xref: /aosp_15_r20/external/armnn/python/pyarmnn/test/test_const_tensor.py (revision 89c4ff92f2867872bb9e2354d150bf0c8c502810)
1# Copyright © 2020 Arm Ltd. All rights reserved.
2# SPDX-License-Identifier: MIT
3import pytest
4import numpy as np
5
6import pyarmnn as ann
7
8
9def _get_const_tensor_info(dt):
10    tensor_info = ann.TensorInfo(ann.TensorShape((2, 3)), dt, 0.0, 0, True)
11
12    return tensor_info
13
14
15@pytest.mark.parametrize("dt, data",
16                         [
17                             (ann.DataType_Float32, np.random.randint(1, size=(2, 4)).astype(np.float32)),
18                             (ann.DataType_Float16, np.random.randint(1, size=(2, 4)).astype(np.float16)),
19                             (ann.DataType_QAsymmU8, np.random.randint(1, size=(2, 4)).astype(np.uint8)),
20                             (ann.DataType_QAsymmS8, np.random.randint(1, size=(2, 4)).astype(np.int8)),
21                             (ann.DataType_QSymmS8, np.random.randint(1, size=(2, 4)).astype(np.int8)),
22                             (ann.DataType_Signed32, np.random.randint(1, size=(2, 4)).astype(np.int32)),
23                             (ann.DataType_QSymmS16, np.random.randint(1, size=(2, 4)).astype(np.int16))
24                         ], ids=['float32', 'float16', 'unsigned int8', 'signed int8', 'signed int8', 'int32', 'int16'])
25def test_const_tensor_too_many_elements(dt, data):
26    tensor_info = _get_const_tensor_info(dt)
27    num_bytes = tensor_info.GetNumBytes()
28
29    with pytest.raises(ValueError) as err:
30        ann.ConstTensor(tensor_info, data)
31
32    assert 'ConstTensor requires {} bytes, {} provided.'.format(num_bytes, data.nbytes) in str(err.value)
33
34
35@pytest.mark.parametrize("dt, data",
36                         [
37                             (ann.DataType_Float32, np.random.randint(1, size=(2, 2)).astype(np.float32)),
38                             (ann.DataType_Float16, np.random.randint(1, size=(2, 2)).astype(np.float16)),
39                             (ann.DataType_QAsymmU8, np.random.randint(1, size=(2, 2)).astype(np.uint8)),
40                             (ann.DataType_QAsymmS8, np.random.randint(1, size=(2, 2)).astype(np.int8)),
41                             (ann.DataType_QSymmS8, np.random.randint(1, size=(2, 2)).astype(np.int8)),
42                             (ann.DataType_Signed32, np.random.randint(1, size=(2, 2)).astype(np.int32)),
43                             (ann.DataType_QSymmS16, np.random.randint(1, size=(2, 2)).astype(np.int16))
44                         ], ids=['float32', 'float16', 'unsigned int8', 'signed int8', 'signed int8', 'int32', 'int16'])
45def test_const_tensor_too_little_elements(dt, data):
46    tensor_info = _get_const_tensor_info(dt)
47    num_bytes = tensor_info.GetNumBytes()
48
49    with pytest.raises(ValueError) as err:
50        ann.ConstTensor(tensor_info, data)
51
52    assert 'ConstTensor requires {} bytes, {} provided.'.format(num_bytes, data.nbytes) in str(err.value)
53
54
55@pytest.mark.parametrize("dt, data",
56                         [
57                             (ann.DataType_Float32, np.random.randint(1, size=(2, 2, 3, 3)).astype(np.float32)),
58                             (ann.DataType_Float16, np.random.randint(1, size=(2, 2, 3, 3)).astype(np.float16)),
