/aosp_15_r20/external/pytorch/aten/src/ATen/native/xnnpack/ |
H A D | MaxPooling.cpp | 58 const int64_t pt_outputHeight = pooling_output_shape( in use_max_pool2d() 65 const int64_t pt_outputWidth = pooling_output_shape( in use_max_pool2d() 72 const int64_t xnnpack_outputHeight = pooling_output_shape( in use_max_pool2d() 79 const int64_t xnnpack_outputWidth = pooling_output_shape( in use_max_pool2d() 119 (pooling_output_shape( in use_max_pool2d() 126 (pooling_output_shape( in use_max_pool2d() 171 pooling_output_shape( in max_pool2d() 178 pooling_output_shape( in max_pool2d()
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/ |
H A D | AveragePool3d.cpp | 63 const int64_t otime = pooling_output_shape<int64_t>(itime, kT, padT, dT, 1, ceil_mode); in TORCH_META_FUNC() 64 const int64_t oheight = pooling_output_shape<int64_t>(iheight, kH, padH, dH, 1, ceil_mode); in TORCH_META_FUNC() 65 const int64_t owidth = pooling_output_shape<int64_t>(iwidth, kW, padW, dW, 1, ceil_mode); in TORCH_META_FUNC() 130 …const int64_t otime_for_shape_check = pooling_output_shape<int64_t>(itime, kT, padT, dT, 1, ceil_m… in TORCH_META_FUNC() 131 …const int64_t oheight_for_shape_check = pooling_output_shape<int64_t>(iheight, kH, padH, dH, 1, ce… in TORCH_META_FUNC() 132 …const int64_t owidth_for_shape_check = pooling_output_shape<int64_t>(iwidth, kW, padW, dW, 1, ceil… in TORCH_META_FUNC() 283 const int64_t otime = pooling_output_shape<int64_t>(itime, kT, padT, dT, 1, ceil_mode); in TORCH_IMPL_FUNC() 284 const int64_t oheight = pooling_output_shape<int64_t>(iheight, kH, padH, dH, 1, ceil_mode); in TORCH_IMPL_FUNC() 285 const int64_t owidth = pooling_output_shape<int64_t>(iwidth, kW, padW, dW, 1, ceil_mode); in TORCH_IMPL_FUNC()
|
H A D | AveragePool2d.cpp | 49 const int64_t outputHeight = pooling_output_shape<int64_t>( in TORCH_PRECOMPUTE_META_FUNC() 52 pooling_output_shape<int64_t>(inputWidth, kW, padW, dW, 1, ceil_mode); in TORCH_PRECOMPUTE_META_FUNC() 130 const int64_t outputWidth = pooling_output_shape<int64_t>(inputWidth, kW, padW, dW, 1, ceil_mode); in TORCH_META_FUNC() 131 …const int64_t outputHeight = pooling_output_shape<int64_t>(inputHeight, kH, padH, dH, 1, ceil_mode… in TORCH_META_FUNC()
|
H A D | DilatedMaxPool2d.cpp | 66 …const int64_t outputHeight = pooling_output_shape<int64_t>(inputHeight, kH, padH, dH, dilationH, c… in TORCH_META_FUNC() 67 …const int64_t outputWidth = pooling_output_shape<int64_t>(inputWidth, kW, padW, dW, dilationW, cei… in TORCH_META_FUNC() 142 …const int64_t outputHeight_for_shape_check = pooling_output_shape<int64_t>(inputHeight, kH, padH, … in TORCH_META_FUNC() 143 …const int64_t outputWidth_for_shape_check = pooling_output_shape<int64_t>(inputWidth, kW, padW, dW… in TORCH_META_FUNC()
|
