xref: /XiangShan/src/main/scala/xiangshan/backend/datapath/WbArbiter.scala (revision 4daa5bf3c3f27e7fd090866d52405b21e107eb8d)
1package xiangshan.backend.datapath
2
3import org.chipsalliance.cde.config.Parameters
4import chisel3._
5import chisel3.util._
6import difftest.{DiffFpWriteback, DiffIntWriteback, DifftestModule, DiffVecWriteback}
7import utils.XSError
8import xiangshan.backend.BackendParams
9import xiangshan.backend.Bundles.{ExuOutput, WriteBackBundle}
10import xiangshan.backend.datapath.DataConfig.{IntData, VecData, FpData}
11import xiangshan.backend.regfile.RfWritePortWithConfig
12import xiangshan.{Redirect, XSBundle, XSModule}
13
14class WbArbiterDispatcherIO[T <: Data](private val gen: T, n: Int) extends Bundle {
15  val in = Flipped(DecoupledIO(gen))
16
17  val out = Vec(n, DecoupledIO(gen))
18}
19
20class WbArbiterDispatcher[T <: Data](private val gen: T, n: Int, acceptCond: T => (Seq[Bool], Bool))
21                           (implicit p: Parameters)
22  extends Module {
23
24  val io = IO(new WbArbiterDispatcherIO(gen, n))
25
26  private val acceptVec: Vec[Bool] = VecInit(acceptCond(io.in.bits)._1)
27
28  XSError(io.in.valid && PopCount(acceptVec) > 1.U, s"[ExeUnit] accept vec should no more than 1, ${Binary(acceptVec.asUInt)} ")
29
30  io.out.zipWithIndex.foreach { case (out, i) =>
31    out.valid := acceptVec(i) && io.in.valid
32    out.bits := io.in.bits
33  }
34
35  io.in.ready := Cat(io.out.zip(acceptVec).map{ case(out, canAccept) => out.ready && canAccept}).orR || acceptCond(io.in.bits)._2
36}
37
38class WbArbiterIO()(implicit p: Parameters, params: WbArbiterParams) extends XSBundle {
39  val flush = Flipped(ValidIO(new Redirect))
40  val in: MixedVec[DecoupledIO[WriteBackBundle]] = Flipped(params.genInput)
41  val out: MixedVec[ValidIO[WriteBackBundle]] = params.genOutput
42
43  def inGroup: Map[Int, Seq[DecoupledIO[WriteBackBundle]]] = in.groupBy(_.bits.params.port).map(x => (x._1, x._2.sortBy(_.bits.params.priority).toSeq))
44}
45
46class WbArbiter(params: WbArbiterParams)(implicit p: Parameters) extends XSModule {
47  val io = IO(new WbArbiterIO()(p, params))
48
49  private val inGroup: Map[Int, Seq[DecoupledIO[WriteBackBundle]]] = io.inGroup
50
51  private val arbiters: Seq[Option[RealWBArbiter[WriteBackBundle]]] = Seq.tabulate(params.numOut) { x => {
52    if (inGroup.contains(x)) {
53      Some(Module(new RealWBArbiter(new WriteBackBundle(inGroup.values.head.head.bits.params, backendParams), inGroup(x).length)))
54    } else {
55      None
56    }
57  }}
58
59  arbiters.zipWithIndex.foreach { case (arb, i) =>
60    if (arb.nonEmpty) {
61      arb.get.io.in.zip(inGroup(i)).foreach { case (arbIn, wbIn) =>
62        arbIn <> wbIn
63      }
64    }
65  }
66
67  io.out.zip(arbiters).foreach { case (wbOut, arb) =>
68    if (arb.nonEmpty) {
69      val arbOut = arb.get.io.out
70      arbOut.ready := true.B
71      wbOut.valid := arbOut.valid
72      wbOut.bits := arbOut.bits
73    } else {
74      wbOut := 0.U.asTypeOf(wbOut)
75    }
76  }
77
78  def getInOutMap: Map[Int, Int] = {
79    (params.wbCfgs.indices zip params.wbCfgs.map(_.port)).toMap
80  }
81}
82
