xref: /XiangShan/src/main/scala/xiangshan/backend/datapath/DataPath.scala (revision 9896b9c4876c8030f9576af41840cc739c3f49a1)
1package xiangshan.backend.datapath
2
3import chipsalliance.rocketchip.config.Parameters
4import chisel3.{Data, _}
5import chisel3.util._
6import difftest.{DifftestArchFpRegState, DifftestArchIntRegState, DifftestArchVecRegState}
7import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp}
8import utility._
9import xiangshan._
10import xiangshan.backend.BackendParams
11import xiangshan.backend.datapath.DataConfig._
12import xiangshan.backend.datapath.RdConfig._
13import xiangshan.backend.issue.{ImmExtractor, IntScheduler, MemScheduler, VfScheduler}
14import xiangshan.backend.Bundles._
15import xiangshan.backend.regfile._
16import xiangshan.backend.datapath.WbConfig.{IntWB, PregWB, VfWB}
17
18class WbBusyArbiterIO(inPortSize: Int, outPortSize: Int)(implicit p: Parameters) extends XSBundle {
19  val in = Vec(inPortSize, Flipped(DecoupledIO(new Bundle{}))) // TODO: remote the bool
20  val flush = Flipped(ValidIO(new Redirect))
21}
22
23class WbBusyArbiter(isInt: Boolean)(implicit p: Parameters) extends XSModule {
24  val allExuParams = backendParams.allExuParams
25
26  val portConfigs = allExuParams.flatMap(_.wbPortConfigs).filter{
27    wbPortConfig =>
28      if(isInt){
29        wbPortConfig.isInstanceOf[IntWB]
30      }
31      else{
32        wbPortConfig.isInstanceOf[VfWB]
33      }
34  }
35
36  val numRfWrite = if (isInt) backendParams.numIntWb else backendParams.numVfWb
37
38  val io = IO(new WbBusyArbiterIO(portConfigs.size, numRfWrite))
39  // inGroup[port -> Bundle]
40  val inGroup = io.in.zip(portConfigs).groupBy{ case(port, config) => config.port}
41  // sort by priority
42  val inGroupSorted = inGroup.map{
43    case(key, value) => (key -> value.sortBy{ case(port, config) => config.asInstanceOf[PregWB].priority})
44  }
45
46  private val arbiters = Seq.tabulate(numRfWrite) { x => {
47    if (inGroupSorted.contains(x)) {
48      Some(Module(new Arbiter( new Bundle{} ,n = inGroupSorted(x).length)))
49    } else {
50      None
51    }
52  }}
53
54  arbiters.zipWithIndex.foreach { case (arb, i) =>
55    if (arb.nonEmpty) {
56      arb.get.io.in.zip(inGroupSorted(i).map(_._1)).foreach { case (arbIn, addrIn) =>
57        arbIn <> addrIn
58      }
59    }
60  }
61
62  arbiters.foreach(_.foreach(_.io.out.ready := true.B))
63}
64
65class RFArbiterBundle(addrWidth: Int)(implicit p: Parameters) extends XSBundle {
66  val addr = UInt(addrWidth.W)
67}
68
69class RFReadArbiterIO(inPortSize: Int, outPortSize: Int, pregWidth: Int)(implicit p: Parameters) extends XSBundle {
70  val in = Vec(inPortSize, Flipped(DecoupledIO(new RFArbiterBundle(pregWidth))))
71  val out = Vec(outPortSize, Valid(new RFArbiterBundle(pregWidth)))
72  val flush = Flipped(ValidIO(new Redirect))
73}
74
75class RFReadArbiter(isInt: Boolean)(implicit p: Parameters) extends XSModule {
76  val allExuParams = backendParams.allExuParams
77
78  val portConfigs: Seq[RdConfig] = allExuParams.map(_.rfrPortConfigs.flatten).flatten.filter{
79    rfrPortConfigs =>
80      if(isInt){
81        rfrPortConfigs.isInstanceOf[IntRD]
82      }
83      else{
84        rfrPortConfigs.isInstanceOf[VfRD]
85      }
86  }
