1package xiangshan.backend.datapath 2 3import org.chipsalliance.cde.config.Parameters 4import chisel3._ 5import chisel3.util._ 6import difftest.{DiffArchFpRegState, DiffArchIntRegState, DiffArchVecRegState, DifftestModule} 7import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 8import utility._ 9import utils.SeqUtils._ 10import utils.{XSPerfAccumulate, XSPerfHistogram} 11import xiangshan._ 12import xiangshan.backend.BackendParams 13import xiangshan.backend.Bundles._ 14import xiangshan.backend.decode.ImmUnion 15import xiangshan.backend.datapath.DataConfig._ 16import xiangshan.backend.datapath.RdConfig._ 17import xiangshan.backend.issue.{ImmExtractor, IntScheduler, MemScheduler, VfScheduler} 18import xiangshan.backend.regfile._ 19import xiangshan.backend.PcToDataPathIO 20 21class DataPath(params: BackendParams)(implicit p: Parameters) extends LazyModule { 22 override def shouldBeInlined: Boolean = false 23 24 private implicit val dpParams: BackendParams = params 25 lazy val module = new DataPathImp(this) 26 27 println(s"[DataPath] Preg Params: ") 28 println(s"[DataPath] Int R(${params.getRfReadSize(IntData())}), W(${params.getRfWriteSize(IntData())}) ") 29 println(s"[DataPath] Vf R(${params.getRfReadSize(VecData())}), W(${params.getRfWriteSize(VecData())}) ") 30} 31 32class DataPathImp(override val wrapper: DataPath)(implicit p: Parameters, params: BackendParams) 33 extends LazyModuleImp(wrapper) with HasXSParameter { 34 35 private val VCONFIG_PORT = params.vconfigPort 36 private val VLD_PORT = params.vldPort 37 38 val io = IO(new DataPathIO()) 39 40 private val (fromIntIQ, toIntIQ, toIntExu) = (io.fromIntIQ, io.toIntIQ, io.toIntExu) 41 private val (fromMemIQ, toMemIQ, toMemExu) = (io.fromMemIQ, io.toMemIQ, io.toMemExu) 42 private val (fromVfIQ , toVfIQ , toVfExu ) = (io.fromVfIQ , io.toVfIQ , io.toFpExu) 43 44 println(s"[DataPath] IntIQ(${fromIntIQ.size}), MemIQ(${fromMemIQ.size})") 45 println(s"[DataPath] IntExu(${fromIntIQ.map(_.size).sum}), MemExu(${fromMemIQ.map(_.size).sum})") 46 47 // just refences for convience 48 private val fromIQ: Seq[MixedVec[DecoupledIO[IssueQueueIssueBundle]]] = (fromIntIQ ++ fromVfIQ ++ fromMemIQ).toSeq 49 50 private val toIQs = toIntIQ ++ toVfIQ ++ toMemIQ 51 52 private val toExu: Seq[MixedVec[DecoupledIO[ExuInput]]] = (toIntExu ++ toVfExu ++ toMemExu).toSeq 53 54 private val fromFlattenIQ: Seq[DecoupledIO[IssueQueueIssueBundle]] = fromIQ.flatten 55 56 private val toFlattenExu: Seq[DecoupledIO[ExuInput]] = toExu.flatten 57 58 private val intWbBusyArbiter = Module(new IntRFWBCollideChecker(backendParams)) 59 private val vfWbBusyArbiter = Module(new VfRFWBCollideChecker(backendParams)) 60 private val intRFReadArbiter = Module(new IntRFReadArbiter(backendParams)) 61 private val vfRFReadArbiter = Module(new VfRFReadArbiter(backendParams)) 62 63 private val og0FailedVec2: MixedVec[Vec[Bool]] = Wire(MixedVec(fromIQ.map(x => Vec(x.size, Bool())).toSeq)) 64 private val og1FailedVec2: MixedVec[Vec[Bool]] = Wire(MixedVec(fromIQ.map(x => Vec(x.size, Bool())).toSeq)) 65 66 // port -> win 67 private val intRdArbWinner: Seq2[MixedVec[Bool]] = intRFReadArbiter.io.in.map(_.map(x => MixedVecInit(x.map(_.ready).toSeq)).toSeq).toSeq 68 private val vfRdArbWinner: Seq2[MixedVec[Bool]] = vfRFReadArbiter.io.in.map(_.map(x => MixedVecInit(x.map(_.ready).toSeq)).toSeq).toSeq 69 private val intWbNotBlock: Seq[MixedVec[Bool]] = intWbBusyArbiter.io.in.map(x => MixedVecInit(x.map(_.ready).toSeq)).toSeq 70 private val vfWbNotBlock: Seq[MixedVec[Bool]] = vfWbBusyArbiter.io.in.map(x => MixedVecInit(x.map(_.ready).toSeq)).toSeq 71 72 private val intRdNotBlock: Seq2[Bool] = intRdArbWinner.map(_.map(_.asUInt.andR)) 73 private val vfRdNotBlock: