1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Eliminate conditions based on constraints collected from dominating
10 // conditions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ConstraintSystem.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/GetElementPtrTypeIterator.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/DebugCounter.h"
33 #include "llvm/Support/MathExtras.h"
34
35 #include <cmath>
36 #include <string>
37
38 using namespace llvm;
39 using namespace PatternMatch;
40
41 #define DEBUG_TYPE "constraint-elimination"
42
43 STATISTIC(NumCondsRemoved, "Number of instructions removed");
44 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
45 "Controls which conditions are eliminated");
46
47 static cl::opt<unsigned>
48 MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden,
49 cl::desc("Maximum number of rows to keep in constraint system"));
50
51 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
52 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min();
53
54 // A helper to multiply 2 signed integers where overflowing is allowed.
multiplyWithOverflow(int64_t A,int64_t B)55 static int64_t multiplyWithOverflow(int64_t A, int64_t B) {
56 int64_t Result;
57 MulOverflow(A, B, Result);
58 return Result;
59 }
60
61 // A helper to add 2 signed integers where overflowing is allowed.
addWithOverflow(int64_t A,int64_t B)62 static int64_t addWithOverflow(int64_t A, int64_t B) {
63 int64_t Result;
64 AddOverflow(A, B, Result);
65 return Result;
66 }
67
68 namespace {
69
70 class ConstraintInfo;
71
72 struct StackEntry {
73 unsigned NumIn;
74 unsigned NumOut;
75 bool IsSigned = false;
76 /// Variables that can be removed from the system once the stack entry gets
77 /// removed.
78 SmallVector<Value *, 2> ValuesToRelease;
79
StackEntry__anon6ff26bd10111::StackEntry80 StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned,
81 SmallVector<Value *, 2> ValuesToRelease)
82 : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned),
83 ValuesToRelease(ValuesToRelease) {}
84 };
85
86 /// Struct to express a pre-condition of the form %Op0 Pred %Op1.
87 struct PreconditionTy {
88 CmpInst::Predicate Pred;
89 Value *Op0;
90 Value *Op1;
91
PreconditionTy__anon6ff26bd10111::PreconditionTy92 PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1)
93 : Pred(Pred), Op0(Op0), Op1(Op1) {}
94 };
95
96 struct ConstraintTy {
97 SmallVector<int64_t, 8> Coefficients;
98 SmallVector<PreconditionTy, 2> Preconditions;
99
100 SmallVector<SmallVector<int64_t, 8>> ExtraInfo;
101
102 bool IsSigned = false;
103 bool IsEq = false;
104
105 ConstraintTy() = default;
106
ConstraintTy__anon6ff26bd10111::ConstraintTy107 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned)
108 : Coefficients(Coefficients), IsSigned(IsSigned) {}
109
size__anon6ff26bd10111::ConstraintTy110 unsigned size() const { return Coefficients.size(); }
111
empty__anon6ff26bd10111::ConstraintTy112 unsigned empty() const { return Coefficients.empty(); }
113
114 /// Returns true if all preconditions for this list of constraints are
115 /// satisfied given \p CS and the corresponding \p Value2Index mapping.
116 bool isValid(const ConstraintInfo &Info) const;
117 };
118
119 /// Wrapper encapsulating separate constraint systems and corresponding value
120 /// mappings for both unsigned and signed information. Facts are added to and
121 /// conditions are checked against the corresponding system depending on the
122 /// signed-ness of their predicates. While the information is kept separate
123 /// based on signed-ness, certain conditions can be transferred between the two
124 /// systems.
125 class ConstraintInfo {
126 DenseMap<Value *, unsigned> UnsignedValue2Index;
127 DenseMap<Value *, unsigned> SignedValue2Index;
128
129 ConstraintSystem UnsignedCS;
130 ConstraintSystem SignedCS;
131
132 const DataLayout &DL;
133
134 public:
ConstraintInfo(const DataLayout & DL)135 ConstraintInfo(const DataLayout &DL) : DL(DL) {}
136
getValue2Index(bool Signed)137 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) {
138 return Signed ? SignedValue2Index : UnsignedValue2Index;
139 }
getValue2Index(bool Signed) const140 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const {
141 return Signed ? SignedValue2Index : UnsignedValue2Index;
142 }
143
getCS(bool Signed)144 ConstraintSystem &getCS(bool Signed) {
145 return Signed ? SignedCS : UnsignedCS;
146 }
getCS(bool Signed) const147 const ConstraintSystem &getCS(bool Signed) const {
148 return Signed ? SignedCS : UnsignedCS;
149 }
150
popLastConstraint(bool Signed)151 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); }
popLastNVariables(bool Signed,unsigned N)152 void popLastNVariables(bool Signed, unsigned N) {
153 getCS(Signed).popLastNVariables(N);
154 }
155
156 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const;
157
158 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
159 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack);
160
161 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
162 /// constraints, using indices from the corresponding constraint system.
163 /// New variables that need to be added to the system are collected in
164 /// \p NewVariables.