H A D | DilatedMaxPool3d.cpp | 74 const int64_t otime = pooling_output_shape<int64_t>(itime, kT, pT, dT, dilationT, ceil_mode); in max_pool3d_with_indices_out_cpu_template() 75 const int64_t oheight = pooling_output_shape<int64_t>(iheight, kH, pH, dH, dilationH, ceil_mode); in max_pool3d_with_indices_out_cpu_template() 76 const int64_t owidth = pooling_output_shape<int64_t>(iwidth, kW, pW, dW, dilationW, ceil_mode); in max_pool3d_with_indices_out_cpu_template()
|
H A D | MaxPooling.h | 60 …const int64_t OW = pooling_output_shape(self.sym_size(-1).guard_int(__FILE__, __LINE__), kernel_si… in check_max_pool1d()
|
H A D | MaxPooling.cpp | 47 const int64_t OW = pooling_output_shape(IW, KW, PJ, SJ, DJ, ceil_mode); in max_pool1d_impl()
|
H A D | Pool.h | 78 inline T pooling_output_shape( in pooling_output_shape() function
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/quantized/cpu/ |
H A D | Pooling.cpp | 238 int64_t oH = pooling_output_shape(iH, kH, pH, sH, dH, ceil_mode); in q_maxpool_2d() 239 int64_t oW = pooling_output_shape(iW, kW, pW, sW, dW, ceil_mode); in q_maxpool_2d() 401 int64_t oT = pooling_output_shape(iT, kT, pT, sT, dT, ceil_mode); in q_maxpool_3d() 402 int64_t oH = pooling_output_shape(iH, kH, pH, sH, dH, ceil_mode); in q_maxpool_3d() 403 int64_t oW = pooling_output_shape(iW, kW, pW, sW, dW, ceil_mode); in q_maxpool_3d() 574 pooling_output_shape(inH, kH, padH, strideH, dilationH, ceil_mode); in qnnpack_maxpool2d() 576 pooling_output_shape(inW, kW, padW, strideW, dilationW, ceil_mode); in qnnpack_maxpool2d()
|
H A D | AveragePool3d.cpp | 84 pooling_output_shape<int64_t>(inputDepth, kD, padD, dD, 1, ceil_mode); in get_output_shape() 86 pooling_output_shape<int64_t>(inputHeight, kH, padH, dH, 1, ceil_mode); in get_output_shape() 88 pooling_output_shape<int64_t>(inputWidth, kW, padW, dW, 1, ceil_mode); in get_output_shape()
|
H A D | AveragePool2d.cpp | 171 pooling_output_shape<int64_t>(inputHeight, kH, padH, dH, 1, ceil_mode); in get_output_shape() 173 pooling_output_shape<int64_t>(inputWidth, kW, padW, dW, 1, ceil_mode); in get_output_shape()
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/cuda/ |
H A D | AveragePool3d.cu | 388 const int64_t otime = pooling_output_shape<int64_t>(itime, kT, padT, dT, 1, ceil_mode); in TORCH_IMPL_FUNC() 389 const int64_t oheight = pooling_output_shape<int64_t>(iheight, kH, padH, dH, 1, ceil_mode); in TORCH_IMPL_FUNC() 390 const int64_t owidth = pooling_output_shape<int64_t>(iwidth, kW, padW, dW, 1, ceil_mode); in TORCH_IMPL_FUNC() 504 …const int64_t otime_for_shape_check = pooling_output_shape<int64_t>(itime, kT, padT, dT, 1, ceil_m… in TORCH_IMPL_FUNC() 505 …const int64_t oheight_for_shape_check = pooling_output_shape<int64_t>(iheight, kH, padH, dH, 1, ce… in TORCH_IMPL_FUNC() 506 …const int64_t owidth_for_chape_check = pooling_output_shape<int64_t>(iwidth, kW, padW, dW, 1, ceil… in TORCH_IMPL_FUNC()
|
H A D | AveragePool2d.cu | 274 int64_t outputWidth = pooling_output_shape<int64_t>(inputWidth, kW, padW, dW, 1, ceil_mode); in TORCH_IMPL_FUNC() 275 int64_t outputHeight = pooling_output_shape<int64_t>(inputHeight, kH, padH, dH, 1, ceil_mode); in TORCH_IMPL_FUNC() 393 …const int64_t outputHeight = pooling_output_shape<int64_t>(inputHeight, kH, padH, dH, 1, ceil_mode… in TORCH_IMPL_FUNC() 394 const int64_t outputWidth = pooling_output_shape<int64_t>(inputWidth, kW, padW, dW, 1, ceil_mode); in TORCH_IMPL_FUNC()