87
88  private val moduleName = this.getClass.getName + (if (isInt) "Int" else "Vf")
89
90  println(s"[$moduleName] ports(${portConfigs.size})")
91  for (portCfg <- portConfigs) {
92    println(s"[$moduleName] port: ${portCfg.port}, priority: ${portCfg.priority}")
93  }
94
95  val pregParams = if(isInt) backendParams.intPregParams else backendParams.vfPregParams
96
97  val io = IO(new RFReadArbiterIO(portConfigs.size, backendParams.numRfRead, pregParams.addrWidth))
98  // inGroup[port -> Bundle]
99  val inGroup: Map[Int, IndexedSeq[(DecoupledIO[RFArbiterBundle], RdConfig)]] = io.in.zip(portConfigs).groupBy{ case(port, config) => config.port}
100  // sort by priority
101  val inGroupSorted: Map[Int, IndexedSeq[(DecoupledIO[RFArbiterBundle], RdConfig)]] = inGroup.map{
102    case(key, value) => (key -> value.sortBy{ case(port, config) => config.priority})
103  }
104
105  private val arbiters: Seq[Option[Arbiter[RFArbiterBundle]]] = Seq.tabulate(backendParams.numRfRead) { x => {
106    if (inGroupSorted.contains(x)) {
107      Some(Module(new Arbiter(new RFArbiterBundle(pregParams.addrWidth), inGroupSorted(x).length)))
108    } else {
109      None
110    }
111  }}
112
113  arbiters.zipWithIndex.foreach { case (arb, i) =>
114    if (arb.nonEmpty) {
115      arb.get.io.in.zip(inGroupSorted(i).map(_._1)).foreach { case (arbIn, addrIn) =>
116        arbIn <> addrIn
117      }
118    }
119  }
120
121  io.out.zip(arbiters).foreach { case (addrOut, arb) =>
122    if (arb.nonEmpty) {
123      val arbOut = arb.get.io.out
124      arbOut.ready := true.B
125      addrOut.valid := arbOut.valid
126      addrOut.bits := arbOut.bits
127    } else {
128      addrOut := 0.U.asTypeOf(addrOut)
129    }
130  }
131}
132
133class DataPath(params: BackendParams)(implicit p: Parameters) extends LazyModule {
134  private implicit val dpParams: BackendParams = params
135  lazy val module = new DataPathImp(this)
136}
137
138class DataPathImp(override val wrapper: DataPath)(implicit p: Parameters, params: BackendParams)
139  extends LazyModuleImp(wrapper) with HasXSParameter {
140
141  private val VCONFIG_PORT = params.vconfigPort
142
143  val io = IO(new DataPathIO())
144
145  private val (fromIntIQ, toIntIQ, toIntExu) = (io.fromIntIQ, io.toIntIQ, io.toIntExu)
146  private val (fromMemIQ, toMemIQ, toMemExu) = (io.fromMemIQ, io.toMemIQ, io.toMemExu)
147  private val (fromVfIQ , toVfIQ , toVfExu ) = (io.fromVfIQ , io.toVfIQ , io.toFpExu)
148
149  println(s"[DataPath] IntIQ(${fromIntIQ.size}), MemIQ(${fromMemIQ.size})")
150  println(s"[DataPath] IntExu(${fromIntIQ.map(_.size).sum}), MemExu(${fromMemIQ.map(_.size).sum})")
151
152  // just refences for convience
153  private val fromIQ = fromIntIQ ++ fromVfIQ ++ fromMemIQ
154
155  private val toIQs = toIntIQ ++ toVfIQ ++ toMemIQ
156
157  private val toExu = toIntExu ++ toVfExu ++ toMemExu
158
159  private val intWbBusyArbiter = Module(new WbBusyArbiter(true))
160  private val vfWbBusyArbiter = Module(new WbBusyArbiter(false))
161  private val intRFReadArbiter = Module(new RFReadArbiter(true))
162  private val vfRFReadArbiter = Module(new RFReadArbiter(false))
163
164  private val issuePortsIn = fromIQ.flatten
165  private val intNotBlocksW = fromIQ.map { case iq => Wire(Vec(iq.size, Bool())) }