165 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
166 SmallVectorImpl<Value *> &NewVariables) const;
167
168 /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
169 /// constraints using getConstraint. Returns an empty constraint if the result
170 /// cannot be used to query the existing constraint system, e.g. because it
171 /// would require adding new variables. Also tries to convert signed
172 /// predicates to unsigned ones if possible to allow using the unsigned system
173 /// which increases the effectiveness of the signed <-> unsigned transfer
174 /// logic.
175 ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0,
176 Value *Op1) const;
177
178 /// Try to add information from \p A \p Pred \p B to the unsigned/signed
179 /// system if \p Pred is signed/unsigned.
180 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B,
181 unsigned NumIn, unsigned NumOut,
182 SmallVectorImpl<StackEntry> &DFSInStack);
183 };
184
185 /// Represents a (Coefficient * Variable) entry after IR decomposition.
186 struct DecompEntry {
187 int64_t Coefficient;
188 Value *Variable;
189 /// True if the variable is known positive in the current constraint.
190 bool IsKnownNonNegative;
191
DecompEntry__anon6ff26bd10111::DecompEntry192 DecompEntry(int64_t Coefficient, Value *Variable,
193 bool IsKnownNonNegative = false)
194 : Coefficient(Coefficient), Variable(Variable),
195 IsKnownNonNegative(IsKnownNonNegative) {}
196 };
197
198 /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition.
199 struct Decomposition {
200 int64_t Offset = 0;
201 SmallVector<DecompEntry, 3> Vars;
202
Decomposition__anon6ff26bd10111::Decomposition203 Decomposition(int64_t Offset) : Offset(Offset) {}
Decomposition__anon6ff26bd10111::Decomposition204 Decomposition(Value *V, bool IsKnownNonNegative = false) {
205 Vars.emplace_back(1, V, IsKnownNonNegative);
206 }
Decomposition__anon6ff26bd10111::Decomposition207 Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars)
208 : Offset(Offset), Vars(Vars) {}
209
add__anon6ff26bd10111::Decomposition210 void add(int64_t OtherOffset) {
211 Offset = addWithOverflow(Offset, OtherOffset);
212 }
213
add__anon6ff26bd10111::Decomposition214 void add(const Decomposition &Other) {
215 add(Other.Offset);
216 append_range(Vars, Other.Vars);
217 }
218
mul__anon6ff26bd10111::Decomposition219 void mul(int64_t Factor) {
220 Offset = multiplyWithOverflow(Offset, Factor);
221 for (auto &Var : Vars)
222 Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor);
223 }
224 };
225
226 } // namespace
227
228 static Decomposition decompose(Value *V,
229 SmallVectorImpl<PreconditionTy> &Preconditions,
230 bool IsSigned, const DataLayout &DL);
231
canUseSExt(ConstantInt * CI)232 static bool canUseSExt(ConstantInt *CI) {
233 const APInt &Val = CI->getValue();
234 return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue);
235 }
236
237 static Decomposition
decomposeGEP(GetElementPtrInst & GEP,SmallVectorImpl<PreconditionTy> & Preconditions,bool IsSigned,const DataLayout & DL)238 decomposeGEP(GetElementPtrInst &GEP,
239 SmallVectorImpl<PreconditionTy> &Preconditions, bool IsSigned,
240 const DataLayout &DL) {
241 // Do not reason about pointers where the index size is larger than 64 bits,
242 // as the coefficients used to encode constraints are 64 bit integers.
243 if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64)
244 return &GEP;
245
246 if (!GEP.isInBounds())
247 return &GEP;
248
249 assert(!IsSigned && "The logic below only supports decomposition for "
250 "unsinged predicates at the moment.");
251 Type *PtrTy = GEP.getType()->getScalarType();
252 unsigned BitWidth = DL.getIndexTypeSizeInBits(PtrTy);
253 MapVector<Value *, APInt> VariableOffsets;
254 APInt ConstantOffset(BitWidth, 0);
255 if (!GEP.collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset))
256 return &GEP;
257
258 // Handle the (gep (gep ....), C) case by incrementing the constant
259 // coefficient of the inner GEP, if C is a constant.
260 auto *InnerGEP = dyn_cast<GetElementPtrInst>(GEP.getPointerOperand());
261 if (VariableOffsets.empty() && InnerGEP && InnerGEP->getNumOperands() == 2) {
262 auto Result = decompose(InnerGEP, Preconditions, IsSigned, DL);
263 Result.add(ConstantOffset.getSExtValue());
264
265 if (ConstantOffset.isNegative()) {
266 unsigned Scale = DL.getTypeAllocSize(InnerGEP->getResultElementType());
267 int64_t ConstantOffsetI = ConstantOffset.getSExtValue();
268 if (ConstantOffsetI % Scale != 0)
269 return &GEP;
270 // Add pre-condition ensuring the GEP is increasing monotonically and
271 // can be de-composed.
272 // Both sides are normalized by being divided by Scale.