Seq2[Bool] = vfRdArbWinner.map(_.map(_.asUInt.andR)) 74 75 private val intRFReadReq: Seq3[ValidIO[RfReadPortWithConfig]] = fromIQ.map(x => x.map(xx => xx.bits.getIntRfReadValidBundle(xx.valid)).toSeq).toSeq 76 private val intDataSources: Seq[Seq[Vec[DataSource]]] = fromIQ.map(x => x.map(xx => xx.bits.common.dataSources).toSeq) 77 78 intRFReadArbiter.io.in.zip(intRFReadReq).zipWithIndex.foreach { case ((arbInSeq2, inRFReadReqSeq2), iqIdx) => 79 arbInSeq2.zip(inRFReadReqSeq2).zipWithIndex.foreach { case ((arbInSeq, inRFReadReqSeq), exuIdx) => 80 val srcIndices: Seq[Int] = fromIQ(iqIdx)(exuIdx).bits.exuParams.getRfReadSrcIdx(IntData()) 81 for (srcIdx <- 0 until fromIQ(iqIdx)(exuIdx).bits.exuParams.numRegSrc) { 82 if (srcIndices.contains(srcIdx) && inRFReadReqSeq.isDefinedAt(srcIdx)) { 83 arbInSeq(srcIdx).valid := inRFReadReqSeq(srcIdx).valid && intDataSources(iqIdx)(exuIdx)(srcIdx).readReg 84 arbInSeq(srcIdx).bits.addr := inRFReadReqSeq(srcIdx).bits.addr 85 } else { 86 arbInSeq(srcIdx).valid := false.B 87 arbInSeq(srcIdx).bits.addr := 0.U 88 } 89 } 90 } 91 } 92 93 private val vfRFReadReq: Seq3[ValidIO[RfReadPortWithConfig]] = fromIQ.map(x => x.map(xx => xx.bits.getVfRfReadValidBundle(xx.valid)).toSeq).toSeq 94 95 vfRFReadArbiter.io.in.zip(vfRFReadReq).zipWithIndex.foreach { case ((arbInSeq2, inRFReadReqSeq2), iqIdx) => 96 arbInSeq2.zip(inRFReadReqSeq2).zipWithIndex.foreach { case ((arbInSeq, inRFReadReqSeq), exuIdx) => 97 val srcIndices: Seq[Int] = VfRegSrcDataSet.flatMap(data => fromIQ(iqIdx)(exuIdx).bits.exuParams.getRfReadSrcIdx(data)).toSeq.sorted 98 for (srcIdx <- 0 until fromIQ(iqIdx)(exuIdx).bits.exuParams.numRegSrc) { 99 if (srcIndices.contains(srcIdx) && inRFReadReqSeq.isDefinedAt(srcIdx)) { 100 arbInSeq(srcIdx).valid := inRFReadReqSeq(srcIdx).valid 101 arbInSeq(srcIdx).bits.addr := inRFReadReqSeq(srcIdx).bits.addr 102 } else { 103 arbInSeq(srcIdx).valid := false.B 104 arbInSeq(srcIdx).bits.addr := 0.U 105 } 106 } 107 } 108 } 109 110 private val intRFWriteReq: Seq2[Bool] = fromIQ.map(x => x.map(xx => xx.valid && xx.bits.common.rfWen.getOrElse(false.B)).toSeq).toSeq 111 private val vfRFWriteReq: Seq2[Bool] = fromIQ.map(x => x.map(xx => xx.valid && xx.bits.common.getVfWen.getOrElse(false.B)).toSeq).toSeq 112 113 intWbBusyArbiter.io.in.zip(intRFWriteReq).foreach { case (arbInSeq, inRFWriteReqSeq) => 114 arbInSeq.zip(inRFWriteReqSeq).foreach { case (arbIn, inRFWriteReq) => 115 arbIn.valid := inRFWriteReq 116 } 117 } 118 119 vfWbBusyArbiter.io.in.zip(vfRFWriteReq).foreach { case (arbInSeq, inRFWriteReqSeq) => 120 arbInSeq.zip(inRFWriteReqSeq).foreach { case (arbIn, inRFWriteReq) => 121 arbIn.valid := inRFWriteReq 122 } 123 } 124 125 private val intSchdParams = params.schdParams(IntScheduler()) 126 private val vfSchdParams = params.schdParams(VfScheduler()) 127 private val memSchdParams = params.schdParams(MemScheduler()) 128 129 private val numIntRfReadByExu = intSchdParams.numIntRfReadByExu + memSchdParams.numIntRfReadByExu 130 private val numVfRfReadByExu = vfSchdParams.numVfRfReadByExu + memSchdParams.numVfRfReadByExu 131 // Todo: limit read port 132 private val numIntR = numIntRfReadByExu 133 private val numVfR = numVfRfReadByExu 134 println(s"[DataPath] RegFile read req needed by Exu: Int(${numIntRfReadByExu}), Vf(${numVfRfReadByExu})") 135 println(s"[DataPath] RegFile read port: Int(${numIntR}), Vf(${numVfR})") 136 137 private val schdParams = params.allSchdParams 138 139 private val pcReadFtqPtr = Wire(chiselTypeOf(io.pcFromPcTargetMem.fromDataPathFtqPtr)) 140 private val pcReadFtqOffset = Wire(chiselTypeOf(io.pcFromPcTargetMem.fromDataPathFtqOffset)) 141 private val pcRdata = io.pcFromPcTargetMem.toDataPathPC 142 private val intRfRaddr = Wire(Vec(params.numPregRd(IntData()), UInt(intSchdParams.pregIdxWidth.W))) 143 private val intRfRdata = Wire(Vec(params.numPregRd(IntData()), UInt(intSchdParams.rfDataWidth.W))) 144 private val intRfWen = Wire(Vec(io.fromIntWb.length, Bool())) 145 private val intRfWaddr = Wire(Vec(io.fromIntWb.length, UInt(intSchdParams.pregIdxWidth.W))) 146 private val intRfWdata = Wire(Vec(io.fromIntWb.length, UInt(intSchdParams.rfDataWidth.W))) 147 148 private val vfRfSplitNum = VLEN / XLEN 149 private val vfRfRaddr = Wire(Vec(params.numPregRd(VecData()), UInt(vfSchdParams.pregIdxWidth.W))) 150 private val vfRfRdata = Wire(Vec(params.numPregRd(VecData()), UInt(vfSchdParams.rfDataWidth.W))) 151 private val vfRfWen = Wire(Vec(vfRfSplitNum, Vec(io.fromVfWb.length, Bool()))) 152 private val vfRfWaddr = Wire(Vec(io.fromVfWb.length, UInt(vfSchdParams.pregIdxWidth.W))) 153 private val vfRfWdata = Wire(Vec(io.fromVfWb.length, UInt(vfSchdParams.rfDataWidth.W))) 154 155 val pcReadFtqPtrFormIQ = fromIntIQ.flatten.filter(x => x.bits.exuParams.needPc) 156 assert(pcReadFtqPtrFormIQ.size == pcReadFtqPtr.size, s"pcReadFtqPtrFormIQ.size ${pcReadFtqPtrFormIQ.size} not equal pcReadFtqPtr.size ${pcReadFtqPtr.size}") 157 pcReadFtqPtr.zip(pcReadFtqPtrFormIQ.map(_.bits.common.ftqIdx.get)).map(x => x._1 := x._2) 158 pcReadFtqOffset.zip(pcReadFtqPtrFormIQ.map(_.bits.common.ftqOffset.get)).map(x => x._1 := x._2) 159 io.pcFromPcTargetMem.fromDataPathFtqPtr := pcReadFtqPtr 160 io.pcFromPcTargetMem.fromDataPathFtqOffset := pcReadFtqOffset 161 private val intDebugRead: Option[(Vec[UInt], Vec[UInt])] = 162 if (env.AlwaysBasicDiff || env.EnableDifftest) { 163 Some(Wire(Vec(32, UInt(intSchdParams.pregIdxWidth.W))), Wire(Vec(32, UInt(XLEN.W)))) 164 } else { None } 165 private val vfDebugRead: Option[(Vec[UInt], Vec[UInt])] = 166 if (env.AlwaysBasicDiff || env.EnableDifftest) { 167 Some(Wire(Vec(32 + 32 + 1, UInt(vfSchdParams.pregIdxWidth.W))), Wire(Vec(32 + 32 + 1, UInt(VLEN.W)))) 168 } else { None } 169 170 private val fpDebugReadData: Option[Vec[UInt]] = 171 if (env.AlwaysBasicDiff || env.EnableDifftest) { 172 Some(Wire(Vec(32, UInt(XLEN.W)))) 173 } else { None } 174 private val vecDebugReadData: Option[Vec[UInt]] = 175 if (env.AlwaysBasicDiff || env.EnableDifftest) { 176 Some(Wire(Vec(64, UInt(64.W)))) // v0 = Cat(Vec(1), Vec(0)) 177 } else { None } 178 private val vconfigDebugReadData: Option[UInt] = 179 if (env.AlwaysBasicDiff || env.EnableDifftest) { 180 Some(Wire(UInt(64.W))) 181 } else { None } 182 183 184 fpDebugReadData.foreach(_ := vfDebugRead 185 .get._2 186 .slice(0, 32) 187 .map(_(63, 0)) 188 ) // fp only used [63, 0] 189 vecDebugReadData.foreach(_ := vfDebugRead 190 .get._2 191 .slice(32, 64) 192 .map(x => Seq(x(63, 0), x(127, 64))).flatten 193 ) 194 vconfigDebugReadData.foreach(_ := vfDebugRead 195 .get._2(64)(63, 0) 196 ) 197 198 io.debugVconfig.foreach(_ := vconfigDebugReadData.get) 199 200 IntRegFile("IntRegFile", intSchdParams.numPregs, intRfRaddr, intRfRdata, intRfWen, intRfWaddr, intRfWdata, 201 debugReadAddr = intDebugRead.map(_._1), 202 debugReadData = intDebugRead.map(_._2)) 203 VfRegFile("VfRegFile", vfSchdParams.numPregs, vfRfSplitNum, vfRfRaddr, vfRfRdata, vfRfWen, vfRfWaddr, vfRfWdata, 204 debugReadAddr = vfDebugRead.map(_._1), 205 debugReadData = vfDebugRead.map(_._2)) 206 207 intRfWaddr := io.fromIntWb.map(_.addr).toSeq 208 intRfWdata := io.fromIntWb.map(_.data).toSeq 209 intRfWen := io.fromIntWb.map(_.wen).toSeq 210 211 for (portIdx <- intRfRaddr.indices) { 212 if (intRFReadArbiter.io.out.isDefinedAt(portIdx)) 213 intRfRaddr(portIdx) := intRFReadArbiter.io.out(portIdx).bits.addr 214 else 215 intRfRaddr(portIdx) := 0.U 216 } 217 218 vfRfWaddr := io.fromVfWb.map(_.addr).toSeq 