV(T, FuType.vialuF, VialuFixType.vsext_vf8, F, T, F, UopSplitType.VEC_EXT8, src1 = SrcType.no), // vsext.vf8 vd, vs2, vm 400 VZEXT_VF2 -> OPMVV(T, FuType.vialuF, VialuFixType.vzext_vf2, F, T, F, UopSplitType.VEC_EXT2, src1 = SrcType.no), // vzext.vf2 vd, vs2, vm 401 VZEXT_VF4 -> OPMVV(T, FuType.vialuF, VialuFixType.vzext_vf4, F, T, F, UopSplitType.VEC_EXT4, src1 = SrcType.no), // vzext.vf4 vd, vs2, vm 402 VZEXT_VF8 -> OPMVV(T, FuType.vialuF, VialuFixType.vzext_vf8, F, T, F, UopSplitType.VEC_EXT8, src1 = SrcType.no), // vzext.vf8 vd, vs2, vm 403 VWADD_VV -> OPMVV(T, FuType.vialuF, VialuFixType.vwadd_vv, F, T, F, UopSplitType.VEC_VVW), 404 VWADD_WV -> OPMVV(T, FuType.vialuF, VialuFixType.vwadd_wv, F, T, F, UopSplitType.VEC_WVW), 405 VWADDU_VV -> OPMVV(T, FuType.vialuF, VialuFixType.vwaddu_vv, F, T, F, UopSplitType.VEC_VVW), 406 VWADDU_WV -> OPMVV(T, FuType.vialuF, VialuFixType.vwaddu_wv, F, T, F, UopSplitType.VEC_WVW), 407 VWMACC_VV -> OPMVV(T, FuType.vimac, VimacType.vwmacc, F, T, F, UopSplitType.VEC_VVW), 408 VWMACCSU_VV -> OPMVV(T, FuType.vimac, VimacType.vwmaccsu, F, T, F, UopSplitType.VEC_VVW), 409 VWMACCU_VV -> OPMVV(T, FuType.vimac, VimacType.vwmaccu, F, T, F, UopSplitType.VEC_VVW), 410 VWMUL_VV -> OPMVV(T, FuType.vimac, VimacType.vwmul, F, T, F, UopSplitType.VEC_VVW), 411 VWMULSU_VV -> OPMVV(T, FuType.vimac, VimacType.vwmulsu, F, T, F, UopSplitType.VEC_VVW), 412 VWMULU_VV -> OPMVV(T, FuType.vimac, VimacType.vwmulu, F, T, F, UopSplitType.VEC_VVW), 413 VWSUB_VV -> OPMVV(T, FuType.vialuF, VialuFixType.vwsub_vv, F, T, F, UopSplitType.VEC_VVW), 414 VWSUB_WV -> OPMVV(T, FuType.vialuF, VialuFixType.vwsub_wv, F, T, F, UopSplitType.VEC_WVW), 415 VWSUBU_VV -> OPMVV(T, FuType.vialuF, VialuFixType.vwsubu_vv, F, T, F, UopSplitType.VEC_VVW), 416 VWSUBU_WV -> OPMVV(T, FuType.vialuF, VialuFixType.vwsubu_wv, F, T, F, UopSplitType.VEC_WVW), 417 ) 418 419 val opmvx: Array[(BitPat, XSDecodeBase)] = Array( 420 VAADD_VX -> OPMVX(T, FuType.vialuF, VialuFixType.vaadd_vv, F, T, F, UopSplitType.VEC_VXV), 421 VAADDU_VX -> OPMVX(T, FuType.vialuF, VialuFixType.vaaddu_vv, F, T, F, UopSplitType.VEC_VXV), 422 VASUB_VX -> OPMVX(T, FuType.vialuF, VialuFixType.vasub_vv, F, T, F, UopSplitType.VEC_VXV), 423 VASUBU_VX -> OPMVX(T, FuType.vialuF, VialuFixType.vasubu_vv, F, T, F, UopSplitType.VEC_VXV), 424 VDIV_VX -> OPMVX(T, FuType.vipu, VipuType.dummy, F, T, F), 425 VDIVU_VX -> OPMVX(T, FuType.vipu, VipuType.dummy, F, T, F), 426 VMACC_VX -> OPMVX(T, FuType.vimac, VimacType.vmacc, F, T, F, UopSplitType.VEC_VXV), 427 VMADD_VX -> OPMVX(T, FuType.vimac, VimacType.vmadd, F, T, F, UopSplitType.VEC_VXV), 428 VMUL_VX -> OPMVX(T, FuType.vimac, VimacType.vmul, F, T, F, UopSplitType.VEC_VXV), 429 VMULH_VX -> OPMVX(T, FuType.vimac, VimacType.vmulh, F, T, F, UopSplitType.VEC_VXV), 430 VMULHSU_VX -> OPMVX(T, FuType.vimac, VimacType.vmulhsu, F, T, F, UopSplitType.VEC_VXV), 431 VMULHU_VX -> OPMVX(T, FuType.vimac, VimacType.vmulhu, F, T, F, UopSplitType.VEC_VXV), 432 VMV_S_X -> OPMVX(T, FuType.vialuF, VialuFixType.vmv_s_x, F, T, F, UopSplitType.VEC_0XV, src2 = SrcType.no), // vmv.s.x vd, rs1 # vd[0] = x[rs1] (vs2=0) 433 434 VNMSAC_VX -> OPMVX(T, FuType.vimac, VimacType.vnmsac, F, T, F, UopSplitType.VEC_VXV), 435 VNMSUB_VX -> OPMVX(T, FuType.vimac, VimacType.vnmsub, F, T, F, UopSplitType.VEC_VXV), 436 VREM_VX -> OPMVX(T, FuType.vipu, VipuType.dummy, F, T, F), 437 VREMU_VX -> OPMVX(T, FuType.vipu, VipuType.dummy, F, T, F), 438 439 VSLIDE1DOWN_VX -> OPMVX(T, FuType.vppu, VpermType.vslide1down, F, T, F, UopSplitType.VEC_SLIDE1DOWN), 440 VSLIDE1UP_VX -> OPMVX(T, FuType.vppu, VpermType.vslide1up, F, T, F, UopSplitType.VEC_SLIDE1UP), 