1 // Copyright 2015-2016 Brian Smith.
2 //
3 // Permission to use, copy, modify, and/or distribute this software for any
4 // purpose with or without fee is hereby granted, provided that the above
5 // copyright notice and this permission notice appear in all copies.
6 //
7 // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
8 // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9 // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
10 // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11 // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12 // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13 // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
14 
15 //! ECDSA Signatures using the P-256 and P-384 curves.
16 
17 use super::digest_scalar::digest_scalar;
18 use crate::{
19     arithmetic::montgomery::*,
20     digest,
21     ec::suite_b::{ops::*, public_key::*, verify_jacobian_point_is_on_the_curve},
22     error,
23     io::der,
24     limb, sealed, signature,
25 };
26 
27 /// An ECDSA verification algorithm.
28 pub struct EcdsaVerificationAlgorithm {
29     ops: &'static PublicScalarOps,
30     digest_alg: &'static digest::Algorithm,
31     split_rs:
32         for<'a> fn(
33             ops: &'static ScalarOps,
34             input: &mut untrusted::Reader<'a>,
35         )
36             -> Result<(untrusted::Input<'a>, untrusted::Input<'a>), error::Unspecified>,
37     id: AlgorithmID,
38 }
39 
40 #[derive(Debug)]
41 enum AlgorithmID {
42     ECDSA_P256_SHA256_ASN1,
43     ECDSA_P256_SHA256_FIXED,
44     ECDSA_P256_SHA384_ASN1,
45     ECDSA_P384_SHA256_ASN1,
46     ECDSA_P384_SHA384_ASN1,
47     ECDSA_P384_SHA384_FIXED,
48 }
49 
50 derive_debug_via_id!(EcdsaVerificationAlgorithm);
51 
52 impl signature::VerificationAlgorithm for EcdsaVerificationAlgorithm {
verify( &self, public_key: untrusted::Input, msg: untrusted::Input, signature: untrusted::Input, ) -> Result<(), error::Unspecified>53     fn verify(
54         &self,
55         public_key: untrusted::Input,
56         msg: untrusted::Input,
57         signature: untrusted::Input,
58     ) -> Result<(), error::Unspecified> {
59         let e = {
60             // NSA Guide Step 2: "Use the selected hash function to compute H =
61             // Hash(M)."
62             let h = digest::digest(self.digest_alg, msg.as_slice_less_safe());
63 
64             // NSA Guide Step 3: "Convert the bit string H to an integer e as
65             // described in Appendix B.2."
66             digest_scalar(self.ops.scalar_ops, h)
67         };
68 
69         self.verify_digest(public_key, e, signature)
70     }
71 }
72 
73 impl EcdsaVerificationAlgorithm {
74     /// This is intentionally not public.
verify_digest( &self, public_key: untrusted::Input, e: Scalar, signature: untrusted::Input, ) -> Result<(), error::Unspecified>75     fn verify_digest(
76         &self,
77         public_key: untrusted::Input,
78         e: Scalar,
79         signature: untrusted::Input,
80     ) -> Result<(), error::Unspecified> {
81         // NSA Suite B Implementer's Guide to ECDSA Section 3.4.2.
82 
83         let public_key_ops = self.ops.public_key_ops;
84         let scalar_ops = self.ops.scalar_ops;
85 
86         // NSA Guide Prerequisites:
87         //
88         //    Prior to accepting a verified digital signature as valid the
89         //    verifier shall have:
90         //
91         //    1. assurance of the signatory’s claimed identity,
92         //    2. an authentic copy of the domain parameters, (q, FR, a, b, SEED,
93         //       G, n, h),
94         //    3. assurance of the validity of the public key, and
95         //    4. assurance that the claimed signatory actually possessed the
96         //       private key that was used to generate the digital signature at
97         //       the time that the signature was generated.
98         //
99         // Prerequisites #1 and #4 are outside the scope of what this function
100         // can do. Prerequisite #2 is handled implicitly as the domain
101         // parameters are hard-coded into the source. Prerequisite #3 is
102         // handled by `parse_uncompressed_point`.