83class WbDataPathIO()(implicit p: Parameters, params: BackendParams) extends XSBundle {
84  val flush = Flipped(ValidIO(new Redirect()))
85
86  val fromTop = new Bundle {
87    val hartId = Input(UInt(8.W))
88  }
89
90  val fromIntExu: MixedVec[MixedVec[DecoupledIO[ExuOutput]]] = Flipped(params.intSchdParams.get.genExuOutputDecoupledBundle)
91
92  val fromFpExu: MixedVec[MixedVec[DecoupledIO[ExuOutput]]] = Flipped(params.fpSchdParams.get.genExuOutputDecoupledBundle)
93
94  val fromVfExu: MixedVec[MixedVec[DecoupledIO[ExuOutput]]] = Flipped(params.vfSchdParams.get.genExuOutputDecoupledBundle)
95
96  val fromMemExu: MixedVec[MixedVec[DecoupledIO[ExuOutput]]] = Flipped(params.memSchdParams.get.genExuOutputDecoupledBundle)
97
98  val toIntPreg = Flipped(MixedVec(Vec(params.numPregWb(IntData()),
99    new RfWritePortWithConfig(params.intPregParams.dataCfg, params.intPregParams.addrWidth))))
100
101  val toFpPreg = Flipped(MixedVec(Vec(params.numPregWb(FpData()),
102    new RfWritePortWithConfig(params.fpPregParams.dataCfg, params.fpPregParams.addrWidth))))
103
104  val toVfPreg = Flipped(MixedVec(Vec(params.numPregWb(VecData()),
105    new RfWritePortWithConfig(params.vfPregParams.dataCfg, params.vfPregParams.addrWidth))))
106
107  val toCtrlBlock = new Bundle {
108    val writeback: MixedVec[ValidIO[ExuOutput]] = params.genWrite2CtrlBundles
109  }
110}
111
112class WbDataPath(params: BackendParams)(implicit p: Parameters) extends XSModule {
113  val io = IO(new WbDataPathIO()(p, params))
114
115  // split
116  val fromExuPre = (io.fromIntExu ++ io.fromFpExu ++ io.fromVfExu ++ io.fromMemExu).flatten
117  val fromExuVld: Seq[DecoupledIO[ExuOutput]] = fromExuPre.filter(_.bits.params.hasVLoadFu).toSeq
118  require(fromExuVld.size == 1, "vldCnt should be 1")
119  val vldMgu = Module(new VldMergeUnit(fromExuVld.head.bits.params))
120  vldMgu.io.flush := io.flush
121  vldMgu.io.writeback <> fromExuVld.head
122  val wbReplaceVld: Seq[DecoupledIO[ExuOutput]] = fromExuPre.updated(fromExuPre.indexWhere(_.bits.params.hasVLoadFu), vldMgu.io.writebackAfterMerge).toSeq
123  val fromExu: MixedVec[DecoupledIO[ExuOutput]] = Wire(chiselTypeOf(MixedVecInit(wbReplaceVld)))
124
125  // io.fromExuPre ------------------------------------------------------------> fromExu
126  //               \                                                         /
127  //                -> vldMgu.io.writeback -> vldMgu.io.writebackAfterMerge /
128  (fromExu zip wbReplaceVld).foreach { case (sink, source) =>
129    sink.valid := source.valid
130    sink.bits := source.bits
131    source.ready := sink.ready
132  }
133
134  // fromExu -> ArbiterInput
135  val intArbiterInputsWire = Wire(chiselTypeOf(fromExu))
136  val intArbiterInputsWireY = intArbiterInputsWire.filter(_.bits.params.writeIntRf)
137  val intArbiterInputsWireN = intArbiterInputsWire.filterNot(_.bits.params.writeIntRf)
138
139  val fpArbiterInputsWire = Wire(chiselTypeOf(fromExu))
140  val fpArbiterInputsWireY = fpArbiterInputsWire.filter(_.bits.params.writeFpRf)
141  val fpArbiterInputsWireN = fpArbiterInputsWire.filterNot(_.bits.params.writeFpRf)
142
143  val vfArbiterInputsWire = Wire(chiselTypeOf(fromExu))