166  private val intNotBlocksSeqW = intNotBlocksW.flatten
167  private val vfNotBlocksW = fromIQ.map { case iq => Wire(Vec(iq.size, Bool())) }
168  private val vfNotBlocksSeqW = vfNotBlocksW.flatten
169  private val intBlocks = fromIQ.map{ case iq => Wire(Vec(iq.size, Bool())) }
170  private val intBlocksSeq = intBlocks.flatten
171  private val vfBlocks = fromIQ.map { case iq => Wire(Vec(iq.size, Bool())) }
172  private val vfBlocksSeq = vfBlocks.flatten
173
174  val intWbBusyInSize = issuePortsIn.map(issuePortIn => issuePortIn.bits.getIntWbBusyBundle.size).scan(0)(_ + _)
175  val intReadPortInSize: IndexedSeq[Int] = issuePortsIn.map(issuePortIn => issuePortIn.bits.getIntRfReadBundle.size).scan(0)(_ + _)
176  issuePortsIn.zipWithIndex.foreach{
177    case (issuePortIn, idx) =>
178      val wbBusyIn = issuePortIn.bits.getIntWbBusyBundle
179      val lw = intWbBusyInSize(idx)
180      val rw = intWbBusyInSize(idx + 1)
181      val arbiterInW = intWbBusyArbiter.io.in.slice(lw, rw)
182      arbiterInW.zip(wbBusyIn).foreach {
183        case (sink, source) =>
184          sink.bits := DontCare
185          sink.valid := issuePortIn.valid && source
186      }
187      if (rw > lw) {
188        intNotBlocksSeqW(idx) := arbiterInW.zip(wbBusyIn).map {
189          case (sink, source) => sink.ready
190        }.reduce(_ & _)
191      }
192      else {
193        intNotBlocksSeqW(idx) := true.B
194      }
195      val readPortIn = issuePortIn.bits.getIntRfReadBundle
196      val l = intReadPortInSize(idx)
197      val r = intReadPortInSize(idx + 1)
198      val arbiterIn = intRFReadArbiter.io.in.slice(l, r)
199      arbiterIn.zip(readPortIn).foreach{
200        case(sink, source) =>
201          sink.bits.addr := source.addr
202          sink.valid := issuePortIn.valid && SrcType.isXp(source.srcType) && intNotBlocksSeqW(idx)
203      }
204      if(r > l){
205        intBlocksSeq(idx) := !arbiterIn.zip(readPortIn).map {
206          case (sink, source) => Mux(SrcType.isXp(source.srcType), sink.ready, true.B)
207        }.reduce(_ & _)
208      }
209      else{
210        intBlocksSeq(idx) := false.B
211      }
212  }
213  intWbBusyArbiter.io.flush := io.flush
214  intRFReadArbiter.io.flush := io.flush
215
216  val vfWbBusyInSize = issuePortsIn.map(issuePortIn => issuePortIn.bits.getVfWbBusyBundle.size).scan(0)(_ + _)
217  val vfReadPortInSize: IndexedSeq[Int] = issuePortsIn.map(issuePortIn => issuePortIn.bits.getVfRfReadBundle.size).scan(0)(_ + _)
218  println(s"vfReadPortInSize: $vfReadPortInSize")
219
220  issuePortsIn.zipWithIndex.foreach {
221    case (issuePortIn, idx) =>
222      val wbBusyIn = issuePortIn.bits.getVfWbBusyBundle
223      val lw = vfWbBusyInSize(idx)
224      val rw = vfWbBusyInSize(idx + 1)
225      val arbiterInW = vfWbBusyArbiter.io.in.slice(lw, rw)
226      arbiterInW.zip(wbBusyIn).foreach {
227        case (sink, source) =>
228          sink.bits := DontCare
229          sink.valid := issuePortIn.valid && source
230      }
231      if (rw > lw) {
232        vfNotBlocksSeqW(idx) := arbiterInW.zip(wbBusyIn).map {
233          case (sink, source) => sink.ready
234        }.reduce(_ & _)
235      }
236      else {
237        vfNotBlocksSeqW(idx) := true.B