219 vfRfWdata := io.fromVfWb.map(_.data).toSeq 220 vfRfWen.foreach(_.zip(io.fromVfWb.map(_.wen)).foreach { case (wenSink, wenSource) => wenSink := wenSource } )// Todo: support fp multi-write 221 222 for (portIdx <- vfRfRaddr.indices) { 223 if (vfRFReadArbiter.io.out.isDefinedAt(portIdx)) 224 vfRfRaddr(portIdx) := vfRFReadArbiter.io.out(portIdx).bits.addr 225 else 226 vfRfRaddr(portIdx) := 0.U 227 } 228 229 vfRfRaddr(VCONFIG_PORT) := io.vconfigReadPort.addr 230 io.vconfigReadPort.data := vfRfRdata(VCONFIG_PORT) 231 // vfRfRaddr(VLD_PORT) := io.vldReadPort.addr 232 io.vldReadPort.data := DontCare 233 234 intDebugRead.foreach { case (addr, _) => 235 addr := io.debugIntRat.get 236 } 237 238 vfDebugRead.foreach { case (addr, _) => 239 addr := io.debugFpRat.get ++ io.debugVecRat.get :+ io.debugVconfigRat.get 240 } 241 println(s"[DataPath] " + 242 s"has intDebugRead: ${intDebugRead.nonEmpty}, " + 243 s"has vfDebugRead: ${vfDebugRead.nonEmpty}") 244 245 val s1_addrOHs = Reg(MixedVec( 246 fromIQ.map(x => MixedVec(x.map(_.bits.addrOH.cloneType).toSeq)).toSeq 247 )) 248 val s1_toExuValid: MixedVec[MixedVec[Bool]] = Reg(MixedVec( 249 toExu.map(x => MixedVec(x.map(_.valid.cloneType).toSeq)).toSeq 250 )) 251 val s1_toExuData: MixedVec[MixedVec[ExuInput]] = Reg(MixedVec(toExu.map(x => MixedVec(x.map(_.bits.cloneType).toSeq)).toSeq)) 252 val s1_toExuReady = Wire(MixedVec(toExu.map(x => MixedVec(x.map(_.ready.cloneType).toSeq)))) 253 val s1_srcType: MixedVec[MixedVec[Vec[UInt]]] = MixedVecInit(fromIQ.map(x => MixedVecInit(x.map(xx => RegEnable(xx.bits.srcType, xx.fire)).toSeq))) 254 255 val s1_intPregRData: MixedVec[MixedVec[Vec[UInt]]] = Wire(MixedVec(toExu.map(x => MixedVec(x.map(_.bits.src.cloneType).toSeq)))) 256 val s1_vfPregRData: MixedVec[MixedVec[Vec[UInt]]] = Wire(MixedVec(toExu.map(x => MixedVec(x.map(_.bits.src.cloneType).toSeq)))) 257 258 val rfrPortConfigs = schdParams.map(_.issueBlockParams).flatten.map(_.exuBlockParams.map(_.rfrPortConfigs)) 259 260 println(s"[DataPath] s1_intPregRData.flatten.flatten.size: ${s1_intPregRData.flatten.flatten.size}, intRfRdata.size: ${intRfRdata.size}") 261 s1_intPregRData.foreach(_.foreach(_.foreach(_ := 0.U))) 262 s1_intPregRData.zip(rfrPortConfigs).foreach { case (iqRdata, iqCfg) => 263 iqRdata.zip(iqCfg).foreach { case (iuRdata, iuCfg) => 264 val realIuCfg = iuCfg.map(x => if(x.size > 1) x.filter(_.isInstanceOf[IntRD]) else x).flatten 265 assert(iuRdata.size == realIuCfg.size, "iuRdata.size != realIuCfg.size") 266 iuRdata.zip(realIuCfg) 267 .filter { case (_, rfrPortConfig) => rfrPortConfig.isInstanceOf[IntRD] } 268 .foreach { case (sink, cfg) => sink := intRfRdata(cfg.port) } 269 } 270 } 271 272 println(s"[DataPath] s1_vfPregRData.flatten.flatten.size: ${s1_vfPregRData.flatten.flatten.size}, vfRfRdata.size: ${vfRfRdata.size}") 273 s1_vfPregRData.foreach(_.foreach(_.foreach(_ := 0.U))) 274 s1_vfPregRData.zip(rfrPortConfigs).foreach{ case(iqRdata, iqCfg) => 275 iqRdata.zip(iqCfg).foreach{ case(iuRdata, iuCfg) => 276 val realIuCfg = iuCfg.map(x => if(x.size > 1) x.filter(_.isInstanceOf[VfRD]) else x).flatten 277 assert(iuRdata.size == realIuCfg.size, "iuRdata.size != realIuCfg.size") 278 iuRdata.zip(realIuCfg) 279 .filter { case (_, rfrPortConfig) => rfrPortConfig.isInstanceOf[VfRD] } 280 .foreach { case (sink, cfg) => sink := vfRfRdata(cfg.port) } 281 } 282 } 283 284 for (i <- fromIQ.indices) { 285 for (j <- fromIQ(i).indices) { 286 // IQ(s0) --[Ctrl]--> s1Reg ---------- begin 287 // refs 288 val s1_valid = s1_toExuValid(i)(j) 289 val s1_ready = s1_toExuReady(i)(j) 290 val s1_data = s1_toExuData(i)(j) 291 val s1_addrOH = s1_addrOHs(i)(j) 292 val s0 = fromIQ(i)(j) // s0 293 val srcNotBlock = s0.bits.common.dataSources.zip(intRdArbWinner(i)(j) zip vfRdArbWinner(i)(j)).map { case (source, win) => 294 !source.readReg || win._1 && win._2 295 }.fold(true.B)(_ && _) 296 val notBlock = srcNotBlock && intWbNotBlock(i)(j) && vfWbNotBlock(i)(j) 297 val s1_flush = s0.bits.common.robIdx.needFlush(Seq(io.flush, RegNextWithEnable(io.flush))) 298 val s1_cancel = og1FailedVec2(i)(j) 299 val s1_ldCancel = LoadShouldCancel(s0.bits.common.loadDependency, io.ldCancel) 300 when (s0.fire && !s1_flush && notBlock && !s1_cancel && !s1_ldCancel) { 301 s1_valid := s0.valid 302 s1_data.fromIssueBundle(s0.bits) // no src data here 303 s1_addrOH := s0.bits.addrOH 304 }.otherwise { 305 s1_valid := false.B 306 } 307 s0.ready := (s1_ready || !s1_valid) && notBlock 308 // IQ(s0) --[Ctrl]--> s1Reg ---------- end 309 310 // IQ(s0) --[Data]--> s1Reg ---------- begin 311 // imm extract 312 when (s0.fire && !s1_flush && notBlock) { 313 if (s1_data.params.immType.nonEmpty && s1_data.src.size > 1) { 314 // rs1 is always int reg, rs2 may be imm 315 when(SrcType.isImm(s0.bits.srcType(1))) { 316 s1_data.src(1) := ImmExtractor( 317 s0.bits.common.imm, 318 s0.bits.immType, 319 s1_data.params.dataBitsMax, 320 s1_data.params.immType.map(_.litValue) 321 ) 322 } 323 } 324 if (s1_data.params.hasVecFu) { 325 // Fuck off riscv vector imm!!! Why not src1??? 326 when(SrcType.isImm(s0.bits.srcType(0))) { 327 s1_data.src(0) := ImmExtractor( 328 s0.bits.common.imm, 329 s0.bits.immType, 330 s1_data.params.dataBitsMax, 331 s1_data.params.immType.map(_.litValue) 332 ) 333 } 334 } else if (s1_data.params.hasLoadFu || s1_data.params.hasHyldaFu) { 335 // dirty code for fused_lui_load 336 when(SrcType.isImm(s0.bits.srcType(0))) { 337 s1_data.src(0) := SignExt(ImmUnion.U.toImm32(s0.bits.common.imm(s0.bits.common.imm.getWidth - 1, ImmUnion.I.len)), XLEN) 338 } 339 } 340 } 341 // IQ(s0) --[Data]--> s1Reg ---------- end 342 } 343 } 344 345 private val fromIQFire = fromIQ.map(_.map(_.fire)) 346 private val toExuFire = toExu.map(_.map(_.fire)) 347 toIQs.zipWithIndex.foreach { 348 case(toIQ, iqIdx) => 349 toIQ.zipWithIndex.foreach { 350 case (toIU, iuIdx) => 351 // IU: issue unit 352 val og0resp = toIU.og0resp 353 og0FailedVec2(iqIdx)(iuIdx) := fromIQ(iqIdx)(iuIdx).valid && (!fromIQFire(iqIdx)(iuIdx)) 354 og0resp.valid := og0FailedVec2(iqIdx)(iuIdx) 355 og0resp.bits.respType := RSFeedbackType.rfArbitFail 356 og0resp.bits.dataInvalidSqIdx := DontCare 357 og0resp.bits.robIdx := fromIQ(iqIdx)(iuIdx).bits.common.robIdx 358 og0resp.bits.uopIdx := fromIQ(iqIdx)(iuIdx).bits.common.vpu.getOrElse(0.U.asTypeOf(new VPUCtrlSignals)).vuopIdx 359 og0resp.bits.rfWen := fromIQ(iqIdx)(iuIdx).bits.common.rfWen.getOrElse(false.B) 360 og0resp.bits.fuType := fromIQ(iqIdx)(iuIdx).bits.common.fuType 361 362 val og1resp = toIU.og1resp 363 og1FailedVec2(iqIdx)(iuIdx) := s1_toExuValid(iqIdx)(iuIdx) && !toExuFire(iqIdx)(iuIdx) 364 og1resp.valid := s1_toExuValid(iqIdx)(iuIdx) 365 // respType: fuIdle ->IQ entry clear 366 // fuUncertain ->IQ entry no action 367 // fuBusy ->IQ entry issued set false, then re-issue 368 // Only hyu, lda and sta are fuUncertain at OG1 stage 369 og1resp.bits.respType := Mux( 370 !og1FailedVec2(iqIdx)(iuIdx), 371 if (toIU.issueQueueParams match { case x => x.isHyAddrIQ || x.isLdAddrIQ || x.isStAddrIQ } ) RSFeedbackType.fuUncertain else RSFeedbackType.fuIdle, 372 RSFeedbackType.fuBusy 373 ) 374 og1resp.bits.dataInvalidSqIdx := DontCare 375 og1resp.bits.robIdx := s1_toExuData(iqIdx)(iuIdx).robIdx 376 og1resp.bits.uopIdx := s1_toExuData(iqIdx)(iuIdx).vpu.getOrElse(0.U.asTypeOf(new VPUCtrlSignals)).vuopIdx 377 og1resp.bits.rfWen := s1_toExuData(iqIdx)(iuIdx).rfWen.getOrElse(false.B) 378 og1resp.bits.fuType := s1_toExuData(iqIdx)(iuIdx).fuType 379 } 380 } 381 382 io.og0CancelOH := VecInit(fromFlattenIQ.map(x => x.valid && !x.fire)).asUInt 383 io.og1CancelOH := VecInit(toFlattenExu.map(x => x.valid && !x.fire)).asUInt 384 385 io.cancelToBusyTable.zipWithIndex.foreach { case (cancel, i) => 386 cancel.valid := fromFlattenIQ(i).valid && !fromFlattenIQ(i).fire && { 387 if (fromFlattenIQ(i).bits.common.rfWen.isDefined) 388 fromFlattenIQ(i).bits.common.rfWen.get && fromFlattenIQ(i).bits.common.pdest =/= 0.U 389 else 390 true.B 391 } 392 cancel.bits.rfWen := fromFlattenIQ(i).bits.common.rfWen.getOrElse(false.B) 393 cancel.bits.fpWen := fromFlattenIQ(i).bits.common.fpWen.getOrElse(false.B) 394 cancel.bits.vecWen := fromFlattenIQ(i).bits.common.vecWen.getOrElse(false.B) 395 cancel.bits.pdest := fromFlattenIQ(i).bits.common.pdest 396 } 397 398 for (i <- toExu.indices) { 399 for (j <- toExu(i).indices) { 400 // s1Reg --[Ctrl]--> exu(s1) ---------- begin 401 // refs 402 val sinkData = toExu(i)(j).bits 403 // assign 404 toExu(i)(j).valid := s1_toExuValid(i)(j) 405 s1_toExuReady(i)(j) := toExu(i)(j).ready 406 sinkData := s1_toExuData(i)(j) 407 // s1Reg --[Ctrl]--> exu(s1) ---------- end 408 409 // s1Reg --[Data]--> exu(s1) ---------- begin 410 // data source1: preg read data 411 for (k <- sinkData.src.indices) { 412 val srcDataTypeSet: Set[DataConfig] = sinkData.params.getSrcDataType(k) 413 414 val readRfMap: Seq[(Bool, UInt)] = (Seq(None) :+ 415 (if (s1_intPregRData(i)(j).isDefinedAt(k) && srcDataTypeSet.intersect(IntRegSrcDataSet).nonEmpty) 416 Some(SrcType.isXp(s1_srcType(i)(j)(k)) -> s1_intPregRData(i)(j)(k)) 417 else None) :+ 418 (if (s1_vfPregRData(i)(j).isDefinedAt(k) && srcDataTypeSet.intersect(VfRegSrcDataSet).nonEmpty) 419 Some(SrcType.isVfp(s1_srcType(i)(j)(k))-> s1_vfPregRData(i)(j)(k)) 420 else None) 421 ).filter(_.nonEmpty).map(_.get) 422 if (readRfMap.nonEmpty) 423 sinkData.src(k) := Mux1H(readRfMap) 424 } 425 426 // data source2: extracted imm and pc saved in s1Reg 427 if (sinkData.params.immType.nonEmpty && sinkData.src.size > 1) { 428 when(SrcType.isImm(s1_srcType(i)(j)(1))) { 429 sinkData.src(1) := s1_toExuData(i)(j).src(1) 430 } 431 } 432 if (sinkData.params.hasJmpFu) { 433 val index = pcReadFtqPtrFormIQ.map(_.bits.exuParams).indexOf(sinkData.params) 434 sinkData.pc.get := pcRdata(index) 435 } else if (sinkData.params.hasVecFu) { 436 when(SrcType.isImm(s1_srcType(i)(j)(0))) { 437 sinkData.src(0) := s1_toExuData(i)(j).src(0) 438 } 439 } else if (sinkData.params.hasLoadFu || sinkData.params.hasHyldaFu) { 440 when(SrcType.isImm(s1_srcType(i)(j)(0))) { 441 sinkData.src(0) := s1_toExuData(i)(j).src(0) 442 } 443 } 444 // s1Reg --[Data]--> exu(s1) ---------- end 445 } 446 } 447 448 if (env.AlwaysBasicDiff || env.EnableDifftest) { 449 val delayedCnt = 2 450 val difftestArchIntRegState = DifftestModule(new DiffArchIntRegState, delay = delayedCnt) 451 difftestArchIntRegState.coreid := io.hartId 452 difftestArchIntRegState.value := intDebugRead.get._2 453 454 val difftestArchFpRegState = DifftestModule(new DiffArchFpRegState, delay = delayedCnt) 455 difftestArchFpRegState.coreid := io.hartId 456 difftestArchFpRegState.value := fpDebugReadData.get 457 458 val difftestArchVecRegState = DifftestModule(new DiffArchVecRegState, delay = delayedCnt) 459 difftestArchVecRegState.coreid := io.hartId 460 difftestArchVecRegState.value := vecDebugReadData.get 461 } 462 463 val int_regcache_size = 48 464 val int_regcache_tag = RegInit(VecInit(Seq.fill(int_regcache_size)(0.U(intSchdParams.pregIdxWidth.W)))) 465 val int_regcache_enqPtr = RegInit(0.U(log2Up(int_regcache_size).W)) 466 int_regcache_enqPtr := int_regcache_enqPtr + PopCount(intRfWen) 467 for (i <- intRfWen.indices) { 