144  val vfArbiterInputsWireY = vfArbiterInputsWire.filter(_.bits.params.writeVfRf)
145  val vfArbiterInputsWireN = vfArbiterInputsWire.filterNot(_.bits.params.writeVfRf)
146
147  def acceptCond(exuOutput: ExuOutput): (Seq[Bool], Bool) = {
148    val intWen = if(exuOutput.intWen.isDefined) exuOutput.intWen.get else false.B
149    val fpwen  = if(exuOutput.fpWen.isDefined) exuOutput.fpWen.get else false.B
150    val vecWen = if(exuOutput.vecWen.isDefined) exuOutput.vecWen.get else false.B
151    (Seq(intWen, fpwen, vecWen), !intWen && !fpwen && !vecWen)
152  }
153
154  intArbiterInputsWire.zip(fpArbiterInputsWire).zip(vfArbiterInputsWire).zip(fromExu).foreach {
155    case (((intArbiterInput, fpArbiterInput), vfArbiterInput), exuOut) =>
156      val writeCond = acceptCond(exuOut.bits)
157      val intWrite = Wire(Bool())
158      val fpWrite = Wire(Bool())
159      val vfWrite = Wire(Bool())
160      val notWrite = Wire(Bool())
161
162      intWrite := exuOut.valid && writeCond._1(0)
163      fpWrite := exuOut.valid && writeCond._1(1)
164      vfWrite := exuOut.valid && writeCond._1(2)
165      notWrite := writeCond._2
166
167      intArbiterInput.valid := intWrite
168      intArbiterInput.bits := exuOut.bits
169      fpArbiterInput.valid := fpWrite
170      fpArbiterInput.bits := exuOut.bits
171      vfArbiterInput.valid := vfWrite
172      vfArbiterInput.bits := exuOut.bits
173
174      if (exuOut.bits.params.writeIntRf && exuOut.bits.params.isVfExeUnit) {
175        intWrite := RegNext(exuOut.valid && writeCond._1(0))
176        intArbiterInput.bits := RegEnable(exuOut.bits, exuOut.valid)
177      }
178
179      println(s"[WbDataPath] exu: ${exuOut.bits.params.exuIdx}, uncertain: ${exuOut.bits.params.hasUncertainLatency}, certain: ${exuOut.bits.params.latencyCertain}")
180
181      // only EXUs with uncertain latency need result of arbiter
182      // the result data can be maintained until getting success in arbiter
183      if (exuOut.bits.params.hasUncertainLatency) {
184        exuOut.ready := intArbiterInput.ready && intWrite || fpArbiterInput.ready && fpWrite || vfArbiterInput.ready && vfWrite || notWrite
185      } else {
186        exuOut.ready := true.B
187
188        // for EXUs with certain latency, if the request fails in arbiter, the result data will be permanently lost
189        when (intWrite) {
190          assert(intArbiterInput.ready, s"exu ${exuOut.bits.params.exuIdx} failed to write int regfile\n")
191        }
192        when(fpWrite) {
193          assert(fpArbiterInput.ready, s"exu ${exuOut.bits.params.exuIdx} failed to write fp regfile\n")
194        }
195        when (vfWrite) {
196          assert(vfArbiterInput.ready, s"exu ${exuOut.bits.params.exuIdx} failed to write vf regfile\n")
197        }
198      }
199      // the ports not writting back pregs are always ready
200      // the ports set highest priority are always ready
201      if (exuOut.bits.params.hasNoDataWB || exuOut.bits.params.isHighestWBPriority) {
202        exuOut.ready := true.B
203      }
204  }
205  intArbiterInputsWireN.foreach(_.ready := false.B)
206  fpArbiterInputsWireN.foreach(_.ready := false.B)
207  vfArbiterInputsWireN.foreach(_.ready := false.B)