273 Preconditions.emplace_back(
274 CmpInst::ICMP_SGE, InnerGEP->getOperand(1),
275 ConstantInt::get(InnerGEP->getOperand(1)->getType(),
276 -1 * (ConstantOffsetI / Scale)));
277 }
278 return Result;
279 }
280
281 Decomposition Result(ConstantOffset.getSExtValue(),
282 DecompEntry(1, GEP.getPointerOperand()));
283 for (auto [Index, Scale] : VariableOffsets) {
284 auto IdxResult = decompose(Index, Preconditions, IsSigned, DL);
285 IdxResult.mul(Scale.getSExtValue());
286 Result.add(IdxResult);
287
288 // If Op0 is signed non-negative, the GEP is increasing monotonically and
289 // can be de-composed.
290 if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
291 Preconditions.emplace_back(CmpInst::ICMP_SGE, Index,
292 ConstantInt::get(Index->getType(), 0));
293 }
294 return Result;
295 }
296
297 // Decomposes \p V into a constant offset + list of pairs { Coefficient,
298 // Variable } where Coefficient * Variable. The sum of the constant offset and
299 // pairs equals \p V.
decompose(Value * V,SmallVectorImpl<PreconditionTy> & Preconditions,bool IsSigned,const DataLayout & DL)300 static Decomposition decompose(Value *V,
301 SmallVectorImpl<PreconditionTy> &Preconditions,
302 bool IsSigned, const DataLayout &DL) {
303
304 auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B,
305 bool IsSignedB) {
306 auto ResA = decompose(A, Preconditions, IsSigned, DL);
307 auto ResB = decompose(B, Preconditions, IsSignedB, DL);
308 ResA.add(ResB);
309 return ResA;
310 };
311
312 // Decompose \p V used with a signed predicate.
313 if (IsSigned) {
314 if (auto *CI = dyn_cast<ConstantInt>(V)) {
315 if (canUseSExt(CI))
316 return CI->getSExtValue();
317 }
318 Value *Op0;
319 Value *Op1;
320 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1))))
321 return MergeResults(Op0, Op1, IsSigned);
322
323 return V;
324 }
325
326 if (auto *CI = dyn_cast<ConstantInt>(V)) {
327 if (CI->uge(MaxConstraintValue))
328 return V;
329 return int64_t(CI->getZExtValue());
330 }
331
332 if (auto *GEP = dyn_cast<GetElementPtrInst>(V))
333 return decomposeGEP(*GEP, Preconditions, IsSigned, DL);
334
335 Value *Op0;
336 bool IsKnownNonNegative = false;
337 if (match(V, m_ZExt(m_Value(Op0)))) {
338 IsKnownNonNegative = true;
339 V = Op0;
340 }
341
342 Value *Op1;
343 ConstantInt *CI;
344 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) {
345 return MergeResults(Op0, Op1, IsSigned);
346 }
347 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) {
348 if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
349 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
350 ConstantInt::get(Op0->getType(), 0));
351 if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
352 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1,
353 ConstantInt::get(Op1->getType(), 0));
354
355 return MergeResults(Op0, Op1, IsSigned);
356 }
357
358 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() &&
359 canUseSExt(CI)) {
360 Preconditions.emplace_back(
361 CmpInst::ICMP_UGE, Op0,
362 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1));
363 return MergeResults(Op0, CI, true);
364 }
365
366 if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) {
367 int64_t Mult = int64_t(std::pow(int64_t(2), CI->getSExtValue()));
368 auto Result = decompose(Op1, Preconditions, IsSigned, DL);
369 Result.mul(Mult);
370 return Result;
371 }
372
373 if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) &&
374 (!CI->isNegative())) {
375 auto Result = decompose(Op1, Preconditions, IsSigned, DL);
376 Result.mul(CI->getSExtValue());
377 return Result;
378 }
379
380 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI))
381 return {-1 * CI->getSExtValue(), {{1, Op0}}};
382 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1))))
383 return {0, {{1, Op0}, {-1, Op1}}};
384
385 return {V, IsKnownNonNegative};
386 }
387
388 ConstraintTy
getConstraint(CmpInst::Predicate Pred,Value * Op0,Value * Op1,SmallVectorImpl<Value * > & NewVariables) const389 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
390 SmallVectorImpl<Value *> &NewVariables) const {
391 assert(NewVariables.empty() && "NewVariables must be empty when passed in");
392 bool IsEq = false;
393 // Try to convert Pred to one of ULE/SLT/SLE/SLT.