238      }
239      val readPortIn = issuePortIn.bits.getVfRfReadBundle
240      val l = vfReadPortInSize(idx)
241      val r = vfReadPortInSize(idx + 1)
242      val arbiterIn = vfRFReadArbiter.io.in.slice(l, r)
243      arbiterIn.zip(readPortIn).foreach {
244        case (sink, source) =>
245          sink.bits.addr := source.addr
246          sink.valid := issuePortIn.valid && SrcType.isVfp(source.srcType) && vfNotBlocksSeqW(idx)
247      }
248      if (r > l) {
249        vfBlocksSeq(idx) := !arbiterIn.zip(readPortIn).map {
250          case (sink, source) => Mux(SrcType.isVfp(source.srcType), sink.ready, true.B)
251        }.reduce(_ & _)
252      }
253      else {
254        vfBlocksSeq(idx) := false.B
255      }
256  }
257  vfWbBusyArbiter.io.flush := io.flush
258  vfRFReadArbiter.io.flush := io.flush
259
260  private val intSchdParams = params.schdParams(IntScheduler())
261  private val vfSchdParams = params.schdParams(VfScheduler())
262  private val memSchdParams = params.schdParams(MemScheduler())
263
264  private val numIntRfReadByExu = intSchdParams.numIntRfReadByExu + memSchdParams.numIntRfReadByExu
265  private val numVfRfReadByExu = vfSchdParams.numVfRfReadByExu + memSchdParams.numVfRfReadByExu
266  // Todo: limit read port
267  private val numIntR = numIntRfReadByExu
268  private val numVfR = numVfRfReadByExu
269  println(s"[DataPath] RegFile read req needed by Exu: Int(${numIntRfReadByExu}), Vf(${numVfRfReadByExu})")
270  println(s"[DataPath] RegFile read port: Int(${numIntR}), Vf(${numVfR})")
271
272  private val schdParams = params.allSchdParams
273
274  private val intRfRaddr = Wire(Vec(params.numRfRead, UInt(intSchdParams.pregIdxWidth.W)))
275  private val intRfRdata = Wire(Vec(params.numRfRead, UInt(intSchdParams.rfDataWidth.W)))
276  private val intRfWen = Wire(Vec(io.fromIntWb.length, Bool()))
277  private val intRfWaddr = Wire(Vec(io.fromIntWb.length, UInt(intSchdParams.pregIdxWidth.W)))
278  private val intRfWdata = Wire(Vec(io.fromIntWb.length, UInt(intSchdParams.rfDataWidth.W)))
279
280  private val vfRfSplitNum = VLEN / XLEN
281  private val vfRfRaddr = Wire(Vec(params.numRfRead, UInt(vfSchdParams.pregIdxWidth.W)))
282  private val vfRfRdata = Wire(Vec(params.numRfRead, UInt(vfSchdParams.rfDataWidth.W)))
283  private val vfRfWen = Wire(Vec(vfRfSplitNum, Vec(io.fromVfWb.length, Bool())))
284  private val vfRfWaddr = Wire(Vec(io.fromVfWb.length, UInt(vfSchdParams.pregIdxWidth.W)))
285  private val vfRfWdata = Wire(Vec(io.fromVfWb.length, UInt(vfSchdParams.rfDataWidth.W)))
286
287  private val intDebugRead: Option[(Vec[UInt], Vec[UInt])] =
288    if (env.AlwaysBasicDiff || env.EnableDifftest) {
289      Some(Wire(Vec(32, UInt(intSchdParams.pregIdxWidth.W))), Wire(Vec(32, UInt(XLEN.W))))
290    } else { None }
291  private val vfDebugRead: Option[(Vec[UInt], Vec[UInt])] =
292    if (env.AlwaysBasicDiff || env.EnableDifftest) {
293      Some(Wire(Vec(32 + 32 + 1, UInt(vfSchdParams.pregIdxWidth.W))), Wire(Vec(32 + 32 + 1, UInt(VLEN.W))))
294    } else { None }
295
296  private val fpDebugReadData: Option[Vec[UInt]] =
297    if (env.AlwaysBasicDiff || env.EnableDifftest) {
298      Some(Wire(Vec(32, UInt(XLEN.W))))
299    } else { None }
300  private val vecDebugReadData: Option[Vec[UInt]] =