103         let peer_pub_key = parse_uncompressed_point(public_key_ops, public_key)?;
104 
105         let (r, s) = signature.read_all(error::Unspecified, |input| {
106             (self.split_rs)(scalar_ops, input)
107         })?;
108 
109         // NSA Guide Step 1: "If r and s are not both integers in the interval
110         // [1, n − 1], output INVALID."
111         let r = scalar_parse_big_endian_variable(public_key_ops.common, limb::AllowZero::No, r)?;
112         let s = scalar_parse_big_endian_variable(public_key_ops.common, limb::AllowZero::No, s)?;
113 
114         // NSA Guide Step 4: "Compute w = s**−1 mod n, using the routine in
115         // Appendix B.1."
116         let w = scalar_ops.scalar_inv_to_mont(&s);
117 
118         // NSA Guide Step 5: "Compute u1 = (e * w) mod n, and compute
119         // u2 = (r * w) mod n."
120         let u1 = scalar_ops.scalar_product(&e, &w);
121         let u2 = scalar_ops.scalar_product(&r, &w);
122 
123         // NSA Guide Step 6: "Compute the elliptic curve point
124         // R = (xR, yR) = u1*G + u2*Q, using EC scalar multiplication and EC
125         // addition. If R is equal to the point at infinity, output INVALID."
126         let product = twin_mul(self.ops.private_key_ops, &u1, &u2, &peer_pub_key);
127 
128         // Verify that the point we computed is on the curve; see
129         // `verify_affine_point_is_on_the_curve_scaled` for details on why. It
130         // would be more secure to do the check on the affine coordinates if we
131         // were going to convert to affine form (again, see
132         // `verify_affine_point_is_on_the_curve_scaled` for details on why).
133         // But, we're going to avoid converting to affine for performance
134         // reasons, so we do the verification using the Jacobian coordinates.
135         let z2 = verify_jacobian_point_is_on_the_curve(public_key_ops.common, &product)?;
136 
137         // NSA Guide Step 7: "Compute v = xR mod n."
138         // NSA Guide Step 8: "Compare v and r0. If v = r0, output VALID;
139         // otherwise, output INVALID."
140         //
141         // Instead, we use Greg Maxwell's trick to avoid the inversion mod `q`
142         // that would be necessary to compute the affine X coordinate.
143         let x = public_key_ops.common.point_x(&product);
144         fn sig_r_equals_x(
145             ops: &PublicScalarOps,
146             r: &Elem<Unencoded>,
147             x: &Elem<R>,
148             z2: &Elem<R>,
149         ) -> bool {
150             let cops = ops.public_key_ops.common;
151             let r_jacobian = cops.elem_product(z2, r);
152             let x = cops.elem_unencoded(x);
153             ops.elem_equals_vartime(&r_jacobian, &x)
154         }
155         let mut r = self.ops.scalar_as_elem(&r);
156         if sig_r_equals_x(self.ops, &r, &x, &z2) {
157             return Ok(());
158         }
159         if self.ops.elem_less_than(&r, &self.ops.q_minus_n) {
160             self.ops
161                 .private_key_ops
162                 .common
163                 .elem_add(&mut r, &public_key_ops.common.n);
164             if sig_r_equals_x(self.ops, &r, &x, &z2) {
165                 return Ok(());
166             }
167         }
168 
169         Err(error::Unspecified)
170     }
171 }
172 
173 impl sealed::Sealed for EcdsaVerificationAlgorithm {}
174 
split_rs_fixed<'a>( ops: &'static ScalarOps, input: &mut untrusted::Reader<'a>, ) -> Result<(untrusted::Input<'a>, untrusted::Input<'a>), error::Unspecified>175 fn split_rs_fixed<'a>(