394 switch (Pred) {
395 case CmpInst::ICMP_UGT:
396 case CmpInst::ICMP_UGE:
397 case CmpInst::ICMP_SGT:
398 case CmpInst::ICMP_SGE: {
399 Pred = CmpInst::getSwappedPredicate(Pred);
400 std::swap(Op0, Op1);
401 break;
402 }
403 case CmpInst::ICMP_EQ:
404 if (match(Op1, m_Zero())) {
405 Pred = CmpInst::ICMP_ULE;
406 } else {
407 IsEq = true;
408 Pred = CmpInst::ICMP_ULE;
409 }
410 break;
411 case CmpInst::ICMP_NE:
412 if (!match(Op1, m_Zero()))
413 return {};
414 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT);
415 std::swap(Op0, Op1);
416 break;
417 default:
418 break;
419 }
420
421 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT &&
422 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT)
423 return {};
424
425 SmallVector<PreconditionTy, 4> Preconditions;
426 bool IsSigned = CmpInst::isSigned(Pred);
427 auto &Value2Index = getValue2Index(IsSigned);
428 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(),
429 Preconditions, IsSigned, DL);
430 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(),
431 Preconditions, IsSigned, DL);
432 int64_t Offset1 = ADec.Offset;
433 int64_t Offset2 = BDec.Offset;
434 Offset1 *= -1;
435
436 auto &VariablesA = ADec.Vars;
437 auto &VariablesB = BDec.Vars;
438
439 // First try to look up \p V in Value2Index and NewVariables. Otherwise add a
440 // new entry to NewVariables.
441 DenseMap<Value *, unsigned> NewIndexMap;
442 auto GetOrAddIndex = [&Value2Index, &NewVariables,
443 &NewIndexMap](Value *V) -> unsigned {
444 auto V2I = Value2Index.find(V);
445 if (V2I != Value2Index.end())
446 return V2I->second;
447 auto Insert =
448 NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1});
449 if (Insert.second)
450 NewVariables.push_back(V);
451 return Insert.first->second;
452 };
453
454 // Make sure all variables have entries in Value2Index or NewVariables.
455 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB))
456 GetOrAddIndex(KV.Variable);
457
458 // Build result constraint, by first adding all coefficients from A and then
459 // subtracting all coefficients from B.
460 ConstraintTy Res(
461 SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0),
462 IsSigned);
463 // Collect variables that are known to be positive in all uses in the
464 // constraint.
465 DenseMap<Value *, bool> KnownNonNegativeVariables;
466 Res.IsEq = IsEq;
467 auto &R = Res.Coefficients;
468 for (const auto &KV : VariablesA) {
469 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient;
470 auto I =
471 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative});
472 I.first->second &= KV.IsKnownNonNegative;
473 }
474
475 for (const auto &KV : VariablesB) {
476 R[GetOrAddIndex(KV.Variable)] -= KV.Coefficient;
477 auto I =
478 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative});
479 I.first->second &= KV.IsKnownNonNegative;
480 }
481
482 int64_t OffsetSum;
483 if (AddOverflow(Offset1, Offset2, OffsetSum))
484 return {};
485 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT))
486 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum))
487 return {};
488 R[0] = OffsetSum;
489 Res.Preconditions = std::move(Preconditions);
490
491 // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new
492 // variables.
493 while (!NewVariables.empty()) {
494 int64_t Last = R.back();
495 if (Last != 0)
496 break;
497 R.pop_back();
498 Value *RemovedV = NewVariables.pop_back_val();
499 NewIndexMap.erase(RemovedV);
500 }
501
502 // Add extra constraints for variables that are known positive.
503 for (auto &KV : KnownNonNegativeVariables) {
504 if (!KV.second || (Value2Index.find(KV.first) == Value2Index.end() &&
505 NewIndexMap.find(KV.first) == NewIndexMap.end()))
506 continue;
507 SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0);
508 C[GetOrAddIndex(KV.first)] = -1;
509 Res.ExtraInfo.push_back(C);
510 }
511 return Res;
512 }
513
getConstraintForSolving(CmpInst::Predicate Pred,Value * Op0,Value * Op1) const514 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred,
515 Value *Op0,
516 Value *Op1) const {
517 // If both operands are known to be non-negative, change signed predicates to
518 // unsigned ones. This increases the reasoning effectiveness in combination
519 // with the signed <-> unsigned transfer logic.
520 if (CmpInst::isSigned(Pred) &&
521 isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) &&
522 isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
523 Pred = CmpInst::getUnsignedPredicate(Pred);
524
525 SmallVector<Value *> NewVariables;
526 ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables);
527 if (R.IsEq || !NewVariables.empty())
528 return {};
529 return R;
530 }
531
isValid(const ConstraintInfo & Info) const532 bool ConstraintTy::isValid(const ConstraintInfo &Info) const {
533 return Coefficients.size() > 0 &&
534 all_of(Preconditions, [&Info](const PreconditionTy &C) {
535 return Info.doesHold(C.Pred, C.Op0, C.Op1);
536 });
537 }
538
doesHold(CmpInst::Predicate Pred,Value * A,Value * B) const539 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A,
540 Value *B) const {
541 auto R = getConstraintForSolving(Pred, A, B);
542 return R.Preconditions.empty() && !R.empty() &&
543 getCS(R.IsSigned).isConditionImplied(R.Coefficients);
544 }
545
transferToOtherSystem(CmpInst::Predicate Pred,Value * A,Value * B,unsigned NumIn,unsigned NumOut,SmallVectorImpl<StackEntry> & DFSInStack)546 void ConstraintInfo::transferToOtherSystem(
547 CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
548 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) {
549 // Check if we can combine facts from the signed and unsigned systems to
550 // derive additional facts.