441 VWADD_VX -> OPMVX(T, FuType.vialuF, VialuFixType.vwadd_vv, F, T, F, UopSplitType.VEC_VXW), 442 VWADD_WX -> OPMVX(T, FuType.vialuF, VialuFixType.vwadd_wv, F, T, F, UopSplitType.VEC_WXW), 443 VWADDU_VX -> OPMVX(T, FuType.vialuF, VialuFixType.vwaddu_vv, F, T, F, UopSplitType.VEC_VXW), 444 VWADDU_WX -> OPMVX(T, FuType.vialuF, VialuFixType.vwaddu_wv, F, T, F, UopSplitType.VEC_WXW), 445 446 // OutOfMemoryError 447 VWMACC_VX -> OPMVX(T, FuType.vimac, VimacType.vwmacc, F, T, F, UopSplitType.VEC_VXW), 448 VWMACCSU_VX -> OPMVX(T, FuType.vimac, VimacType.vwmaccsu, F, T, F, UopSplitType.VEC_VXW), 449 VWMACCU_VX -> OPMVX(T, FuType.vimac, VimacType.vwmaccu, F, T, F, UopSplitType.VEC_VXW), 450 451 VWMACCUS_VX -> OPMVX(T, FuType.vimac, VimacType.vwmaccus, F, T, F, UopSplitType.VEC_VXW), 452 VWMUL_VX -> OPMVX(T, FuType.vimac, VimacType.vwmul, F, T, F, UopSplitType.VEC_VXW), 453 VWMULSU_VX -> OPMVX(T, FuType.vimac, VimacType.vwmulsu, F, T, F, UopSplitType.VEC_VXW), 454 // Ok 455 VWMULU_VX -> OPMVX(T, FuType.vimac, VimacType.vwmulu, F, T, F, UopSplitType.VEC_VXW), 456 VWSUB_VX -> OPMVX(T, FuType.vialuF, VialuFixType.vwsub_vv, F, T, F, UopSplitType.VEC_VXW), 457 VWSUB_WX -> OPMVX(T, FuType.vialuF, VialuFixType.vwsub_wv, F, T, F, UopSplitType.VEC_WXW), 458 VWSUBU_VX -> OPMVX(T, FuType.vialuF, VialuFixType.vwsubu_vv, F, T, F, UopSplitType.VEC_VXW), 459 VWSUBU_WX -> OPMVX(T, FuType.vialuF, VialuFixType.vwsubu_wv, F, T, F, UopSplitType.VEC_WXW), 460 ) 461 462 val opfff: Array[(BitPat, XSDecodeBase)] = Array( 463 // Scalar Float Point 464 FADD_S -> OPFFF(SrcType.fp, SrcType.X, FuType.vfalu, VfaluType.vfadd, F, T, F, UopSplitType.SCA_SIM), 465 FADD_D -> OPFFF(SrcType.fp, SrcType.X, FuType.vfalu, VfaluType.vfadd, F, T, F, UopSplitType.SCA_SIM), 466 FSUB_S -> OPFFF(SrcType.fp, SrcType.X, FuType.vfalu, VfaluType.vfsub, F, T, F, UopSplitType.SCA_SIM), 467 FSUB_D -> OPFFF(SrcType.fp, SrcType.X, FuType.vfalu, VfaluType.vfsub, F, T, F, UopSplitType.SCA_SIM), 468 FEQ_S -> OPFFF(SrcType.fp, SrcType.X, FuType.vfalu, VfaluType.vfeq , T, F, F, UopSplitType.SCA_SIM), 469 FLT_S -> OPFFF(SrcType.fp, SrcType.X, FuType.vfalu, VfaluType.vflt , T, F, F, UopSplitType.SCA_SIM), 470 FLE_S -> OPFFF(SrcType.fp, SrcType.X, FuType.vfalu, VfaluType.vfle , T, F, F, UopSplitType.SCA_SIM), 471 FEQ_D -> OPFFF(SrcType.fp, SrcType.X, FuType.vfalu, VfaluType.vfeq , T, F, F, UopSplitType.SCA_SIM), 472 FLT_D -> OPFFF(SrcType.fp, SrcType.X, FuType.vfalu, VfaluType.vflt , T, F, F, UopSplitType.SCA_SIM), 473 FLE_D -> OPFFF(SrcType.fp, SrcType.X, FuType.vfalu, VfaluType.vfle , T, F, F, UopSplitType.SCA_SIM), 474 FMIN_S -> OPFFF(SrcType.fp, SrcType.X, FuType.vfalu, VfaluType.vfmin, F, T, F, UopSplitType.SCA_SIM), 475 FMIN_D -> OPFFF(SrcType.fp, SrcType.X, FuType.vfalu, VfaluType.vfmin, F, T, F, UopSplitType.SCA_SIM), 476 FMAX_S -> OPFFF(SrcType.fp, SrcType.X, FuType.vfalu, VfaluType.vfmax, F, T, F, UopSplitType.SCA_SIM), 477 FMAX_D -> OPFFF(SrcType.fp, SrcType.X, FuType.vfalu, VfaluType.vfmax, F, T, F, UopSplitType.SCA_SIM), 478 // donot wflags 479 FCLASS_S -> OPFFF(SrcType.fp, SrcType.X, FuType.vfalu, VfaluType.vfclass, T, F, F, UopSplitType.SCA_SIM), 480 FCLASS_D -> OPFFF(SrcType.fp, SrcType.X, FuType.vfalu, VfaluType.vfclass, T, F, F, UopSplitType.SCA_SIM), 481 FSGNJ_S -> OPFFF(SrcType.fp, SrcType.X, FuType.vfalu, VfaluType.vfsgnj , F, T, F, UopSplitType.SCA_SIM), 482 FSGNJ_D -> OPFFF(SrcType.fp, SrcType.X, FuType.vfalu, VfaluType.vfsgnj , F, T, F, UopSplitType.SCA_SIM), 483 FSGNJX_S -> OPFFF(SrcType.fp, SrcType.X, FuType.vfalu, VfaluType.vfsgnjx, F, T, F, UopSplitType.SCA_SIM), 