208
209  println(s"[WbDataPath] write int preg: " +
210    s"IntExu(${io.fromIntExu.flatten.count(_.bits.params.writeIntRf)}) " +
211    s"FpExu(${io.fromFpExu.flatten.count(_.bits.params.writeIntRf)}) " +
212    s"VfExu(${io.fromVfExu.flatten.count(_.bits.params.writeIntRf)}) " +
213    s"MemExu(${io.fromMemExu.flatten.count(_.bits.params.writeIntRf)})"
214  )
215  println(s"[WbDataPath] write fp preg: " +
216    s"IntExu(${io.fromIntExu.flatten.count(_.bits.params.writeFpRf)}) " +
217    s"FpExu(${io.fromFpExu.flatten.count(_.bits.params.writeFpRf)}) " +
218    s"VfExu(${io.fromVfExu.flatten.count(_.bits.params.writeFpRf)}) " +
219    s"MemExu(${io.fromMemExu.flatten.count(_.bits.params.writeFpRf)})"
220  )
221  println(s"[WbDataPath] write vf preg: " +
222    s"IntExu(${io.fromIntExu.flatten.count(_.bits.params.writeVfRf)}) " +
223    s"FpExu(${io.fromFpExu.flatten.count(_.bits.params.writeVfRf)}) " +
224    s"VfExu(${io.fromVfExu.flatten.count(_.bits.params.writeVfRf)}) " +
225    s"MemExu(${io.fromMemExu.flatten.count(_.bits.params.writeVfRf)})"
226  )
227
228  // wb arbiter
229  private val intWbArbiter = Module(new WbArbiter(params.getIntWbArbiterParams))
230  private val fpWbArbiter = Module(new WbArbiter(params.getFpWbArbiterParams))
231  private val vfWbArbiter = Module(new WbArbiter(params.getVfWbArbiterParams))
232  println(s"[WbDataPath] int preg write back port num: ${intWbArbiter.io.out.size}, active port: ${intWbArbiter.io.inGroup.keys.toSeq.sorted}")
233  println(s"[WbDataPath] fp preg write back port num: ${fpWbArbiter.io.out.size}, active port: ${fpWbArbiter.io.inGroup.keys.toSeq.sorted}")
234  println(s"[WbDataPath] vf preg write back port num: ${vfWbArbiter.io.out.size}, active port: ${vfWbArbiter.io.inGroup.keys.toSeq.sorted}")
235
236  // module assign
237  intWbArbiter.io.flush <> io.flush
238  require(intWbArbiter.io.in.size == intArbiterInputsWireY.size, s"intWbArbiter input size: ${intWbArbiter.io.in.size}, all int wb size: ${intArbiterInputsWireY.size}")
239  intWbArbiter.io.in.zip(intArbiterInputsWireY).foreach { case (arbiterIn, in) =>
240    arbiterIn.valid := in.valid && in.bits.intWen.get
241    in.ready := arbiterIn.ready
242    arbiterIn.bits.fromExuOutput(in.bits)
243  }
244  private val intWbArbiterOut = intWbArbiter.io.out
245
246  fpWbArbiter.io.flush <> io.flush
247  require(fpWbArbiter.io.in.size == fpArbiterInputsWireY.size, s"fpWbArbiter input size: ${fpWbArbiter.io.in.size}, all fp wb size: ${fpArbiterInputsWireY.size}")
248  fpWbArbiter.io.in.zip(fpArbiterInputsWireY).foreach { case (arbiterIn, in) =>
249    arbiterIn.valid := in.valid && (in.bits.fpWen.getOrElse(false.B))
250    in.ready := arbiterIn.ready
251    arbiterIn.bits.fromExuOutput(in.bits)
252  }
253  private val fpWbArbiterOut = fpWbArbiter.io.out
254
255  vfWbArbiter.io.flush <> io.flush
256  require(vfWbArbiter.io.in.size == vfArbiterInputsWireY.size, s"vfWbArbiter input size: ${vfWbArbiter.io.in.size}, all vf wb size: ${vfArbiterInputsWireY.size}")
257  vfWbArbiter.io.in.zip(vfArbiterInputsWireY).foreach { case (arbiterIn, in) =>
258    arbiterIn.valid := in.valid && (in.bits.vecWen.getOrElse(false.B))