551 if (!A->getType()->isIntegerTy())
552 return;
553 // FIXME: This currently depends on the order we add facts. Ideally we
554 // would first add all known facts and only then try to add additional
555 // facts.
556 switch (Pred) {
557 default:
558 break;
559 case CmpInst::ICMP_ULT:
560 // If B is a signed positive constant, A >=s 0 and A <s B.
561 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
562 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn,
563 NumOut, DFSInStack);
564 addFact(CmpInst::ICMP_SLT, A, B, NumIn, NumOut, DFSInStack);
565 }
566 break;
567 case CmpInst::ICMP_SLT:
568 if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0)))
569 addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack);
570 break;
571 case CmpInst::ICMP_SGT:
572 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1)))
573 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn,
574 NumOut, DFSInStack);
575 break;
576 case CmpInst::ICMP_SGE:
577 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
578 addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack);
579 }
580 break;
581 }
582 }
583
584 namespace {
585 /// Represents either
586 /// * a condition that holds on entry to a block (=conditional fact)
587 /// * an assume (=assume fact)
588 /// * an instruction to simplify.
589 /// It also tracks the Dominator DFS in and out numbers for each entry.
590 struct FactOrCheck {
591 Instruction *Inst;
592 unsigned NumIn;
593 unsigned NumOut;
594 bool IsCheck;
595 bool Not;
596
FactOrCheck__anon6ff26bd10511::FactOrCheck597 FactOrCheck(DomTreeNode *DTN, Instruction *Inst, bool IsCheck, bool Not)
598 : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()),
599 IsCheck(IsCheck), Not(Not) {}
600
getFact__anon6ff26bd10511::FactOrCheck601 static FactOrCheck getFact(DomTreeNode *DTN, Instruction *Inst,
602 bool Not = false) {
603 return FactOrCheck(DTN, Inst, false, Not);
604 }
605
getCheck__anon6ff26bd10511::FactOrCheck606 static FactOrCheck getCheck(DomTreeNode *DTN, Instruction *Inst) {
607 return FactOrCheck(DTN, Inst, true, false);
608 }
609
isAssumeFact__anon6ff26bd10511::FactOrCheck610 bool isAssumeFact() const {
611 if (!IsCheck && isa<IntrinsicInst>(Inst)) {
612 assert(match(Inst, m_Intrinsic<Intrinsic::assume>()));
613 return true;
614 }
615 return false;
616 }
617
isConditionFact__anon6ff26bd10511::FactOrCheck618 bool isConditionFact() const { return !IsCheck && isa<CmpInst>(Inst); }
619 };
620
621 /// Keep state required to build worklist.
622 struct State {
623 DominatorTree &DT;
624 SmallVector<FactOrCheck, 64> WorkList;
625
State__anon6ff26bd10511::State626 State(DominatorTree &DT) : DT(DT) {}
627
628 /// Process block \p BB and add known facts to work-list.
629 void addInfoFor(BasicBlock &BB);
630
631 /// Returns true if we can add a known condition from BB to its successor
632 /// block Succ.
canAddSuccessor__anon6ff26bd10511::State633 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const {
634 return DT.dominates(BasicBlockEdge(&BB, Succ), Succ);
635 }
636 };
637
638 } // namespace
639
640 #ifndef NDEBUG
dumpWithNames(const ConstraintSystem & CS,DenseMap<Value *,unsigned> & Value2Index)641 static void dumpWithNames(const ConstraintSystem &CS,
642 DenseMap<Value *, unsigned> &Value2Index) {
643 SmallVector<std::string> Names(Value2Index.size(), "");
644 for (auto &KV : Value2Index) {
645 Names[KV.second - 1] = std::string("%") + KV.first->getName().str();
646 }
647 CS.dump(Names);
648 }
649
dumpWithNames(ArrayRef<int64_t> C,DenseMap<Value *,unsigned> & Value2Index)650 static void dumpWithNames(ArrayRef<int64_t> C,
651 DenseMap<Value *, unsigned> &Value2Index) {
652 ConstraintSystem CS;
653 CS.addVariableRowFill(C);
654 dumpWithNames(CS, Value2Index);
655 }
656 #endif
657
addInfoFor(BasicBlock & BB)658 void State::addInfoFor(BasicBlock &BB) {
659 // True as long as long as the current instruction is guaranteed to execute.
660 bool GuaranteedToExecute = true;
661 // Queue conditions and assumes.
662 for (Instruction &I : BB) {
663 if (auto Cmp = dyn_cast<ICmpInst>(&I)) {
664 WorkList.push_back(FactOrCheck::getCheck(DT.getNode(&BB), Cmp));
665 continue;
666 }
667
668 if (match(&I, m_Intrinsic<Intrinsic::ssub_with_overflow>())) {
669 WorkList.push_back(FactOrCheck::getCheck(DT.getNode(&BB), &I));
670 continue;
671 }
672
673 Value *Cond;
674 // For now, just handle assumes with a single compare as condition.
