Home
last modified time | relevance | path

Searched refs:input_split_sizes (Results 1 – 15 of 15) sorted by relevance

/aosp_15_r20/external/pytorch/torch/distributed/
H A D_functional_collectives.py447 input_split_sizes: Optional[List[int]],
470 if input_split_sizes is not None:
472 isinstance(size, (int, torch.SymInt)) for size in input_split_sizes
473 ), input_split_sizes
476 if output_split_sizes is None or input_split_sizes is None:
477 assert output_split_sizes is None and input_split_sizes is None, (
482 input_split_sizes = output_split_sizes
486 input_split_sizes,
495 input_split_sizes: Optional[List[int]],
506 if input_split_sizes is not None:
[all …]
H A D_functional_collectives_impl.py94 input_split_sizes: Optional[List[int]],
99 if output_split_sizes is None or input_split_sizes is None:
100 assert output_split_sizes is None and input_split_sizes is None, (
105 input_split_sizes = output_split_sizes
111 input_split_sizes,
H A Ddistributed_c10d.py3884 input_split_sizes=None, argument
3993 input_split_sizes = [] if input_split_sizes is None else input_split_sizes
3997 output, input, output_split_sizes, input_split_sizes, opts
/aosp_15_r20/external/pytorch/torch/distributed/_shard/sharded_tensor/
H A Dreshard.py123 input_split_sizes = [0] * world_size
126 input_split_sizes[new_rank] = local_shard.size(reshard_dim)
143 input_split_sizes=input_split_sizes,
194 input_split_sizes = []
196 input_split_sizes.append(metadata.shard_sizes[reshard_dim])
222 output_tensor_size[reshard_dim] = input_split_sizes[current_rank]
233 input_tensor_tuple = torch.split(local_tensor, input_split_sizes, dim=reshard_dim)
/aosp_15_r20/external/pytorch/torch/distributed/nn/
H A Dfunctional.py178 input_split_sizes=None, argument
201 group, output, output_split_sizes, input_split_sizes, input
411 def forward(ctx, group, output, output_split_sizes, input_split_sizes, input): argument
414 ctx.output_split_sizes = input_split_sizes
415 ctx.input_split_sizes = output_split_sizes
420 input_split_sizes=input_split_sizes,
435 ctx.input_split_sizes,
/aosp_15_r20/external/pytorch/torch/csrc/distributed/c10d/
H A DFunctional.cpp260 std::vector<int64_t> input_split_sizes, in all_to_all_single() argument
274 input_split_sizes); in all_to_all_single()
405 std::vector<int64_t> input_split_sizes, in forward() argument
409 ctx->saved_data["output_split_sizes"] = input_split_sizes; in forward()
416 .call(input, output_split_sizes, input_split_sizes, group_name); in forward()
424 const std::vector<int64_t>& input_split_sizes = in backward() local
435 .call(grad_out, output_split_sizes, input_split_sizes, group_name); in backward()
451 const std::vector<int64_t>& input_split_sizes, in all_to_all_single_autograd() argument
454 input, output_split_sizes, input_split_sizes, group_name); in all_to_all_single_autograd()
H A DOps.cpp415 std::vector<int64_t> input_split_sizes, \
422 input_split_sizes, \
/aosp_15_r20/external/pytorch/test/distributed/
H A Dtest_c10d_functional_native.py355 input_split_sizes = send_sz_matrix[self.rank].tolist()
357 input = torch.full((sum(input_split_sizes),), float(self.rank)).cuda()
362 input_split_sizes,
376 input, output_split_sizes, input_split_sizes, "default"
781 input_split_sizes: torch.Tensor,
786 _tolist_with_constrain_as_size(input_split_sizes),
794 input_split_sizes = send_sz_matrix[self.rank]
796 input = torch.full((input_split_sizes.sum().item(),), float(self.rank)).cuda()
805 compiled, input, output_split_sizes, input_split_sizes
H A Dtest_functional_api.py525 x, output_split_sizes=split_sizes, input_split_sizes=split_sizes, group=mesh
543 x, output_split_sizes=split_sizes, input_split_sizes=split_sizes, group=mesh
559 x, output_split_sizes=None, input_split_sizes=None, group=mesh
H A Dtest_c10d_spawn.py242 y, x, output_split_sizes=split_sizes, input_split_sizes=split_sizes
H A Dtest_inductor_collectives.py409 input_split_sizes = _tolist_with_constrain_as_size(input_split_sizes_tensor)
416 input_split_sizes,
/aosp_15_r20/external/pytorch/torch/testing/_internal/distributed/
H A Dmulti_threaded_pg.py89 _, input_buffer, _, input_split_sizes = data[src_rank]
90 … input_indexes = self._size_cumsum(input_buffer.size(0), input_split_sizes, world_size)
322 input_split_sizes: Optional[List[int]],
326 … res = coll.join(self._rank, (output_buffer, input_buffer, output_split_sizes, input_split_sizes))
H A Ddistributed_test.py2487 input_split_sizes = []
2489 input_split_sizes.append(src + 1)
2490 start_len = sum(input_split_sizes[:rank])
2491 end_len = start_len + input_split_sizes[rank]
2492 sum_len = sum(input_split_sizes)
2501 input_split_sizes[rank], sum_len, sum_len, dtype=torch.float
2509 list(torch.split(tensor, input_split_sizes)),
2519 input_split_sizes[rank], sum_len, sum_len, dtype=torch.float
/aosp_15_r20/external/pytorch/torch/_C/
H A D_distributed_c10d.pyi463 input_split_sizes: list[int],
472 input_split_sizes: list[int],
/aosp_15_r20/external/pytorch/torch/_inductor/
H A Dlowering.py6412 def _all_to_all_single(inp, output_split_sizes, input_split_sizes, group_name): argument
6418 input_split_sizes,