59                             (ann.DataType_QAsymmU8, np.random.randint(1, size=(2, 2, 3, 3)).astype(np.uint8)),
60                             (ann.DataType_QAsymmS8, np.random.randint(1, size=(2, 2, 3, 3)).astype(np.int8)),
61                             (ann.DataType_QSymmS8, np.random.randint(1, size=(2, 2, 3, 3)).astype(np.int8)),
62                             (ann.DataType_Signed32, np.random.randint(1, size=(2, 2, 3, 3)).astype(np.int32)),
63                             (ann.DataType_QSymmS16, np.random.randint(1, size=(2, 2, 3, 3)).astype(np.int16))
64                         ], ids=['float32', 'float16', 'unsigned int8', 'signed int8', 'signed int8', 'int32', 'int16'])
65def test_const_tensor_multi_dimensional_input(dt, data):
66    tensor = ann.ConstTensor(ann.TensorInfo(ann.TensorShape((2, 2, 3, 3)), dt, 0.0, 0, True), data)
67
68    assert data.size == tensor.GetNumElements()
69    assert data.nbytes == tensor.GetNumBytes()
70    assert dt == tensor.GetDataType()
71    assert tensor.get_memory_area().data
72
73
74def test_create_const_tensor_from_tensor():
75    tensor_info = ann.TensorInfo(ann.TensorShape((2, 3)), ann.DataType_Float32, 0.0, 0, True)
76    tensor = ann.Tensor(tensor_info)
77    copied_tensor = ann.ConstTensor(tensor)
78
79    assert copied_tensor != tensor, "Different objects"
80    assert copied_tensor.GetInfo() != tensor.GetInfo(), "Different objects"
81    assert copied_tensor.get_memory_area().ctypes.data == tensor.get_memory_area().ctypes.data, "Same memory area"
82    assert copied_tensor.GetNumElements() == tensor.GetNumElements()
83    assert copied_tensor.GetNumBytes() == tensor.GetNumBytes()
84    assert copied_tensor.GetDataType() == tensor.GetDataType()
85
86
87def test_const_tensor_from_tensor_has_memory_area_access_after_deletion_of_original_tensor():
88    tensor_info = ann.TensorInfo(ann.TensorShape((2, 3)), ann.DataType_Float32, 0.0, 0, True)
89    tensor = ann.Tensor(tensor_info)
90
91    tensor.get_memory_area()[0] = 100
92
93    copied_mem = tensor.get_memory_area().copy()
94
95    assert 100 == copied_mem[0], "Memory was copied correctly"
96
97    copied_tensor = ann.ConstTensor(tensor)
98
99    tensor.get_memory_area()[0] = 200
100
101    assert 200 == tensor.get_memory_area()[0], "Tensor and copied Tensor point to the same memory"
102    assert 200 == copied_tensor.get_memory_area()[0], "Tensor and copied Tensor point to the same memory"
103
104    assert 100 == copied_mem[0], "Copied test memory not affected"
105
106    copied_mem[0] = 200  # modify test memory to equal copied Tensor
107
108    del tensor
109    np.testing.assert_array_equal(copied_tensor.get_memory_area(), copied_mem), "After initial tensor was deleted, " \
110                                                                                "copied Tensor still has " \
111                                                                                "its memory as expected"
112
113
114def test_create_const_tensor_incorrect_args():
115    with pytest.raises(ValueError) as err:
116        ann.ConstTensor('something', 'something')
117
118    expected_error_message = "Incorrect number of arguments or type of arguments provided to create Const Tensor."