675 if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) &&
676 isa<ICmpInst>(Cond)) {
677 if (GuaranteedToExecute) {
678 // The assume is guaranteed to execute when BB is entered, hence Cond
679 // holds on entry to BB.
680 WorkList.emplace_back(FactOrCheck::getFact(DT.getNode(I.getParent()),
681 cast<Instruction>(Cond)));
682 } else {
683 WorkList.emplace_back(
684 FactOrCheck::getFact(DT.getNode(I.getParent()), &I));
685 }
686 }
687 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
688 }
689
690 auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
691 if (!Br || !Br->isConditional())
692 return;
693
694 Value *Cond = Br->getCondition();
695
696 // If the condition is a chain of ORs/AND and the successor only has the
697 // current block as predecessor, queue conditions for the successor.
698 Value *Op0, *Op1;
699 if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
700 match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
701 bool IsOr = match(Cond, m_LogicalOr());
702 bool IsAnd = match(Cond, m_LogicalAnd());
703 // If there's a select that matches both AND and OR, we need to commit to
704 // one of the options. Arbitrarily pick OR.
705 if (IsOr && IsAnd)
706 IsAnd = false;
707
708 BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0);
709 if (canAddSuccessor(BB, Successor)) {
710 SmallVector<Value *> CondWorkList;
711 SmallPtrSet<Value *, 8> SeenCond;
712 auto QueueValue = [&CondWorkList, &SeenCond](Value *V) {
713 if (SeenCond.insert(V).second)
714 CondWorkList.push_back(V);
715 };
716 QueueValue(Op1);
717 QueueValue(Op0);
718 while (!CondWorkList.empty()) {
719 Value *Cur = CondWorkList.pop_back_val();
720 if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) {
721 WorkList.emplace_back(
722 FactOrCheck::getFact(DT.getNode(Successor), Cmp, IsOr));
723 continue;
724 }
725 if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
726 QueueValue(Op1);
727 QueueValue(Op0);
728 continue;
729 }
730 if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
731 QueueValue(Op1);
732 QueueValue(Op0);
733 continue;
734 }
735 }
736 }
737 return;
738 }
739
740 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition());
741 if (!CmpI)
742 return;
743 if (canAddSuccessor(BB, Br->getSuccessor(0)))
744 WorkList.emplace_back(
745 FactOrCheck::getFact(DT.getNode(Br->getSuccessor(0)), CmpI));
746 if (canAddSuccessor(BB, Br->getSuccessor(1)))
747 WorkList.emplace_back(
748 FactOrCheck::getFact(DT.getNode(Br->getSuccessor(1)), CmpI, true));
749 }
750
checkAndReplaceCondition(CmpInst * Cmp,ConstraintInfo & Info)751 static bool checkAndReplaceCondition(CmpInst *Cmp, ConstraintInfo &Info) {
752 LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n");
753
754 CmpInst::Predicate Pred = Cmp->getPredicate();
755 Value *A = Cmp->getOperand(0);
756 Value *B = Cmp->getOperand(1);
757
758 auto R = Info.getConstraintForSolving(Pred, A, B);
759 if (R.empty() || !R.isValid(Info)){
760 LLVM_DEBUG(dbgs() << " failed to decompose condition\n");
761 return false;
762 }
763
764 auto &CSToUse = Info.getCS(R.IsSigned);
765
766 // If there was extra information collected during decomposition, apply
767 // it now and remove it immediately once we are done with reasoning
768 // about the constraint.
769 for (auto &Row : R.ExtraInfo)
770 CSToUse.addVariableRow(Row);
771 auto InfoRestorer = make_scope_exit([&]() {
772 for (unsigned I = 0; I < R.ExtraInfo.size(); ++I)
773 CSToUse.popLastConstraint();
774 });
775
776 bool Changed = false;
777 if (CSToUse.isConditionImplied(R.Coefficients)) {
778 if (!DebugCounter::shouldExecute(EliminatedCounter))
779 return false;
780
781 LLVM_DEBUG({
782 dbgs() << "Condition " << *Cmp << " implied by dominating constraints\n";
783 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned));
784 });
785 Constant *TrueC =
786 ConstantInt::getTrue(CmpInst::makeCmpResultType(Cmp->getType()));
787 Cmp->replaceUsesWithIf(TrueC, [](Use &U) {
788 // Conditions in an assume trivially simplify to true. Skip uses
789 // in assume calls to not destroy the available information.
790 auto *II = dyn_cast<IntrinsicInst>(U.getUser());
791 return !II || II->getIntrinsicID() != Intrinsic::assume;
792 });
793 NumCondsRemoved++;
794 Changed = true;
795 }
796 if (CSToUse.isConditionImplied(ConstraintSystem::negate(R.Coefficients))) {
797 if (!DebugCounter::shouldExecute(EliminatedCounter))
798 return false;
799
800 LLVM_DEBUG({
801 dbgs() << "Condition !" << *Cmp << " implied by dominating constraints\n";
802 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned));
803 });
804 Constant *FalseC =
805 ConstantInt::getFalse(CmpInst::makeCmpResultType(Cmp->getType()));
806 Cmp->replaceAllUsesWith(FalseC);
807 NumCondsRemoved++;
808 Changed = true;
809 }
810 return Changed;
811 }
812
addFact(CmpInst::Predicate Pred,Value * A,Value * B,unsigned NumIn,unsigned NumOut,SmallVectorImpl<StackEntry> & DFSInStack)813 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B,
814 unsigned NumIn, unsigned NumOut,
815 SmallVectorImpl<StackEntry> &DFSInStack) {
816 // If the constraint has a pre-condition, skip the constraint if it does not
817 // hold.