176     ops: &'static ScalarOps,
177     input: &mut untrusted::Reader<'a>,
178 ) -> Result<(untrusted::Input<'a>, untrusted::Input<'a>), error::Unspecified> {
179     let scalar_len = ops.scalar_bytes_len();
180     let r = input.read_bytes(scalar_len)?;
181     let s = input.read_bytes(scalar_len)?;
182     Ok((r, s))
183 }
184 
split_rs_asn1<'a>( _ops: &'static ScalarOps, input: &mut untrusted::Reader<'a>, ) -> Result<(untrusted::Input<'a>, untrusted::Input<'a>), error::Unspecified>185 fn split_rs_asn1<'a>(
186     _ops: &'static ScalarOps,
187     input: &mut untrusted::Reader<'a>,
188 ) -> Result<(untrusted::Input<'a>, untrusted::Input<'a>), error::Unspecified> {
189     der::nested(input, der::Tag::Sequence, error::Unspecified, |input| {
190         let r = der::positive_integer(input)?.big_endian_without_leading_zero_as_input();
191         let s = der::positive_integer(input)?.big_endian_without_leading_zero_as_input();
192         Ok((r, s))
193     })
194 }
195 
twin_mul( ops: &PrivateKeyOps, g_scalar: &Scalar, p_scalar: &Scalar, p_xy: &(Elem<R>, Elem<R>), ) -> Point196 fn twin_mul(
197     ops: &PrivateKeyOps,
198     g_scalar: &Scalar,
199     p_scalar: &Scalar,
200     p_xy: &(Elem<R>, Elem<R>),
201 ) -> Point {
202     // XXX: Inefficient. TODO: implement interleaved wNAF multiplication.
203     let scaled_g = ops.point_mul_base(g_scalar);
204     let scaled_p = ops.point_mul(p_scalar, p_xy);
205     ops.common.point_sum(&scaled_g, &scaled_p)
206 }
207 
208 /// Verification of fixed-length (PKCS#11 style) ECDSA signatures using the
209 /// P-256 curve and SHA-256.
210 ///
211 /// See "`ECDSA_*_FIXED` Details" in `ring::signature`'s module-level
212 /// documentation for more details.
213 pub static ECDSA_P256_SHA256_FIXED: EcdsaVerificationAlgorithm = EcdsaVerificationAlgorithm {
214     ops: &p256::PUBLIC_SCALAR_OPS,
215     digest_alg: &digest::SHA256,
216     split_rs: split_rs_fixed,
217     id: AlgorithmID::ECDSA_P256_SHA256_FIXED,
218 };
219 
220 /// Verification of fixed-length (PKCS#11 style) ECDSA signatures using the
221 /// P-384 curve and SHA-384.
222 ///
223 /// See "`ECDSA_*_FIXED` Details" in `ring::signature`'s module-level
224 /// documentation for more details.
225 pub static ECDSA_P384_SHA384_FIXED: EcdsaVerificationAlgorithm = EcdsaVerificationAlgorithm {
226     ops: &p384::PUBLIC_SCALAR_OPS,
227     digest_alg: &digest::SHA384,
228     split_rs: split_rs_fixed,
229     id: AlgorithmID::ECDSA_P384_SHA384_FIXED,
230 };
231 
232 /// Verification of ASN.1 DER-encoded ECDSA signatures using the P-256 curve
233 /// and SHA-256.
234 ///
235 /// See "`ECDSA_*_ASN1` Details" in `ring::signature`'s module-level
236 /// documentation for more details.
237 pub static ECDSA_P256_SHA256_ASN1: EcdsaVerificationAlgorithm = EcdsaVerificationAlgorithm {
238     ops: &p256::PUBLIC_SCALAR_OPS,
239     digest_alg: &digest::SHA256,
240     split_rs: split_rs_asn1,
241     id: AlgorithmID::ECDSA_P256_SHA256_ASN1,
242 };
243 
244 /// *Not recommended*. Verification of ASN.1 DER-encoded ECDSA signatures using
245 /// the P-256 curve and SHA-384.
246 ///
247 /// In most situations, P-256 should be used only with SHA-256 and P-384
248 /// should be used only with SHA-384. However, in some cases, particularly TLS
249 /// on the web, it is necessary to support P-256 with SHA-384 for compatibility
250 /// with widely-deployed implementations that do not follow these guidelines.