119    assert expected_error_message in str(err.value)
120
121
122@pytest.mark.parametrize("dt, data",
123                         [
124                             # -1 not in data type enum
125                             (-1, np.random.randint(1, size=(2, 3)).astype(np.float32)),
126                         ], ids=['unknown'])
127def test_const_tensor_unsupported_datatype(dt, data):
128    tensor_info = _get_const_tensor_info(dt)
129
130    with pytest.raises(ValueError) as err:
131        ann.ConstTensor(tensor_info, data)
132
133    assert 'The data type provided for this Tensor is not supported: -1' in str(err.value)
134
135
136@pytest.mark.parametrize("dt, data",
137                         [
138                             (ann.DataType_Float32, [[1, 1, 1], [1, 1, 1]]),
139                             (ann.DataType_Float16, [[1, 1, 1], [1, 1, 1]]),
140                             (ann.DataType_QAsymmU8, [[1, 1, 1], [1, 1, 1]]),
141                             (ann.DataType_QAsymmS8, [[1, 1, 1], [1, 1, 1]]),
142                             (ann.DataType_QSymmS8, [[1, 1, 1], [1, 1, 1]])
143                         ], ids=['float32', 'float16', 'unsigned int8', 'signed int8', 'signed int8'])
144def test_const_tensor_incorrect_input_datatype(dt, data):
145    tensor_info = _get_const_tensor_info(dt)
146
147    with pytest.raises(TypeError) as err:
148        ann.ConstTensor(tensor_info, data)
149
150    assert 'Data must be provided as a numpy array.' in str(err.value)
151
152
153@pytest.mark.parametrize("dt, data",
154                         [
155                             (ann.DataType_Float32, np.random.randint(1, size=(2, 3)).astype(np.float32)),
156                             (ann.DataType_Float16, np.random.randint(1, size=(2, 3)).astype(np.float16)),
157                             (ann.DataType_QAsymmU8, np.random.randint(1, size=(2, 3)).astype(np.uint8)),
158                             (ann.DataType_QAsymmS8, np.random.randint(1, size=(2, 3)).astype(np.int8)),
159                             (ann.DataType_QSymmS8, np.random.randint(1, size=(2, 3)).astype(np.int8)),
160                             (ann.DataType_Signed32, np.random.randint(1, size=(2, 3)).astype(np.int32)),
161                             (ann.DataType_QSymmS16, np.random.randint(1, size=(2, 3)).astype(np.int16))
162                         ], ids=['float32', 'float16', 'unsigned int8', 'signed int8', 'signed int8', 'int32', 'int16'])
163class TestNumpyDataTypes:
164
165    def test_copy_const_tensor(self, dt, data):
166        tensor_info = _get_const_tensor_info(dt)
167        tensor = ann.ConstTensor(tensor_info, data)
168        copied_tensor = ann.ConstTensor(tensor)
169
170        assert copied_tensor != tensor, "Different objects"
171        assert copied_tensor.GetInfo() != tensor.GetInfo(), "Different objects"
172        assert copied_tensor.get_memory_area().ctypes.data == tensor.get_memory_area().ctypes.data, "Same memory area"
173        assert copied_tensor.GetNumElements() == tensor.GetNumElements()
174        assert copied_tensor.GetNumBytes() == tensor.GetNumBytes()
175        assert copied_tensor.GetDataType() == tensor.GetDataType()
176
177    def test_const_tensor__str__(self, dt, data):
178        tensor_info = _get_const_tensor_info(dt)
179        d_type = tensor_info.GetDataType()
180        num_dimensions = tensor_info.GetNumDimensions()
181        num_bytes = tensor_info.GetNumBytes()
182        num_elements = tensor_info.GetNumElements()
183        tensor = ann.ConstTensor(tensor_info, data)
184
185        assert str(tensor) == "ConstTensor{{DataType: {}, NumBytes: {}, NumDimensions: " \
186                              "{}, NumElements: {}}}".format(d_type, num_bytes, num_dimensions, num_elements)
187
188    def test_const_tensor_with_info(self, dt, data):
189        tensor_info = _get_const_tensor_info(dt)
190        elements = tensor_info.GetNumElements()
191        num_bytes = tensor_info.GetNumBytes()
192        d_type = dt
193
194        tensor = ann.ConstTensor(tensor_info, data)
195
196        assert tensor_info != tensor.GetInfo(), "Different objects"
197        assert elements == tensor.GetNumElements()
198        assert num_bytes == tensor.GetNumBytes()
199        assert d_type == tensor.GetDataType()
200
201    def test_immutable_memory(self, dt, data):
202        tensor_info = _get_const_tensor_info(dt)
203
204        tensor = ann.ConstTensor(tensor_info, data)
205
206        with pytest.raises(ValueError) as err:
207            tensor.get_memory_area()[0] = 0
208
209        assert 'is read-only' in str(err.value)
210
211    def test_numpy_dtype_matches_ann_dtype(self, dt, data):
212        np_data_type_mapping = {ann.DataType_QAsymmU8: np.uint8,
213                                ann.DataType_QAsymmS8: np.int8,
214                                ann.DataType_QSymmS8: np.int8,
215                                ann.DataType_Float32: np.float32,
216                                ann.DataType_QSymmS16: np.int16,
217                                ann.DataType_Signed32: np.int32,
218                                ann.DataType_Float16: np.float16}
219
220        tensor_info = _get_const_tensor_info(dt)
221        tensor = ann.ConstTensor(tensor_info, data)
222        assert np_data_type_mapping[tensor.GetDataType()] == data.dtype
223
224
225# This test checks that mismatched numpy and PyArmNN datatypes with same number of bits raises correct error.