301    if (env.AlwaysBasicDiff || env.EnableDifftest) {
302      Some(Wire(Vec(64, UInt(64.W)))) // v0 = Cat(Vec(1), Vec(0))
303    } else { None }
304  private val vconfigDebugReadData: Option[UInt] =
305    if (env.AlwaysBasicDiff || env.EnableDifftest) {
306      Some(Wire(UInt(64.W)))
307    } else { None }
308
309
310  fpDebugReadData.foreach(_ := vfDebugRead
311    .get._2
312    .slice(0, 32)
313    .map(_(63, 0))
314  ) // fp only used [63, 0]
315  vecDebugReadData.foreach(_ := vfDebugRead
316    .get._2
317    .slice(32, 64)
318    .map(x => Seq(x(63, 0), x(127, 64))).flatten
319  )
320  vconfigDebugReadData.foreach(_ := vfDebugRead
321    .get._2(64)(63, 0)
322  )
323
324  io.debugVconfig := vconfigDebugReadData.get
325
326  IntRegFile("IntRegFile", intSchdParams.numPregs, intRfRaddr, intRfRdata, intRfWen, intRfWaddr, intRfWdata,
327    debugReadAddr = intDebugRead.map(_._1),
328    debugReadData = intDebugRead.map(_._2))
329  VfRegFile("VfRegFile", vfSchdParams.numPregs, vfRfSplitNum, vfRfRaddr, vfRfRdata, vfRfWen, vfRfWaddr, vfRfWdata,
330    debugReadAddr = vfDebugRead.map(_._1),
331    debugReadData = vfDebugRead.map(_._2))
332
333  intRfWaddr := io.fromIntWb.map(_.addr)
334  intRfWdata := io.fromIntWb.map(_.data)
335  intRfWen := io.fromIntWb.map(_.wen)
336
337  intRFReadArbiter.io.out.map(_.bits.addr).zip(intRfRaddr).foreach{ case(source, sink) => sink := source }
338
339  vfRfWaddr := io.fromVfWb.map(_.addr)
340  vfRfWdata := io.fromVfWb.map(_.data)
341  vfRfWen.foreach(_.zip(io.fromVfWb.map(_.wen)).foreach { case (wenSink, wenSource) => wenSink := wenSource } )// Todo: support fp multi-write
342
343  vfRFReadArbiter.io.out.map(_.bits.addr).zip(vfRfRaddr).foreach{ case(source, sink) => sink := source }
344  vfRfRaddr(VCONFIG_PORT) := io.vconfigReadPort.addr
345  io.vconfigReadPort.data := vfRfRdata(VCONFIG_PORT)
346
347  intDebugRead.foreach { case (addr, _) =>
348    addr := io.debugIntRat
349  }
350
351  vfDebugRead.foreach { case (addr, _) =>
352    addr := io.debugFpRat ++ io.debugVecRat :+ io.debugVconfigRat
353  }
354  println(s"[DataPath] " +
355    s"has intDebugRead: ${intDebugRead.nonEmpty}, " +
356    s"has vfDebugRead: ${vfDebugRead.nonEmpty}")
357
358  val s1_addrOHs = Reg(MixedVec(
359    fromIQ.map(x => MixedVec(x.map(_.bits.addrOH.cloneType)))
360  ))
361  val s1_toExuValid: MixedVec[MixedVec[Bool]] = Reg(MixedVec(
362    toExu.map(x => MixedVec(x.map(_.valid.cloneType)))
363  ))
364  val s1_toExuData: MixedVec[MixedVec[ExuInput]] = Reg(MixedVec(toExu.map(x => MixedVec(x.map(_.bits.cloneType)))))
365  val s1_toExuReady = Wire(MixedVec(toExu.map(x => MixedVec(x.map(_.ready.cloneType))))) // Todo
366  val s1_srcType: MixedVec[MixedVec[Vec[UInt]]] = MixedVecInit(fromIQ.map(x => MixedVecInit(x.map(xx => RegEnable(xx.bits.srcType, xx.fire)))))
367
368  val s1_intPregRData: MixedVec[MixedVec[Vec[UInt]]] = Wire(MixedVec(toExu.map(x => MixedVec(x.map(_.bits.src.cloneType)))))
369  val s1_vfPregRData: MixedVec[MixedVec[Vec[UInt]]] = Wire(MixedVec(toExu.map(x => MixedVec(x.map(_.bits.src.cloneType)))))
370
371  val rfrPortConfigs = schdParams.map(_.issueBlockParams).flatten.map(_.exuBlockParams.map(_.rfrPortConfigs))
372