818 SmallVector<Value *> NewVariables;
819 auto R = getConstraint(Pred, A, B, NewVariables);
820 if (!R.isValid(*this))
821 return;
822
823 LLVM_DEBUG(dbgs() << "Adding '" << CmpInst::getPredicateName(Pred) << " ";
824 A->printAsOperand(dbgs(), false); dbgs() << ", ";
825 B->printAsOperand(dbgs(), false); dbgs() << "'\n");
826 bool Added = false;
827 auto &CSToUse = getCS(R.IsSigned);
828 if (R.Coefficients.empty())
829 return;
830
831 Added |= CSToUse.addVariableRowFill(R.Coefficients);
832
833 // If R has been added to the system, add the new variables and queue it for
834 // removal once it goes out-of-scope.
835 if (Added) {
836 SmallVector<Value *, 2> ValuesToRelease;
837 auto &Value2Index = getValue2Index(R.IsSigned);
838 for (Value *V : NewVariables) {
839 Value2Index.insert({V, Value2Index.size() + 1});
840 ValuesToRelease.push_back(V);
841 }
842
843 LLVM_DEBUG({
844 dbgs() << " constraint: ";
845 dumpWithNames(R.Coefficients, getValue2Index(R.IsSigned));
846 dbgs() << "\n";
847 });
848
849 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
850 std::move(ValuesToRelease));
851
852 if (R.IsEq) {
853 // Also add the inverted constraint for equality constraints.
854 for (auto &Coeff : R.Coefficients)
855 Coeff *= -1;
856 CSToUse.addVariableRowFill(R.Coefficients);
857
858 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
859 SmallVector<Value *, 2>());
860 }
861 }
862 }
863
replaceSubOverflowUses(IntrinsicInst * II,Value * A,Value * B,SmallVectorImpl<Instruction * > & ToRemove)864 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B,
865 SmallVectorImpl<Instruction *> &ToRemove) {
866 bool Changed = false;
867 IRBuilder<> Builder(II->getParent(), II->getIterator());
868 Value *Sub = nullptr;
869 for (User *U : make_early_inc_range(II->users())) {
870 if (match(U, m_ExtractValue<0>(m_Value()))) {
871 if (!Sub)
872 Sub = Builder.CreateSub(A, B);
873 U->replaceAllUsesWith(Sub);
874 Changed = true;
875 } else if (match(U, m_ExtractValue<1>(m_Value()))) {
876 U->replaceAllUsesWith(Builder.getFalse());
877 Changed = true;
878 } else
879 continue;
880
881 if (U->use_empty()) {
882 auto *I = cast<Instruction>(U);
883 ToRemove.push_back(I);
884 I->setOperand(0, PoisonValue::get(II->getType()));
885 Changed = true;
886 }
887 }
888
889 if (II->use_empty()) {
890 II->eraseFromParent();
891 Changed = true;
892 }
893 return Changed;
894 }
895
896 static bool
tryToSimplifyOverflowMath(IntrinsicInst * II,ConstraintInfo & Info,SmallVectorImpl<Instruction * > & ToRemove)897 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info,
898 SmallVectorImpl<Instruction *> &ToRemove) {
899 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B,
900 ConstraintInfo &Info) {
901 auto R = Info.getConstraintForSolving(Pred, A, B);
902 if (R.size() < 2 || !R.isValid(Info))
903 return false;
904
905 auto &CSToUse = Info.getCS(R.IsSigned);
906 return CSToUse.isConditionImplied(R.Coefficients);
907 };
908
909 bool Changed = false;
910 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) {
911 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and
912 // can be simplified to a regular sub.
913 Value *A = II->getArgOperand(0);
914 Value *B = II->getArgOperand(1);
915 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) ||
916 !DoesConditionHold(CmpInst::ICMP_SGE, B,
917 ConstantInt::get(A->getType(), 0), Info))
918 return false;
919 Changed = replaceSubOverflowUses(II, A, B, ToRemove);
920 }
921 return Changed;
922 }
923
eliminateConstraints(Function & F,DominatorTree & DT)924 static bool eliminateConstraints(Function &F, DominatorTree &DT) {
925 bool Changed = false;
926 DT.updateDFSNumbers();
927
928 ConstraintInfo Info(F.getParent()->getDataLayout());
929 State S(DT);
930
931 // First, collect conditions implied by branches and blocks with their
932 // Dominator DFS in and out numbers.