226@pytest.mark.parametrize("dt, data",
227                         [
228                             (ann.DataType_Float32, np.random.randint(1, size=(2, 3)).astype(np.int32)),
229                             (ann.DataType_Float16, np.random.randint(1, size=(2, 3)).astype(np.int16)),
230                             (ann.DataType_QAsymmU8, np.random.randint(1, size=(2, 3)).astype(np.int8)),
231                             (ann.DataType_QAsymmS8, np.random.randint(1, size=(2, 3)).astype(np.uint8)),
232                             (ann.DataType_QSymmS8, np.random.randint(1, size=(2, 3)).astype(np.uint8)),
233                             (ann.DataType_Signed32, np.random.randint(1, size=(2, 3)).astype(np.float32)),
234                             (ann.DataType_QSymmS16, np.random.randint(1, size=(2, 3)).astype(np.float16))
235                         ], ids=['float32', 'float16', 'unsigned int8', 'signed int8', 'signed int8', 'int32', 'int16'])
236def test_numpy_dtype_mismatch_ann_dtype(dt, data):
237    np_data_type_mapping = {ann.DataType_QAsymmU8: np.uint8,
238                            ann.DataType_QAsymmS8: np.int8,
239                            ann.DataType_QSymmS8: np.int8,
240                            ann.DataType_Float32: np.float32,
241                            ann.DataType_QSymmS16: np.int16,
242                            ann.DataType_Signed32: np.int32,
243                            ann.DataType_Float16: np.float16}
244
245    tensor_info = _get_const_tensor_info(dt)
246    with pytest.raises(TypeError) as err:
247        ann.ConstTensor(tensor_info, data)
248
249    assert str(err.value) == "Expected data to have type {} for type {} but instead got numpy.{}".format(
250        np_data_type_mapping[dt], dt, data.dtype)
251
252
253@pytest.mark.parametrize("dt, data",
254                         [
255                             (ann.DataType_Float32, np.random.randint(1, size=(2, 3)).astype(np.float32)),
256                             (ann.DataType_Float16, np.random.randint(1, size=(2, 3)).astype(np.float16)),
257                             (ann.DataType_QAsymmU8, np.random.randint(1, size=(2, 3)).astype(np.uint8)),
258                             (ann.DataType_QAsymmS8, np.random.randint(1, size=(2, 3)).astype(np.int8)),
259                             (ann.DataType_QSymmS8, np.random.randint(1, size=(2, 3)).astype(np.int8)),
260                             (ann.DataType_Signed32, np.random.randint(1, size=(2, 3)).astype(np.int32)),
261                             (ann.DataType_QSymmS16, np.random.randint(1, size=(2, 3)).astype(np.int16))
262                         ], ids=['float32', 'float16', 'unsigned int8', 'signed int8', 'signed int8', 'int32', 'int16'])
263class TestConstTensorConstructorErrors:
264
265    def test_tensorinfo_isconstant_not_set(self, dt, data):
266        with pytest.raises(ValueError) as err:
267            ann.ConstTensor(ann.TensorInfo(ann.TensorShape((2, 2, 3, 3)), dt, 0.0, 0, False), data)
268
269        assert str(err.value) == "TensorInfo when initializing ConstTensor must be set to constant."
270
271    def test_tensor_tensorinfo_isconstant_not_set(self, dt, data):
272        with pytest.raises(ValueError) as err:
273            ann.ConstTensor(ann.Tensor(ann.TensorInfo(ann.TensorShape((2, 2, 3, 3)), dt, 0.0, 0, False), data))
274
275        assert str(err.value) ==  "TensorInfo of Tensor when initializing ConstTensor must be set to constant."