484 FSGNJX_D -> OPFFF(SrcType.fp, SrcType.X, FuType.vfalu, VfaluType.vfsgnjx, F, T, F, UopSplitType.SCA_SIM), 485 FSGNJN_S -> OPFFF(SrcType.fp, SrcType.X, FuType.vfalu, VfaluType.vfsgnjn, F, T, F, UopSplitType.SCA_SIM), 486 FSGNJN_D -> OPFFF(SrcType.fp, SrcType.X, FuType.vfalu, VfaluType.vfsgnjn, F, T, F, UopSplitType.SCA_SIM), 487 488 FMUL_S -> OPFFF(SrcType.fp, SrcType.X, FuType.vfma , VfmaType.vfmul, F, T, F, UopSplitType.SCA_SIM), 489 FMUL_D -> OPFFF(SrcType.fp, SrcType.X, FuType.vfma , VfmaType.vfmul, F, T, F, UopSplitType.SCA_SIM), 490 491 FDIV_S -> OPFFF(SrcType.fp, SrcType.X, FuType.vfdiv, VfdivType.vfdiv , F, T, F, UopSplitType.SCA_SIM), 492 FDIV_D -> OPFFF(SrcType.fp, SrcType.X, FuType.vfdiv, VfdivType.vfdiv , F, T, F, UopSplitType.SCA_SIM), 493 FSQRT_S -> OPFFF(SrcType.fp, SrcType.X, FuType.vfdiv, VfdivType.vfsqrt, F, T, F, UopSplitType.SCA_SIM), 494 FSQRT_D -> OPFFF(SrcType.fp, SrcType.X, FuType.vfdiv, VfdivType.vfsqrt, F, T, F, UopSplitType.SCA_SIM), 495 496 FMADD_S -> OPFFF(SrcType.fp, SrcType.fp, FuType.vfma, VfmaType.vfmacc , F, T, F, UopSplitType.SCA_SIM), 497 FMSUB_S -> OPFFF(SrcType.fp, SrcType.fp, FuType.vfma, VfmaType.vfmsac , F, T, F, UopSplitType.SCA_SIM), 498 FNMADD_S -> OPFFF(SrcType.fp, SrcType.fp, FuType.vfma, VfmaType.vfnmacc, F, T, F, UopSplitType.SCA_SIM), 499 FNMSUB_S -> OPFFF(SrcType.fp, SrcType.fp, FuType.vfma, VfmaType.vfnmsac, F, T, F, UopSplitType.SCA_SIM), 500 FMADD_D -> OPFFF(SrcType.fp, SrcType.fp, FuType.vfma, VfmaType.vfmacc , F, T, F, UopSplitType.SCA_SIM), 501 FMSUB_D -> OPFFF(SrcType.fp, SrcType.fp, FuType.vfma, VfmaType.vfmsac , F, T, F, UopSplitType.SCA_SIM), 502 FNMADD_D -> OPFFF(SrcType.fp, SrcType.fp, FuType.vfma, VfmaType.vfnmacc, F, T, F, UopSplitType.SCA_SIM), 503 FNMSUB_D -> OPFFF(SrcType.fp, SrcType.fp, FuType.vfma, VfmaType.vfnmsac, F, T, F, UopSplitType.SCA_SIM), 504 ) 505 506 val opfvv: Array[(BitPat, XSDecodeBase)] = Array( 507 // 13.2. Vector Single-Width Floating-Point Add/Subtract Instructions 508 VFADD_VV -> OPFVV(SrcType.vp, SrcType.vp , FuType.vfalu, VfaluType.vfadd, F, T, F, UopSplitType.VEC_VVV), 509 VFSUB_VV -> OPFVV(SrcType.vp, SrcType.vp , FuType.vfalu, VfaluType.vfsub, F, T, F, UopSplitType.VEC_VVV), 510 511 // 13.3. Vector Widening Floating-Point Add/Subtract Instructions 512 VFWADD_VV -> OPFVV(SrcType.vp, SrcType.vp , FuType.vfalu, VfaluType.vfwadd , F, T, F, UopSplitType.VEC_VVW), 513 VFWSUB_VV -> OPFVV(SrcType.vp, SrcType.vp , FuType.vfalu, VfaluType.vfwsub , F, T, F, UopSplitType.VEC_VVW), 514 VFWADD_WV -> OPFVV(SrcType.vp, SrcType.vp , FuType.vfalu, VfaluType.vfwadd_w, F, T, F, UopSplitType.VEC_WVW), 515 VFWSUB_WV -> OPFVV(SrcType.vp, SrcType.vp , FuType.vfalu, VfaluType.vfwsub_w, F, T, F, UopSplitType.VEC_WVW), 516 517 // 13.4. Vector Single-Width Floating-Point Multiply/Divide Instructions 518 VFMUL_VV -> OPFVV(SrcType.vp, SrcType.vp , FuType.vfma, VfmaType.vfmul, F, T, F, UopSplitType.VEC_VVV), 519 VFDIV_VV -> OPFVV(SrcType.vp, SrcType.vp , FuType.vfdiv, VfdivType.vfdiv , F, T, F, UopSplitType.VEC_VVV), 520 521 // 13.5. Vector Widening Floating-Point Multiply 522 VFWMUL_VV -> OPFVV(SrcType.vp, SrcType.vp , FuType.vfma, VfmaType.vfmul_w, F, T, F, UopSplitType.VEC_VVW), 523 524 // 13.6. Vector Single-Width Floating-Point Fused Multiply-Add Instructions 525 VFMACC_VV -> OPFVV(SrcType.vp, SrcType.vp, FuType.vfma, VfmaType.vfmacc , F, T, F, UopSplitType.VEC_VVV), 526 VFNMACC_VV -> OPFVV(SrcType.vp, SrcType.vp, FuType.vfma, VfmaType.vfnmacc, F, T, F, UopSplitType.VEC_VVV), 527 VFMSAC_VV -> OPFVV(SrcType.vp, SrcType.vp, FuType.vfma, VfmaType.vfmsac , F, T, F, UopSplitType.VEC_VVV), 528 VFNMSAC_VV -> OPFVV(SrcType.vp, SrcType.vp, FuType.vfma, VfmaType.vfnmsac, F, T, F, UopSplitType.VEC_VVV), 529 VFMADD_VV -> OPFVV(SrcType.vp, SrcType.vp, FuType.vfma, VfmaType.vfmadd , F, T, F, UopSplitType.VEC_VVV), 530 VFNMADD_VV -> OPFVV(SrcType.vp, SrcType.vp, FuType.vfma, VfmaType.vfnmadd, F, T, F, UopSplitType.VEC_VVV), 531 VFMSUB_VV -> OPFVV(SrcType.vp, SrcType.vp, FuType.vfma, VfmaType.vfmsub , F, T, F, UopSplitType.VEC_VVV), 532 VFNMSUB_VV -> OPFVV(SrcType.vp, SrcType.vp, FuType.vfma, VfmaType.vfnmsub, F, T, F, UopSplitType.VEC_VVV), 533 534 // 13.7. Vector Widening Floating-Point Fused Multiply-Add Instructions 535 VFWMACC_VV -> OPFVV(SrcType.vp, SrcType.vp, FuType.vfma, VfmaType.vfmacc_w , F, T, F, UopSplitType.VEC_VVW), 536 VFWNMACC_VV -> OPFVV(SrcType.vp, SrcType.vp, FuType.vfma, VfmaType.vfnmacc_w, F, T, F, UopSplitType.VEC_VVW), 537 VFWMSAC_VV -> OPFVV(SrcType.vp, SrcType.vp, FuType.vfma, VfmaType.vfmsac_w , F, T, F, UopSplitType.VEC_VVW), 538 VFWNMSAC_VV -> OPFVV(SrcType.vp, SrcType.vp, FuType.vfma, VfmaType.vfnmsac_w, F, T, F, UopSplitType.VEC_VVW), 539 540 // 13.8. Vector Floating-Point Square-Root Instruction 541 VFSQRT_V -> OPFVV(SrcType.X , SrcType.vp , FuType.vfdiv, VfdivType.vfsqrt, F, T, F, UopSplitType.VEC_VVV), // vfsqrt.v vd, vs2, vm 542 543 // 13.9. Vector Floating-Point Reciprocal Square-Root Estimate Instruction 544 VFRSQRT7_V -> OPFVV(SrcType.X , SrcType.vp , FuType.vfcvt, VfcvtType.vfrsqrt7, F, T, F, UopSplitType.VEC_VVV), // vfrsqrt7.v vd, vs2, vm 545 546 // 13.10. Vector Floating-Point Reciprocal Estimate Instruction 547 VFREC7_V -> OPFVV(SrcType.X , SrcType.vp , FuType.vfcvt, VfcvtType.vfrec7, F, T, F, UopSplitType.VEC_VVV), // vfrec7.v vd, vs2, vm 548 549 // 13.11. Vector Floating-Point MIN/MAX Instructions 550 VFMIN_VV -> OPFVV(SrcType.vp, SrcType.vp , FuType.vfalu, VfaluType.vfmin, F, T, F, UopSplitType.VEC_VVV), 551 VFMAX_VV -> OPFVV(SrcType.vp, SrcType.vp , FuType.vfalu, VfaluType.vfmax, F, T, F, UopSplitType.VEC_VVV), 552 553 // 13.12. Vector Floating-Point Sign-Injection Instructions 554 VFSGNJ_VV -> OPFVV(SrcType.vp, SrcType.vp , FuType.vfalu, VfaluType.vfsgnj , F, T, F, UopSplitType.VEC_VVV), 555 VFSGNJN_VV -> OPFVV(SrcType.vp, SrcType.vp , FuType.vfalu, VfaluType.vfsgnjn, F, T, F, UopSplitType.VEC_VVV), 556 VFSGNJX_VV -> OPFVV(SrcType.vp, SrcType.vp , FuType.vfalu, VfaluType.vfsgnjx, F, T, F, UopSplitType.VEC_VVV), 557 558 // 13.13. Vector Floating-Point Compare Instructions 559 VMFEQ_VV -> OPFVV(SrcType.vp, SrcType.vp, FuType.vfalu, VfaluType.vfeq, F, T, F, UopSplitType.VEC_VVM), 560 VMFNE_VV -> OPFVV(SrcType.vp, SrcType.vp, FuType.vfalu, VfaluType.vfne, F, T, F, UopSplitType.VEC_VVM), 561 VMFLT_VV -> OPFVV(SrcType.vp, SrcType.vp, FuType.vfalu, VfaluType.vflt, F, T, F, UopSplitType.VEC_VVM), 562 VMFLE_VV -> OPFVV(SrcType.vp, SrcType.vp, FuType.vfalu, VfaluType.vfle, F, T, F, UopSplitType.VEC_VVM), 563 564 // 13.14. Vector Floating-Point Classify Instruction 565 VFCLASS_V -> OPFVV(SrcType.X , SrcType.X , FuType.vfalu, VfaluType.vfclass, F, T, F, UopSplitType.VEC_VVV), 566 567 // 13.17. Single-Width Floating-Point/Integer Type-Convert Instructions 568 VFCVT_XU_F_V -> OPFVV(SrcType.X , SrcType.vp , FuType.vfcvt, VfcvtType.vfcvt_xufv, F, T, F, UopSplitType.VEC_VVV), 569 VFCVT_X_F_V -> OPFVV(SrcType.X , SrcType.vp , FuType.vfcvt, VfcvtType.vfcvt_xfv, F, T, F, UopSplitType.VEC_VVV), 570 VFCVT_RTZ_XU_F_V -> OPFVV(SrcType.X , SrcType.vp , FuType.vfcvt, VfcvtType.vfcvt_rtz_xufv, F, T, F, UopSplitType.VEC_VVV), 571 VFCVT_RTZ_X_F_V -> OPFVV(SrcType.X , SrcType.vp , FuType.vfcvt, VfcvtType.vfcvt_rtz_xfv, F, T, F, UopSplitType.VEC_VVV), 572 VFCVT_F_XU_V -> OPFVV(SrcType.X , SrcType.vp , FuType.vfcvt, VfcvtType.vfcvt_fxuv, F, T, F, UopSplitType.VEC_VVV), 573 VFCVT_F_X_V -> OPFVV(SrcType.X , SrcType.vp , FuType.vfcvt, VfcvtType.vfcvt_fxv, F, T, F, UopSplitType.VEC_VVV), 574 575 // 13.18. Widening Floating-Point/Integer Type-Convert Instructions 576 VFWCVT_XU_F_V -> OPFVV(SrcType.X , SrcType.vp , FuType.vfcvt, VfcvtType.vfwcvt_xufv, F, T, F, UopSplitType.VEC_VVW), 577 VFWCVT_X_F_V -> OPFVV(SrcType.X , SrcType.vp , FuType.vfcvt, VfcvtType.vfwcvt_xfv, F, T, F, UopSplitType.VEC_VVW), 578 VFWCVT_RTZ_XU_F_V -> OPFVV(SrcType.X , SrcType.vp , FuType.vfcvt, VfcvtType.vfwcvt_rtz_xufv, F, T, F, UopSplitType.VEC_VVW), 579 VFWCVT_RTZ_X_F_V -> OPFVV(SrcType.X , SrcType.vp , FuType.vfcvt, VfcvtType.vfwcvt_rtz_xfv, F, T, F, UopSplitType.VEC_VVW), 580 VFWCVT_F_XU_V -> OPFVV(SrcType.X , SrcType.vp , FuType.vfcvt, VfcvtType.vfwcvt_fxuv, F, T, F, UopSplitType.VEC_VVW), 581 VFWCVT_F_X_V -> OPFVV(SrcType.X , SrcType.vp , FuType.vfcvt, VfcvtType.vfwcvt_fxv, F, T, F, UopSplitType.VEC_VVW), 582 VFWCVT_F_F_V -> OPFVV(SrcType.X , SrcType.vp , FuType.vfcvt, VfcvtType.vfwcvt_ffv, F, T, F, UopSplitType.VEC_VVW), 583 584 // ! 585 // 13.19. Narrowing Floating-Point/Integer Type-Convert Instructions 586 VFNCVT_XU_F_W -> OPFVV(SrcType.X , SrcType.vp , FuType.vfcvt, VfcvtType.vfncvt_xufw, F, T, F, UopSplitType.VEC_WVV), 587 VFNCVT_X_F_W -> OPFVV(SrcType.X , SrcType.vp , FuType.vfcvt, VfcvtType.vfncvt_xfw, F, T, F, UopSplitType.VEC_WVV), 588 VFNCVT_RTZ_XU_F_W -> OPFVV(SrcType.X , SrcType.vp , FuType.vfcvt, VfcvtType.vfwcvt_rtz_xufv, F, T, F, UopSplitType.VEC_WVV), 589 VFNCVT_RTZ_X_F_W -> OPFVV(SrcType.X , SrcType.vp , FuType.vfcvt, VfcvtType.vfncvt_rtz_xfw, F, T, F, UopSplitType.VEC_WVV), 590 VFNCVT_F_XU_W -> OPFVV(SrcType.X , SrcType.vp , FuType.vfcvt, VfcvtType.vfncvt_fxuw, F, T, F, UopSplitType.VEC_WVV), 591 VFNCVT_F_X_W -> OPFVV(SrcType.X , SrcType.vp , FuType.vfcvt, VfcvtType.vfncvt_fxw, F, T, F, UopSplitType.VEC_WVV), 592 VFNCVT_F_F_W -> OPFVV(SrcType.X , SrcType.vp , FuType.vfcvt, VfcvtType.vfncvt_ffw, F, T, F, UopSplitType.VEC_WVV), 593 VFNCVT_ROD_F_F_W -> OPFVV(SrcType.X , SrcType.vp , FuType.vfcvt, VfcvtType.vfncvt_rod_ffw, F, T, F, UopSplitType.VEC_WVV), 594 // 14.3. Vector Single-Width Floating-Point Reduction Instructions 595 VFREDOSUM_VS -> OPFVV(SrcType.vp, SrcType.vp, FuType.vfalu, VfaluType.vfredosum, F, T, F, UopSplitType.VEC_VFREDOSUM), 596 VFREDUSUM_VS -> OPFVV(SrcType.vp, SrcType.vp, FuType.vfalu, VfaluType.vfredusum, F, T, F, UopSplitType.VEC_VFRED), 597 VFREDMAX_VS -> OPFVV(SrcType.vp, SrcType.vp, FuType.vfalu, VfaluType.vfredmax , F, T, F, UopSplitType.VEC_VFRED), 598 VFREDMIN_VS -> OPFVV(SrcType.vp, SrcType.vp, FuType.vfalu, VfaluType.vfredmin , F, T, F, UopSplitType.VEC_VFRED), 599 600 // 14.4. Vector Widening Floating-Point Reduction Instructions 601 VFWREDOSUM_VS -> OPFVV(SrcType.vp, SrcType.vp, FuType.vfalu, VfaluType.vfwredosum, F, T, F, UopSplitType.VEC_VFREDOSUM), 602 VFWREDUSUM_VS -> OPFVV(SrcType.vp, SrcType.vp, FuType.vfalu, VfpuType.dummy, F, T, F), 603 604 ) 605 606 val opfvf: Array[(BitPat, XSDecodeBase)] = Array( 607 // 13.2. Vector Single-Width Floating-Point Add/Subtract Instructions 608 VFADD_VF -> OPFVF(SrcType.fp, SrcType.vp , FuType.vfalu, VfaluType.vfadd, F, T, F, UopSplitType.VEC_VFV), 609 VFSUB_VF -> OPFVF(SrcType.fp, SrcType.vp , FuType.vfalu, VfpuType.vfsub , F, T, F, UopSplitType.VEC_VFV), 610 VFRSUB_VF -> OPFVF(SrcType.fp, SrcType.vp , FuType.vfalu, VfpuType.vfsub , F, T, F, UopSplitType.VEC_VFV), 