468 when (intRfWen(i)) { 469 int_regcache_tag(int_regcache_enqPtr + PopCount(intRfWen.take(i))) := intRfWaddr(i) 470 } 471 } 472 473 val vf_regcache_size = 48 474 val vf_regcache_tag = RegInit(VecInit(Seq.fill(vf_regcache_size)(0.U(vfSchdParams.pregIdxWidth.W)))) 475 val vf_regcache_enqPtr = RegInit(0.U(log2Up(vf_regcache_size).W)) 476 vf_regcache_enqPtr := vf_regcache_enqPtr + PopCount(vfRfWen.head) 477 for (i <- vfRfWen.indices) { 478 when (vfRfWen.head(i)) { 479 vf_regcache_tag(vf_regcache_enqPtr + PopCount(vfRfWen.head.take(i))) := vfRfWaddr(i) 480 } 481 } 482 483 XSPerfHistogram(s"IntRegFileRead_hist", PopCount(intRFReadArbiter.io.in.flatten.flatten.map(_.valid)), true.B, 0, 20, 1) 484 XSPerfHistogram(s"VfRegFileRead_hist", PopCount(vfRFReadArbiter.io.in.flatten.flatten.map(_.valid)), true.B, 0, 20, 1) 485 XSPerfHistogram(s"IntRegFileWrite_hist", PopCount(intRFWriteReq.flatten), true.B, 0, 20, 1) 486 XSPerfHistogram(s"VfRegFileWrite_hist", PopCount(vfRFWriteReq.flatten), true.B, 0, 20, 1) 487 488 val int_regcache_part32 = (1 until 33).map(i => int_regcache_tag(int_regcache_enqPtr - i.U)) 489 val int_regcache_part24 = (1 until 24).map(i => int_regcache_tag(int_regcache_enqPtr - i.U)) 490 val int_regcache_part16 = (1 until 17).map(i => int_regcache_tag(int_regcache_enqPtr - i.U)) 491 val int_regcache_part8 = (1 until 9).map(i => int_regcache_tag(int_regcache_enqPtr - i.U)) 492 493 val int_regcache_48_hit_vec = intRFReadArbiter.io.in.flatten.flatten.map(x => x.valid && int_regcache_tag.map(_ === x.bits.addr).reduce(_ || _)) 494 val int_regcache_8_hit_vec = intRFReadArbiter.io.in.flatten.flatten.map(x => x.valid && int_regcache_part8.map(_ === x.bits.addr).reduce(_ || _)) 495 val int_regcache_16_hit_vec = intRFReadArbiter.io.in.flatten.flatten.map(x => x.valid && int_regcache_part16.map(_ === x.bits.addr).reduce(_ || _)) 496 val int_regcache_24_hit_vec = intRFReadArbiter.io.in.flatten.flatten.map(x => x.valid && int_regcache_part24.map(_ === x.bits.addr).reduce(_ || _)) 497 val int_regcache_32_hit_vec = intRFReadArbiter.io.in.flatten.flatten.map(x => x.valid && int_regcache_part32.map(_ === x.bits.addr).reduce(_ || _)) 498 XSPerfAccumulate("IntRegCache48Hit", PopCount(int_regcache_48_hit_vec)) 499 XSPerfAccumulate("IntRegCache8Hit", PopCount(int_regcache_8_hit_vec)) 500 XSPerfAccumulate("IntRegCache16Hit", PopCount(int_regcache_16_hit_vec)) 501 XSPerfAccumulate("IntRegCache24Hit", PopCount(int_regcache_24_hit_vec)) 502 XSPerfAccumulate("IntRegCache32Hit", PopCount(int_regcache_32_hit_vec)) 503 XSPerfHistogram("IntRegCache48Hit_hist", PopCount(int_regcache_48_hit_vec), true.B, 0, 16, 2) 504 505 XSPerfAccumulate(s"IntRFReadBeforeArb", PopCount(intRFReadArbiter.io.in.flatten.flatten.map(_.valid))) 506 XSPerfAccumulate(s"IntRFReadAfterArb", PopCount(intRFReadArbiter.io.out.map(_.valid))) 507 XSPerfAccumulate(s"VfRFReadBeforeArb", PopCount(vfRFReadArbiter.io.in.flatten.flatten.map(_.valid))) 508 XSPerfAccumulate(s"VfRFReadAfterArb", PopCount(vfRFReadArbiter.io.out.map(_.valid))) 509 XSPerfAccumulate(s"IntUopBeforeArb", PopCount(fromIntIQ.flatten.map(_.valid))) 510 XSPerfAccumulate(s"IntUopAfterArb", PopCount(fromIntIQ.flatten.map(_.fire))) 511 XSPerfAccumulate(s"MemUopBeforeArb", PopCount(fromMemIQ.flatten.map(_.valid))) 512 XSPerfAccumulate(s"MemUopAfterArb", PopCount(fromMemIQ.flatten.map(_.fire))) 513 XSPerfAccumulate(s"VfUopBeforeArb", PopCount(fromVfIQ.flatten.map(_.valid))) 514 XSPerfAccumulate(s"VfUopAfterArb", PopCount(fromVfIQ.flatten.map(_.fire))) 515 516 XSPerfHistogram(s"IntRFReadBeforeArb_hist", PopCount(intRFReadArbiter.io.in.flatten.flatten.map(_.valid)), true.B, 0, 16, 2) 517 XSPerfHistogram(s"IntRFReadAfterArb_hist", PopCount(intRFReadArbiter.io.out.map(_.valid)), true.B, 