251 ///
252 /// See "`ECDSA_*_ASN1` Details" in `ring::signature`'s module-level
253 /// documentation for more details.
254 pub static ECDSA_P256_SHA384_ASN1: EcdsaVerificationAlgorithm = EcdsaVerificationAlgorithm {
255     ops: &p256::PUBLIC_SCALAR_OPS,
256     digest_alg: &digest::SHA384,
257     split_rs: split_rs_asn1,
258     id: AlgorithmID::ECDSA_P256_SHA384_ASN1,
259 };
260 
261 /// *Not recommended*. Verification of ASN.1 DER-encoded ECDSA signatures using
262 /// the P-384 curve and SHA-256.
263 ///
264 /// In most situations, P-256 should be used only with SHA-256 and P-384
265 /// should be used only with SHA-384. However, in some cases, particularly TLS
266 /// on the web, it is necessary to support P-256 with SHA-384 for compatibility
267 /// with widely-deployed implementations that do not follow these guidelines.
268 ///
269 /// See "`ECDSA_*_ASN1` Details" in `ring::signature`'s module-level
270 /// documentation for more details.
271 pub static ECDSA_P384_SHA256_ASN1: EcdsaVerificationAlgorithm = EcdsaVerificationAlgorithm {
272     ops: &p384::PUBLIC_SCALAR_OPS,
273     digest_alg: &digest::SHA256,
274     split_rs: split_rs_asn1,
275     id: AlgorithmID::ECDSA_P384_SHA256_ASN1,
276 };
277 
278 /// Verification of ASN.1 DER-encoded ECDSA signatures using the P-384 curve
279 /// and SHA-384.
280 ///
281 /// See "`ECDSA_*_ASN1` Details" in `ring::signature`'s module-level
282 /// documentation for more details.
283 pub static ECDSA_P384_SHA384_ASN1: EcdsaVerificationAlgorithm = EcdsaVerificationAlgorithm {
284     ops: &p384::PUBLIC_SCALAR_OPS,
285     digest_alg: &digest::SHA384,
286     split_rs: split_rs_asn1,
287     id: AlgorithmID::ECDSA_P384_SHA384_ASN1,
288 };
289 
290 #[cfg(test)]
291 mod tests {
292     extern crate alloc;
293     use super::*;
294     use crate::test;
295     use alloc::{vec, vec::Vec};
296 
297     #[test]
test_digest_based_test_vectors()298     fn test_digest_based_test_vectors() {
299         test::run(
300             test_file!("../../../../crypto/fipsmodule/ecdsa/ecdsa_verify_tests.txt"),
301             |section, test_case| {
302                 assert_eq!(section, "");
303 
304                 let curve_name = test_case.consume_string("Curve");
305 
306                 let public_key = {
307                     let mut public_key = vec![0x04];
308                     public_key.extend(&test_case.consume_bytes("X"));
309                     public_key.extend(&test_case.consume_bytes("Y"));
310                     public_key
311                 };
312 
313                 let digest = test_case.consume_bytes("Digest");
314 
315                 let sig = {
316                     let mut sig = Vec::new();
317                     sig.extend(&test_case.consume_bytes("R"));
318                     sig.extend(&test_case.consume_bytes("S"));
319                     sig
320                 };
321 
322                 let invalid = test_case.consume_optional_string("Invalid");
323 
324                 let alg = match curve_name.as_str() {
325                     "P-256" => &ECDSA_P256_SHA256_FIXED,
326                     "P-384" => &ECDSA_P384_SHA384_FIXED,
327                     _ => {
328                         panic!("Unsupported curve: {}", curve_name);
329                     }
330                 };
331 
332                 let digest = super::super::digest_scalar::digest_bytes_scalar(
333                     alg.ops.scalar_ops,
334                     &digest[..],
335                 );
336                 let actual_result = alg.verify_digest(
337                     untrusted::Input::from(&public_key[..]),
338                     digest,
339                     untrusted::Input::from(&sig[..]),
340                 );
341                 assert_eq!(actual_result.is_ok(), invalid.is_none());
342 
343                 Ok(())
344             },
345         );
346     }
347 }
348