373  println(s"[DataPath] s1_intPregRData.flatten.flatten.size: ${s1_intPregRData.flatten.flatten.size}, intRfRdata.size: ${intRfRdata.size}")
374  s1_intPregRData.foreach(_.foreach(_.foreach(_ := 0.U)))
375  s1_intPregRData.zip(rfrPortConfigs).foreach { case (iqRdata, iqCfg) =>
376      iqRdata.zip(iqCfg).foreach { case (iuRdata, iuCfg) =>
377        val realIuCfg = iuCfg.map(x => if(x.size > 1) x.filter(_.isInstanceOf[IntRD]) else x).flatten
378        assert(iuRdata.size == realIuCfg.size, "iuRdata.size != realIuCfg.size")
379        iuRdata.zip(realIuCfg)
380          .filter { case (_, rfrPortConfig) => rfrPortConfig.isInstanceOf[IntRD] }
381          .foreach { case (sink, cfg) => sink := intRfRdata(cfg.port) }
382      }
383  }
384
385  println(s"[DataPath] s1_vfPregRData.flatten.flatten.size: ${s1_vfPregRData.flatten.flatten.size}, vfRfRdata.size: ${vfRfRdata.size}")
386  s1_vfPregRData.foreach(_.foreach(_.foreach(_ := 0.U)))
387  s1_vfPregRData.zip(rfrPortConfigs).foreach{ case(iqRdata, iqCfg) =>
388      iqRdata.zip(iqCfg).foreach{ case(iuRdata, iuCfg) =>
389        val realIuCfg = iuCfg.map(x => if(x.size > 1) x.filter(_.isInstanceOf[VfRD]) else x).flatten
390        assert(iuRdata.size == realIuCfg.size, "iuRdata.size != realIuCfg.size")
391        iuRdata.zip(realIuCfg)
392          .filter { case (_, rfrPortConfig) => rfrPortConfig.isInstanceOf[VfRD] }
393          .foreach { case (sink, cfg) => sink := vfRfRdata(cfg.port) }
394      }
395  }
396
397  for (i <- fromIQ.indices) {
398    for (j <- fromIQ(i).indices) {
399      // IQ(s0) --[Ctrl]--> s1Reg ---------- begin
400      // refs
401      val s1_valid = s1_toExuValid(i)(j)
402      val s1_ready = s1_toExuReady(i)(j)
403      val s1_data = s1_toExuData(i)(j)
404      val s1_addrOH = s1_addrOHs(i)(j)
405      val s0 = fromIQ(i)(j) // s0
406      val block = (intBlocks(i)(j) || !intNotBlocksW(i)(j)) || (vfBlocks(i)(j) || !vfNotBlocksW(i)(j))
407      val s1_flush = s0.bits.common.robIdx.needFlush(Seq(io.flush, RegNextWithEnable(io.flush)))
408      when (s0.fire && !s1_flush && !block) {
409        s1_valid := s0.valid
410        s1_data.fromIssueBundle(s0.bits) // no src data here
411        s1_addrOH := s0.bits.addrOH
412      }.otherwise {
413        s1_valid := false.B
414      }
415
416      s0.ready := (s1_ready || !s1_valid) && !block
417      // IQ(s0) --[Ctrl]--> s1Reg ---------- end
418
419      // IQ(s0) --[Data]--> s1Reg ---------- begin
420      // imm extract
421      when (s0.fire && !s1_flush && !block) {
422        if (s1_data.params.immType.nonEmpty && s1_data.src.size > 1) {
423          // rs1 is always int reg, rs2 may be imm
424          when(SrcType.isImm(s0.bits.srcType(1))) {
425            s1_data.src(1) := ImmExtractor(
426              s0.bits.common.imm,
427              s0.bits.immType,
428              s1_data.params.dataBitsMax,
429              s1_data.params.immType.map(_.litValue)
430            )
431          }
432        }
433        if (s1_data.params.hasJmpFu) {
434          when(SrcType.isPc(s0.bits.srcType(0))) {
435            s1_data.src(0) := SignExt(s0.bits.jmp.get.pc, XLEN)
436          }
437        } else if (s1_data.params.hasVecFu) {
438          // Fuck off riscv vector imm!!! Why not src1???