0, 16, 2) 518 XSPerfHistogram(s"VfRFReadBeforeArb_hist", PopCount(vfRFReadArbiter.io.in.flatten.flatten.map(_.valid)), true.B, 0, 16, 2) 519 XSPerfHistogram(s"VfRFReadAfterArb_hist", PopCount(vfRFReadArbiter.io.out.map(_.valid)), true.B, 0, 16, 2) 520 XSPerfHistogram(s"IntUopBeforeArb_hist", PopCount(fromIntIQ.flatten.map(_.valid)), true.B, 0, 8, 2) 521 XSPerfHistogram(s"IntUopAfterArb_hist", PopCount(fromIntIQ.flatten.map(_.fire)), true.B, 0, 8, 2) 522 XSPerfHistogram(s"MemUopBeforeArb_hist", PopCount(fromMemIQ.flatten.map(_.valid)), true.B, 0, 8, 2) 523 XSPerfHistogram(s"MemUopAfterArb_hist", PopCount(fromMemIQ.flatten.map(_.fire)), true.B, 0, 8, 2) 524 XSPerfHistogram(s"VfUopBeforeArb_hist", PopCount(fromVfIQ.flatten.map(_.valid)), true.B, 0, 8, 2) 525 XSPerfHistogram(s"VfUopAfterArb_hist", PopCount(fromVfIQ.flatten.map(_.fire)), true.B, 0, 8, 2) 526} 527 528class DataPathIO()(implicit p: Parameters, params: BackendParams) extends XSBundle { 529 // params 530 private val intSchdParams = params.schdParams(IntScheduler()) 531 private val vfSchdParams = params.schdParams(VfScheduler()) 532 private val memSchdParams = params.schdParams(MemScheduler()) 533 // bundles 534 val hartId = Input(UInt(8.W)) 535 536 val flush: ValidIO[Redirect] = Flipped(ValidIO(new Redirect)) 537 538 // Todo: check if this can be removed 539 val vconfigReadPort = new RfReadPort(XLEN, PhyRegIdxWidth) 540 541 val vldReadPort = new RfReadPort(VLEN, PhyRegIdxWidth) 542 543 val wbConfictRead = Input(MixedVec(params.allSchdParams.map(x => MixedVec(x.issueBlockParams.map(x => x.genWbConflictBundle()))))) 544 545 val fromIntIQ: MixedVec[MixedVec[DecoupledIO[IssueQueueIssueBundle]]] = 546 Flipped(MixedVec(intSchdParams.issueBlockParams.map(_.genIssueDecoupledBundle))) 547 548 val fromMemIQ: MixedVec[MixedVec[DecoupledIO[IssueQueueIssueBundle]]] = 549 Flipped(MixedVec(memSchdParams.issueBlockParams.map(_.genIssueDecoupledBundle))) 550 551 val fromVfIQ = Flipped(MixedVec(vfSchdParams.issueBlockParams.map(_.genIssueDecoupledBundle))) 552 553 val toIntIQ = MixedVec(intSchdParams.issueBlockParams.map(_.genOGRespBundle)) 554 555 val toMemIQ = MixedVec(memSchdParams.issueBlockParams.map(_.genOGRespBundle)) 556 557 val toVfIQ = MixedVec(vfSchdParams.issueBlockParams.map(_.genOGRespBundle)) 558 559 val og0CancelOH = Output(ExuOH(backendParams.numExu)) 560 561 val og1CancelOH = Output(ExuOH(backendParams.numExu)) 562 563 val ldCancel = Vec(backendParams.LduCnt + backendParams.HyuCnt, Flipped(new LoadCancelIO)) 564 565 val cancelToBusyTable = Vec(backendParams.numExu, ValidIO(new CancelSignal)) 566 567 val toIntExu: MixedVec[MixedVec[DecoupledIO[ExuInput]]] = intSchdParams.genExuInputBundle 568 569 val toFpExu: MixedVec[MixedVec[DecoupledIO[ExuInput]]] = MixedVec(vfSchdParams.genExuInputBundle) 570 571 val toMemExu: MixedVec[MixedVec[DecoupledIO[ExuInput]]] = memSchdParams.genExuInputBundle 572 573 val fromIntWb: MixedVec[RfWritePortWithConfig] = MixedVec(params.genIntWriteBackBundle) 574 575 val fromVfWb: MixedVec[RfWritePortWithConfig] = MixedVec(params.genVfWriteBackBundle) 576 577 val pcFromPcTargetMem = Flipped(new PcToDataPathIO(params)) 578 579 val debugIntRat = if (params.debugEn) Some(Input(Vec(32, UInt(intSchdParams.pregIdxWidth.W)))) else None 580 val debugFpRat = if (params.debugEn) Some(Input(Vec(32, UInt(vfSchdParams.pregIdxWidth.W)))) else None 581 val debugVecRat = if (params.debugEn) Some(Input(Vec(32, UInt(vfSchdParams.pregIdxWidth.W)))) else None 582 val debugVconfigRat = if (params.debugEn) Some(Input(UInt(vfSchdParams.pregIdxWidth.W))) else None 583 val debugVconfig = if (params.debugEn) Some(Output(UInt(XLEN.W))) else None 584} 585