|
H A D | DilatedMaxPool3d.cu | 333 const int64_t otime = pooling_output_shape<int64_t>(itime, kT, pT, dT, dilationT, ceil_mode); in max_pool3d_with_indices_out_cuda_template() 334 const int64_t oheight = pooling_output_shape<int64_t>(iheight, kH, pH, dH, dilationH, ceil_mode); in max_pool3d_with_indices_out_cuda_template() 335 const int64_t owidth = pooling_output_shape<int64_t>(iwidth, kW, pW, dW, dilationW, ceil_mode); in max_pool3d_with_indices_out_cuda_template()
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/quantized/cudnn/ |
H A D | Pooling.cpp | 155 int64_t outH = pooling_output_shape(inH, kH, padH, strideH, dilationH, ceil_mode); in quantized_max_pool2d_cudnn() 156 int64_t outW = pooling_output_shape(inW, kW, padW, strideW, dilationW, ceil_mode); in quantized_max_pool2d_cudnn()
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/metal/ops/ |
H A D | MetalPooling.mm | 42 int64_t oH = pooling_output_shape(iH, kH, pH, sH, dH, ceil_mode); 43 int64_t oW = pooling_output_shape(iW, kW, pW, sW, dW, ceil_mode);
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/vulkan/ops/ |
H A D | Pool.cpp | 116 const int64_t output_height = pooling_output_shape( in pool2d() 124 const int64_t output_width = pooling_output_shape( in pool2d()
|
/aosp_15_r20/external/pytorch/torch/ |
H A D | _meta_registrations.py | 2469 outputHeight = pooling_output_shape(inputHeight, kH, padH, dH, 1, ceil_mode) 2470 outputWidth = pooling_output_shape(inputWidth, kW, padW, dW, 1, ceil_mode) 2590 outputHeight = pooling_output_shape(inputHeight, kH, padH, dH, 1, ceil_mode) 2591 outputWidth = pooling_output_shape(inputWidth, kW, padW, dW, 1, ceil_mode) 2672 otime = pooling_output_shape(itime, kT, padT, dT, 1, ceil_mode) 2673 oheight = pooling_output_shape(iheight, kH, padH, dH, 1, ceil_mode) 2674 owidth = pooling_output_shape(iwidth, kW, padW, dW, 1, ceil_mode) 2758 otime_for_shape_check = pooling_output_shape(itime, kT, padT, dT, 1, ceil_mode) 2759 oheight_for_shape_check = pooling_output_shape(iheight, kH, padH, dH, 1, ceil_mode) 2760 owidth_for_shape_check = pooling_output_shape(iwidth, kW, padW, dW, 1, ceil_mode) [all …]
|
/aosp_15_r20/external/pytorch/torch/jit/ |
H A D | _shape_functions.py | 227 def pooling_output_shape( function 320 outputHeight = pooling_output_shape(inputHeight, kH, padH, dH, dilationH, ceil_mode) 321 outputWidth = pooling_output_shape(inputWidth, kW, padW, dW, dilationW, ceil_mode)
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/mps/operations/ |
H A D | Pooling.mm | 94 …const int64_t outputHeight = pooling_output_shape<int64_t>(inputHeight, kH, padH, dH, dilationH, c… 95 …const int64_t outputWidth = pooling_output_shape<int64_t>(inputWidth, kW, padW, dW, dilationW, cei…
|