933 for (BasicBlock &BB : F) {
934 if (!DT.getNode(&BB))
935 continue;
936 S.addInfoFor(BB);
937 }
938
939 // Next, sort worklist by dominance, so that dominating conditions to check
940 // and facts come before conditions and facts dominated by them. If a
941 // condition to check and a fact have the same numbers, conditional facts come
942 // first. Assume facts and checks are ordered according to their relative
943 // order in the containing basic block. Also make sure conditions with
944 // constant operands come before conditions without constant operands. This
945 // increases the effectiveness of the current signed <-> unsigned fact
946 // transfer logic.
947 stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) {
948 auto HasNoConstOp = [](const FactOrCheck &B) {
949 return !isa<ConstantInt>(B.Inst->getOperand(0)) &&
950 !isa<ConstantInt>(B.Inst->getOperand(1));
951 };
952 // If both entries have the same In numbers, conditional facts come first.
953 // Otherwise use the relative order in the basic block.
954 if (A.NumIn == B.NumIn) {
955 if (A.isConditionFact() && B.isConditionFact()) {
956 bool NoConstOpA = HasNoConstOp(A);
957 bool NoConstOpB = HasNoConstOp(B);
958 return NoConstOpA < NoConstOpB;
959 }
960 if (A.isConditionFact())
961 return true;
962 if (B.isConditionFact())
963 return false;
964 return A.Inst->comesBefore(B.Inst);
965 }
966 return A.NumIn < B.NumIn;
967 });
968
969 SmallVector<Instruction *> ToRemove;
970
971 // Finally, process ordered worklist and eliminate implied conditions.
972 SmallVector<StackEntry, 16> DFSInStack;
973 for (FactOrCheck &CB : S.WorkList) {
974 // First, pop entries from the stack that are out-of-scope for CB. Remove
975 // the corresponding entry from the constraint system.
976 while (!DFSInStack.empty()) {
977 auto &E = DFSInStack.back();
978 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
979 << "\n");
980 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
981 assert(E.NumIn <= CB.NumIn);
982 if (CB.NumOut <= E.NumOut)
983 break;
984 LLVM_DEBUG({
985 dbgs() << "Removing ";
986 dumpWithNames(Info.getCS(E.IsSigned).getLastConstraint(),
987 Info.getValue2Index(E.IsSigned));
988 dbgs() << "\n";
989 });
990
991 Info.popLastConstraint(E.IsSigned);
992 // Remove variables in the system that went out of scope.
993 auto &Mapping = Info.getValue2Index(E.IsSigned);
994 for (Value *V : E.ValuesToRelease)
995 Mapping.erase(V);
996 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size());
997 DFSInStack.pop_back();
998 }
999
1000 LLVM_DEBUG({
1001 dbgs() << "Processing ";
1002 if (CB.IsCheck)
1003 dbgs() << "condition to simplify: " << *CB.Inst;
1004 else
1005 dbgs() << "fact to add to the system: " << *CB.Inst;
1006 dbgs() << "\n";
1007 });
1008
1009 // For a block, check if any CmpInsts become known based on the current set
1010 // of constraints.
1011 if (CB.IsCheck) {
1012 if (auto *II = dyn_cast<WithOverflowInst>(CB.Inst)) {
1013 Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove);
1014 } else if (auto *Cmp = dyn_cast<ICmpInst>(CB.Inst)) {
1015 Changed |= checkAndReplaceCondition(Cmp, Info);
1016 }
1017 continue;
1018 }
1019
1020 ICmpInst::Predicate Pred;
1021 Value *A, *B;
1022 Value *Cmp = CB.Inst;
1023 match(Cmp, m_Intrinsic<Intrinsic::assume>(m_Value(Cmp)));
1024 if (match(Cmp, m_ICmp(Pred, m_Value(A), m_Value(B)))) {
1025 if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) {
1026 LLVM_DEBUG(
1027 dbgs()
1028 << "Skip adding constraint because system has too many rows.\n");
1029 continue;
1030 }
1031
1032 // Use the inverse predicate if required.
1033 if (CB.Not)
1034 Pred = CmpInst::getInversePredicate(Pred);
1035
1036 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1037 Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1038 }
1039 }
1040
1041 #ifndef NDEBUG
1042 unsigned SignedEntries =
1043 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; });
1044 assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries &&
1045 "updates to CS and DFSInStack are out of sync");
1046 assert(Info.getCS(true).size() == SignedEntries &&
1047 "updates to CS and DFSInStack are out of sync");
1048 #endif
1049
1050 for (Instruction *I : ToRemove)
1051 I->eraseFromParent();
1052 return Changed;
1053 }
1054
run(Function & F,FunctionAnalysisManager & AM)1055 PreservedAnalyses ConstraintEliminationPass::run(Function &F,
1056 FunctionAnalysisManager &AM) {
1057 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1058 if (!eliminateConstraints(F, DT))
1059 return PreservedAnalyses::all();
1060
1061 PreservedAnalyses PA;
1062 PA.preserve<DominatorTreeAnalysis>();
1063 PA.preserveSet<CFGAnalyses>();
1064 return PA;
1065 }
1066