611 612 // 13.3. Vector Widening Floating-Point Add/Subtract Instructions 613 VFWADD_VF -> OPFVF(SrcType.fp, SrcType.vp , FuType.vfalu, VfaluType.vfwadd, F, T, F, UopSplitType.VEC_VFW), 614 VFWSUB_VF -> OPFVF(SrcType.fp, SrcType.vp , FuType.vfalu, VfaluType.vfwsub, F, T, F, UopSplitType.VEC_VFW), 615 VFWADD_WF -> OPFVF(SrcType.fp, SrcType.vp , FuType.vfalu, VfaluType.vfwadd_w, F, T, F, UopSplitType.VEC_WFW), 616 VFWSUB_WF -> OPFVF(SrcType.fp, SrcType.vp , FuType.vfalu, VfaluType.vfwsub_w, F, T, F, UopSplitType.VEC_WFW), 617 618 // 13.4. Vector Single-Width Floating-Point Multiply/Divide Instructions 619 VFMUL_VF -> OPFVF(SrcType.fp, SrcType.vp , FuType.vfma, VfmaType.vfmul, F, T, F, UopSplitType.VEC_VFV), 620 VFDIV_VF -> OPFVF(SrcType.fp, SrcType.vp , FuType.vfdiv, VfdivType.vfdiv, F, T, F, UopSplitType.VEC_VFV), 621 VFRDIV_VF -> OPFVF(SrcType.fp, SrcType.vp , FuType.vfdiv, VfdivType.vfdiv, F, T, F, UopSplitType.VEC_VFV), 622 623 // 13.5. Vector Widening Floating-Point Multiply 624 VFWMUL_VF -> OPFVF(SrcType.fp, SrcType.vp , FuType.vfma, VfmaType.vfmul_w, F, T, F, UopSplitType.VEC_VFW), 625 626 // 13.6. Vector Single-Width Floating-Point Fused Multiply-Add Instructions 627 VFMACC_VF -> OPFVF(SrcType.fp, SrcType.vp, FuType.vfma, VfmaType.vfmacc , F, T, F, UopSplitType.VEC_VFV), 628 VFNMACC_VF -> OPFVF(SrcType.fp, SrcType.vp, FuType.vfma, VfmaType.vfnmacc, F, T, F, UopSplitType.VEC_VFV), 629 VFMSAC_VF -> OPFVF(SrcType.fp, SrcType.vp, FuType.vfma, VfmaType.vfmsac , F, T, F, UopSplitType.VEC_VFV), 630 VFNMSAC_VF -> OPFVF(SrcType.fp, SrcType.vp, FuType.vfma, VfmaType.vfnmsac, F, T, F, UopSplitType.VEC_VFV), 631 VFMADD_VF -> OPFVF(SrcType.fp, SrcType.vp, FuType.vfma, VfmaType.vfmadd , F, T, F, UopSplitType.VEC_VFV), 632 VFNMADD_VF -> OPFVF(SrcType.fp, SrcType.vp, FuType.vfma, VfmaType.vfnmadd, F, T, F, UopSplitType.VEC_VFV), 633 VFMSUB_VF -> OPFVF(SrcType.fp, SrcType.vp, FuType.vfma, VfmaType.vfmsub , F, T, F, UopSplitType.VEC_VFV), 634 VFNMSUB_VF -> OPFVF(SrcType.fp, SrcType.vp, FuType.vfma, VfmaType.vfnmsub, F, T, F, UopSplitType.VEC_VFV), 635 636 // 13.7. Vector Widening Floating-Point Fused Multiply-Add Instructions 637 VFWMACC_VF -> OPFVF(SrcType.fp, SrcType.vp, FuType.vfma, VfmaType.vfmacc_w , F, T, F, UopSplitType.VEC_VFW), 638 VFWNMACC_VF -> OPFVF(SrcType.fp, SrcType.vp, FuType.vfma, VfmaType.vfnmacc_w, F, T, F, UopSplitType.VEC_VFW), 639 VFWMSAC_VF -> OPFVF(SrcType.fp, SrcType.vp, FuType.vfma, VfmaType.vfmsac_w , F, T, F, UopSplitType.VEC_VFW), 640 VFWNMSAC_VF -> OPFVF(SrcType.fp, SrcType.vp, FuType.vfma, VfmaType.vfnmsac_w, F, T, F, UopSplitType.VEC_VFW), 641 642 // 13.11. Vector Floating-Point MIN/MAX Instructions 643 VFMIN_VF -> OPFVF(SrcType.fp, SrcType.vp , FuType.vfalu, VfaluType.vfmin, F, T, F, UopSplitType.VEC_VFV), 644 VFMAX_VF -> OPFVF(SrcType.fp, SrcType.vp , FuType.vfalu, VfaluType.vfmax, F, T, F, UopSplitType.VEC_VFV), 645 646 // 13.12. Vector Floating-Point Sign-Injection Instructions 647 VFSGNJ_VF -> OPFVF(SrcType.fp, SrcType.vp , FuType.vfalu, VfpuType.vfsgnj , F, T, F, UopSplitType.VEC_VFV), 648 VFSGNJN_VF -> OPFVF(SrcType.fp, SrcType.vp , FuType.vfalu, VfpuType.vfsgnjn, F, T, F, UopSplitType.VEC_VFV), 649 VFSGNJX_VF -> OPFVF(SrcType.fp, SrcType.vp , FuType.vfalu, VfpuType.vfsgnjx, F, T, F, UopSplitType.VEC_VFV), 650 651 // 13.13. Vector Floating-Point Compare Instructions 652 VMFEQ_VF -> OPFVF(SrcType.fp, SrcType.vp, FuType.vfalu, VfaluType.vfeq, F, F, T, UopSplitType.VEC_VFM), 653 VMFNE_VF -> OPFVF(SrcType.fp, SrcType.vp, FuType.vfalu, VfaluType.vfne, F, F, T, UopSplitType.VEC_VFM), 654 VMFLT_VF -> OPFVF(SrcType.fp, SrcType.vp, FuType.vfalu, VfaluType.vflt, F, F, T, UopSplitType.VEC_VFM), 655 VMFLE_VF -> OPFVF(SrcType.fp, SrcType.vp, FuType.vfalu, VfaluType.vfle, F, F, T, UopSplitType.VEC_VFM), 656 VMFGT_VF -> OPFVF(SrcType.fp, SrcType.vp, FuType.vfalu, VfaluType.vfgt, F, F, T, UopSplitType.VEC_VFM), 657 VMFGE_VF -> OPFVF(SrcType.fp, SrcType.vp, FuType.vfalu, VfaluType.vfge, F, F, T, UopSplitType.VEC_VFM), 658 659 // 13.15. Vector Floating-Point Merge Instruction 660 VFMERGE_VFM -> OPFVF(SrcType.fp, SrcType.vp , FuType.vfalu, VfaluType.vfmerge, F, T, F, UopSplitType.VEC_VFV), 661 662 // 13.16. Vector Floating-Point Move Instruction 663 VFMV_V_F -> OPFVF(SrcType.fp, SrcType.vp , FuType.vfalu, VfaluType.vfmv, F, T, F, src2 = SrcType.X), // vfmv.v.f vd, rs1 # vd[i] = f[rs1] 664 665 // 16.2. Floating-Point Scalar Move Instructions 666 VFMV_F_S -> OPFVF(SrcType.X, SrcType.X, FuType.vfalu, VfaluType.vfmv_f_s, T, F, F, UopSplitType.SCA_SIM), // f[rd] = vs2[0] (rs1=0) 667 VFMV_S_F -> OPFVF(SrcType.fp, SrcType.X, FuType.vfalu, VfaluType.vfmv_s_f, F, T, F, UopSplitType.VEC_VFV, src2 = SrcType.X), // vd[0] = f[rs1] (vs2=0) 668 // 16.3.3. Vector Slide1up 669 VFSLIDE1UP_VF -> OPFVF(SrcType.fp, SrcType.vp , FuType.vppu, VpermType.vfslide1up, F, T, F, UopSplitType.VEC_FSLIDE1UP),// vd[0]=f[rs1], vd[i+1] = vs2[i] 670 671 // 16.3.4. Vector Slide1down Instruction 672 // vslide1down.vx vd, vs2, rs1, vm # vd[i] = vs2[i+1], vd[vl-1]=x[rs1] 673 VFSLIDE1DOWN_VF -> OPFVF(SrcType.fp, SrcType.vp , FuType.vppu, VpermType.vfslide1down, F, T, F, UopSplitType.VEC_FSLIDE1DOWN),// vd[i] = vs2[i+1], vd[vl-1]=f[rs1] 674 ) 675 676 val vset: Array[(BitPat, XSDecodeBase)] = Array( 677 VSETVLI -> VSET(vli = F, vtypei = T, VSETOpType.uvsetvcfg_xi, flushPipe = F, SelImm.IMM_VSETVLI), 678 VSETIVLI -> VSET(vli = T, vtypei = T, VSETOpType.uvsetvcfg_ii, flushPipe = F, SelImm.IMM_VSETIVLI), 679 VSETVL -> VSET(vli = F, vtypei = F, VSETOpType.uvsetvcfg_xx, flushPipe = T, SelImm.X), // flush pipe 680 ) 681 682 val vls: Array[(BitPat, XSDecodeBase)] = Array( 683 // 7.4. Vector Unit-Stride Instructions 684 VLE8_V -> VLD(SrcType.X, VlduType.vle), 685 VLE16_V -> VLD(SrcType.X, VlduType.vle), 686 VLE32_V -> VLD(SrcType.X, VlduType.vle), 687 VLE64_V -> VLD(SrcType.X, VlduType.vle), 688 VSE8_V -> VST(SrcType.X, VstuType.vse), 689 VSE16_V -> VST(SrcType.X, VstuType.vse), 690 VSE32_V -> VST(SrcType.X, VstuType.vse), 691 VSE64_V -> VST(SrcType.X, VstuType.vse), 692 VLM_V -> VLD(SrcType.X, VlduType.vlm, mask = T), 693 VSM_V -> VST(SrcType.X, VstuType.vsm, mask = T), 694 // 7.5. Vector Strided Instructions 695 VLSE8_V -> VLD(SrcType.xp, VlduType.vlse, uopSplitType = UopSplitType.VEC_S_LDST, strided = T), 696 VLSE16_V -> VLD(SrcType.xp, VlduType.vlse, uopSplitType = UopSplitType.VEC_S_LDST, strided = T), 697 VLSE32_V -> VLD(SrcType.xp, VlduType.vlse, uopSplitType = UopSplitType.VEC_S_LDST, strided = T), 698 VLSE64_V -> VLD(SrcType.xp, VlduType.vlse, uopSplitType = UopSplitType.VEC_S_LDST, strided = T), 699 VSSE8_V -> VST(SrcType.xp, VstuType.vsse, uopSplitType = UopSplitType.VEC_S_LDST, strided = T), 700 VSSE16_V -> VST(SrcType.xp, VstuType.vsse, uopSplitType = UopSplitType.VEC_S_LDST, strided = T), 701 VSSE32_V -> VST(SrcType.xp, VstuType.vsse, uopSplitType = UopSplitType.VEC_S_LDST, strided = T), 702 VSSE64_V -> VST(SrcType.xp, VstuType.vsse, uopSplitType = UopSplitType.VEC_S_LDST, strided = T), 703 // 7.6. Vector Indexed Instructions 704 VLUXEI8_V -> VLD(SrcType.vp, VlduType.vluxe, uopSplitType = UopSplitType.VEC_I_LDST, indexed = T, ordered = F), 705 VLUXEI16_V -> VLD(SrcType.vp, VlduType.vluxe, uopSplitType = UopSplitType.VEC_I_LDST, indexed = T, ordered = F), 706 VLUXEI32_V -> VLD(SrcType.vp, VlduType.vluxe, uopSplitType = UopSplitType.VEC_I_LDST, indexed = T, ordered = F), 707 VLUXEI64_V -> VLD(SrcType.vp, VlduType.vluxe, uopSplitType = UopSplitType.VEC_I_LDST, indexed = T, ordered = F), 708 VLOXEI8_V -> VLD(SrcType.vp, VlduType.vloxe, uopSplitType = UopSplitType.VEC_I_LDST, indexed = T, ordered = T), 709 VLOXEI16_V -> VLD(SrcType.vp, VlduType.vloxe, uopSplitType = UopSplitType.VEC_I_LDST, indexed = T, ordered = T), 710 VLOXEI32_V -> VLD(SrcType.vp, VlduType.vloxe, uopSplitType = UopSplitType.VEC_I_LDST, indexed = T, ordered = T), 711 VLOXEI64_V -> VLD(SrcType.vp, VlduType.vloxe, uopSplitType = UopSplitType.VEC_I_LDST, indexed = T, ordered = T), 712 VSUXEI8_V -> VST(SrcType.vp, VstuType.vsuxe, uopSplitType = UopSplitType.VEC_I_LDST, indexed = T, ordered = F), 713 VSUXEI16_V -> VST(SrcType.vp, VstuType.vsuxe, uopSplitType = UopSplitType.VEC_I_LDST, indexed = T, ordered = F), 714 VSUXEI32_V -> VST(SrcType.vp, VstuType.vsuxe, uopSplitType = UopSplitType.VEC_I_LDST, indexed = T, ordered = F), 715 VSUXEI64_V -> VST(SrcType.vp, VstuType.vsuxe, uopSplitType = UopSplitType.VEC_I_LDST, indexed = T, ordered = F), 716 VSOXEI8_V -> VST(SrcType.vp, VstuType.vsoxe, uopSplitType = UopSplitType.VEC_I_LDST, indexed = T, ordered = T), 717 VSOXEI16_V -> VST(SrcType.vp, VstuType.vsoxe, uopSplitType = UopSplitType.VEC_I_LDST, indexed = T, ordered = T), 718 VSOXEI32_V -> VST(SrcType.vp, VstuType.vsoxe, uopSplitType = UopSplitType.VEC_I_LDST, indexed = T, ordered = T), 719 VSOXEI64_V -> VST(SrcType.vp, VstuType.vsoxe, uopSplitType = UopSplitType.VEC_I_LDST, indexed = T, ordered = T), 720 // 7.7. Unit-stride Fault-Only-First Loads 721 VLE8FF_V -> VLD(SrcType.X, VlduType.vleff, ff = T), 722 VLE16FF_V -> VLD(SrcType.X, VlduType.vleff, ff = T), 723 VLE32FF_V -> VLD(SrcType.X, VlduType.vleff, ff = T), 724 VLE64FF_V -> VLD(SrcType.X, VlduType.vleff, ff = T), 725 // 7.8. Vector Load/Store Segment Instructions 726 // 7.8.1. Vector Unit-Stride Segment Loads and Stores 727 // TODO 728 // 7.8.2. Vector Strided Segment Loads and Stores 729 // TODO 730 // 7.8.3. Vector Indexed Segment Loads and Stores 731 // TODO 732 // 7.9. Vector Load/Store Whole Register Instructions 733 VL1RE8_V -> VLD(SrcType.X, VlduType.vlr, whole = T), 734 VL1RE16_V -> VLD(SrcType.X, VlduType.vlr, whole = T), 735 VL1RE32_V -> VLD(SrcType.X, VlduType.vlr, whole = T), 736 VL1RE64_V -> VLD(SrcType.X, VlduType.vlr, whole = T), 737 VL2RE8_V -> VLD(SrcType.X, VlduType.vlr, whole = T), 738 VL2RE16_V -> VLD(SrcType.X, VlduType.vlr, whole = T), 739 VL2RE32_V -> VLD(SrcType.X, VlduType.vlr, whole = T), 740 VL2RE64_V -> VLD(SrcType.X, VlduType.vlr, whole = T), 741 VL4RE8_V -> VLD(SrcType.X, VlduType.vlr, whole = T), 742 VL4RE16_V -> VLD(SrcType.X, VlduType.vlr, whole = T), 743 VL4RE32_V -> VLD(SrcType.X, VlduType.vlr, whole = T), 744 VL4RE64_V -> VLD(SrcType.X, VlduType.vlr, whole = T), 745 VL8RE8_V -> VLD(SrcType.X, VlduType.vlr, whole = T), 746 VL8RE16_V -> VLD(SrcType.X, VlduType.vlr, whole = T), 747 VL8RE32_V -> VLD(SrcType.X, VlduType.vlr, whole = T), 748 VL8RE64_V -> VLD(SrcType.X, VlduType.vlr, whole = T), 749 VS1R_V -> VST(SrcType.X, VstuType.vsr, whole = T), 750 VS2R_V -> VST(SrcType.X, VstuType.vsr, whole = T), 751 VS4R_V -> VST(SrcType.X, VstuType.vsr, whole = T), 752 VS8R_V -> VST(SrcType.X, VstuType.vsr, whole = T), 753 ) 754 755 override val decodeArray: Array[(BitPat, XSDecodeBase)] = vset ++ 756 opivv ++ opivx ++ opivi ++ opmvv ++ opmvx ++ opfvv ++ opfvf ++ opfff ++ vls 757} 758