439          when(SrcType.isImm(s0.bits.srcType(0))) {
440            s1_data.src(0) := ImmExtractor(
441              s0.bits.common.imm,
442              s0.bits.immType,
443              s1_data.params.dataBitsMax,
444              s1_data.params.immType.map(_.litValue)
445            )
446          }
447        }
448      }
449      // IQ(s0) --[Data]--> s1Reg ---------- end
450    }
451  }
452
453  private val fromIQFire = fromIQ.map(_.map(_.fire))
454  private val toExuFire = toExu.map(_.map(_.fire))
455  toIQs.zipWithIndex.foreach {
456    case(toIQ, iqIdx) =>
457      toIQ.zipWithIndex.foreach {
458        case (toIU, iuIdx) =>
459          // IU: issue unit
460          val og0resp = toIU.og0resp
461          og0resp.valid := fromIQ(iqIdx)(iuIdx).valid && (!fromIQFire(iqIdx)(iuIdx))
462          og0resp.bits.respType := RSFeedbackType.rfArbitFail
463          og0resp.bits.success := false.B
464          og0resp.bits.addrOH := fromIQ(iqIdx)(iuIdx).bits.addrOH
465          og0resp.bits.rfWen := fromIQ(iqIdx)(iuIdx).bits.common.rfWen.getOrElse(false.B)
466          og0resp.bits.fuType := fromIQ(iqIdx)(iuIdx).bits.common.fuType
467
468          val og1resp = toIU.og1resp
469          og1resp.valid := s1_toExuValid(iqIdx)(iuIdx)
470          og1resp.bits.respType := Mux(toExuFire(iqIdx)(iuIdx), RSFeedbackType.fuIdle, RSFeedbackType.fuBusy)
471          og1resp.bits.success := false.B
472          og1resp.bits.addrOH := s1_addrOHs(iqIdx)(iuIdx)
473          og1resp.bits.rfWen := s1_toExuData(iqIdx)(iuIdx).rfWen.getOrElse(false.B)
474          og1resp.bits.fuType := s1_toExuData(iqIdx)(iuIdx).fuType
475      }
476  }
477
478  for (i <- toExu.indices) {
479    for (j <- toExu(i).indices) {
480      // s1Reg --[Ctrl]--> exu(s1) ---------- begin
481      // refs
482      val sinkData = toExu(i)(j).bits
483      // assign
484      toExu(i)(j).valid := s1_toExuValid(i)(j)
485      s1_toExuReady(i)(j) := toExu(i)(j).ready
486      sinkData := s1_toExuData(i)(j)
487      // s1Reg --[Ctrl]--> exu(s1) ---------- end
488
489      // s1Reg --[Data]--> exu(s1) ---------- begin
490      // data source1: preg read data
491      for (k <- sinkData.src.indices) {
492        val srcDataTypeSet: Set[DataConfig] = sinkData.params.getSrcDataType(k)
493
494        val readRfMap: Seq[(Bool, UInt)] = (Seq(None) :+
495          (if (s1_intPregRData(i)(j).isDefinedAt(k) && srcDataTypeSet.intersect(IntRegSrcDataSet).nonEmpty)
496            Some(SrcType.isXp(s1_srcType(i)(j)(k)) -> s1_intPregRData(i)(j)(k))
497          else None) :+
498          (if (s1_vfPregRData(i)(j).isDefinedAt(k) && srcDataTypeSet.intersect(VfRegSrcDataSet).nonEmpty)
499            Some(SrcType.isVfp(s1_srcType(i)(j)(k))-> s1_vfPregRData(i)(j)(k))
500          else None)
501        ).filter(_.nonEmpty).map(_.get)
502        if (readRfMap.nonEmpty)
503          sinkData.src(k) := Mux1H(readRfMap)
504      }
505
506      // data source2: extracted imm and pc saved in s1Reg
507      if (sinkData.params.immType.nonEmpty && sinkData.src.size > 1) {
508        when(SrcType.isImm(s1_srcType(i)(j)(1))) {
509          sinkData.src(1) := s1_toExuData(i)(j).src(1)
510        }
511      }
512      if (sinkData.params.hasJmpFu) {
513        when(SrcType.isPc(s1_srcType(i)(j)(0))) {