259    in.ready := arbiterIn.ready
260    arbiterIn.bits.fromExuOutput(in.bits)
261  }
262  private val vfWbArbiterOut = vfWbArbiter.io.out
263
264  // WB -> CtrlBlock
265  private val intExuInputs = io.fromIntExu.flatten.toSeq
266  private val intExuWBs = WireInit(MixedVecInit(intExuInputs))
267  private val fpExuInputs = io.fromFpExu.flatten.toSeq
268  private val fpExuWBs = WireInit(MixedVecInit(fpExuInputs))
269  private val vfExuInputs = io.fromVfExu.flatten.toSeq
270  private val vfExuWBs = WireInit(MixedVecInit(vfExuInputs))
271  private val memExuInputs = io.fromMemExu.flatten.toSeq
272  private val memExuWBs = WireInit(MixedVecInit(memExuInputs))
273
274  // only fired port can write back to ctrl block
275  (intExuWBs zip intExuInputs).foreach { case (wb, input) => wb.valid := input.fire }
276  (fpExuWBs zip fpExuInputs).foreach { case (wb, input) => wb.valid := input.fire }
277  (vfExuWBs zip vfExuInputs).foreach { case (wb, input) => wb.valid := input.fire }
278  (memExuWBs zip memExuInputs).foreach { case (wb, input) => wb.valid := input.fire }
279
280  // io assign
281  private val toIntPreg: MixedVec[RfWritePortWithConfig] = MixedVecInit(intWbArbiterOut.map(x => x.bits.asIntRfWriteBundle(x.fire)).toSeq)
282  private val toFpPreg: MixedVec[RfWritePortWithConfig] = MixedVecInit(fpWbArbiterOut.map(x => x.bits.asFpRfWriteBundle(x.fire)).toSeq)
283  private val toVfPreg: MixedVec[RfWritePortWithConfig] = MixedVecInit(vfWbArbiterOut.map(x => x.bits.asVfRfWriteBundle(x.fire)).toSeq)
284
285  private val wb2Ctrl = intExuWBs ++ fpExuWBs ++ vfExuWBs ++ memExuWBs
286
287  io.toIntPreg := toIntPreg
288  io.toFpPreg := toFpPreg
289  io.toVfPreg := toVfPreg
290  io.toCtrlBlock.writeback.zip(wb2Ctrl).foreach { case (sink, source) =>
291    sink.valid := source.valid
292    sink.bits := source.bits
293    source.ready := true.B
294  }
295
296  // debug
297  if(backendParams.debugEn) {
298    dontTouch(intArbiterInputsWire)
299    dontTouch(fpArbiterInputsWire)
300    dontTouch(vfArbiterInputsWire)
301  }
302
303  // difftest
304  if (env.EnableDifftest || env.AlwaysBasicDiff) {
305    intWbArbiterOut.foreach(out => {
306      val difftest = DifftestModule(new DiffIntWriteback(IntPhyRegs))
307      difftest.coreid := io.fromTop.hartId
308      difftest.valid := out.fire && out.bits.rfWen
309      difftest.address := out.bits.pdest
310      difftest.data := out.bits.data
311    })
312  }
313
314  if (env.EnableDifftest || env.AlwaysBasicDiff) {
315    fpWbArbiterOut.foreach(out => {
316      val difftest = DifftestModule(new DiffFpWriteback(FpPhyRegs))
317      difftest.coreid := io.fromTop.hartId
318      difftest.valid := out.fire // all fp instr will write fp rf
319      difftest.address := out.bits.pdest
320      difftest.data := out.bits.data
321    })
322  }
323
324  if (env.EnableDifftest || env.AlwaysBasicDiff) {
325    vfWbArbiterOut.foreach(out => {
326      val difftest = DifftestModule(new DiffVecWriteback(VfPhyRegs))
327      difftest.coreid := io.fromTop.hartId
328      difftest.valid := out.fire
329      difftest.address := out.bits.pdest
330      difftest.data := out.bits.data
331    })
332  }
333}
334
335
336
337
338