514          sinkData.src(0) := s1_toExuData(i)(j).src(0)
515        }
516      } else if (sinkData.params.hasVecFu) {
517        when(SrcType.isImm(s1_srcType(i)(j)(0))) {
518          sinkData.src(0) := s1_toExuData(i)(j).src(0)
519        }
520      }
521      // s1Reg --[Data]--> exu(s1) ---------- end
522    }
523  }
524
525  if (env.AlwaysBasicDiff || env.EnableDifftest) {
526    val delayedCnt = 2
527    val difftestArchIntRegState = Module(new DifftestArchIntRegState)
528    difftestArchIntRegState.io.clock := clock
529    difftestArchIntRegState.io.coreid := io.hartId
530    difftestArchIntRegState.io.gpr := DelayN(intDebugRead.get._2, delayedCnt)
531
532    val difftestArchFpRegState = Module(new DifftestArchFpRegState)
533    difftestArchFpRegState.io.clock := clock
534    difftestArchFpRegState.io.coreid := io.hartId
535    difftestArchFpRegState.io.fpr := DelayN(fpDebugReadData.get, delayedCnt)
536
537    val difftestArchVecRegState = Module(new DifftestArchVecRegState)
538    difftestArchVecRegState.io.clock := clock
539    difftestArchVecRegState.io.coreid := io.hartId
540    difftestArchVecRegState.io.vpr := DelayN(vecDebugReadData.get, delayedCnt)
541  }
542}
543
544class DataPathIO()(implicit p: Parameters, params: BackendParams) extends XSBundle {
545  // params
546  private val intSchdParams = params.schdParams(IntScheduler())
547  private val vfSchdParams = params.schdParams(VfScheduler())
548  private val memSchdParams = params.schdParams(MemScheduler())
549  // bundles
550  val hartId = Input(UInt(8.W))
551
552  val flush: ValidIO[Redirect] = Flipped(ValidIO(new Redirect))
553
554  // Todo: check if this can be removed
555  val vconfigReadPort = new RfReadPort(XLEN, PhyRegIdxWidth)
556
557  val fromIntIQ: MixedVec[MixedVec[DecoupledIO[IssueQueueIssueBundle]]] =
558    Flipped(MixedVec(intSchdParams.issueBlockParams.map(_.genIssueDecoupledBundle)))
559
560  val fromMemIQ: MixedVec[MixedVec[DecoupledIO[IssueQueueIssueBundle]]] =
561    Flipped(MixedVec(memSchdParams.issueBlockParams.map(_.genIssueDecoupledBundle)))
562
563  val fromVfIQ = Flipped(MixedVec(vfSchdParams.issueBlockParams.map(_.genIssueDecoupledBundle)))
564
565  val toIntIQ = MixedVec(intSchdParams.issueBlockParams.map(_.genOGRespBundle))
566
567  val toMemIQ = MixedVec(memSchdParams.issueBlockParams.map(_.genOGRespBundle))
568
569  val toVfIQ = MixedVec(vfSchdParams.issueBlockParams.map(_.genOGRespBundle))
570
571  val toIntExu: MixedVec[MixedVec[DecoupledIO[ExuInput]]] = intSchdParams.genExuInputBundle
572
573  val toFpExu: MixedVec[MixedVec[DecoupledIO[ExuInput]]] = MixedVec(vfSchdParams.genExuInputBundle)
574
575  val toMemExu: MixedVec[MixedVec[DecoupledIO[ExuInput]]] = memSchdParams.genExuInputBundle
576
577  val fromIntWb: MixedVec[RfWritePortWithConfig] = MixedVec(params.genIntWriteBackBundle)
578
579  val fromVfWb: MixedVec[RfWritePortWithConfig] = MixedVec(params.genVfWriteBackBundle)
580
581  val debugIntRat = Input(Vec(32, UInt(intSchdParams.pregIdxWidth.W)))
582  val debugFpRat = Input(Vec(32, UInt(vfSchdParams.pregIdxWidth.W)))
583  val debugVecRat = Input(Vec(32, UInt(vfSchdParams.pregIdxWidth.W)))
584  val debugVconfigRat = Input(UInt(vfSchdParams.pregIdxWidth.W))
585  val debugVconfig = Output(UInt(XLEN.W))
586
587}
588