1 /*
2  * Copyright (c) 2013-2022, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 /*
9  * Top-level SMC handler for ZynqMP power management calls and
10  * IPI setup functions for communication with PMU.
11  */
12 
13 #include <errno.h>
14 
15 #include <arch_helpers.h>
16 #include <common/runtime_svc.h>
17 #include <drivers/arm/gicv2.h>
18 #include <lib/mmio.h>
19 #include <lib/spinlock.h>
20 #include <plat/common/platform.h>
21 
22 #include <plat_private.h>
23 #include "pm_client.h"
24 #include "pm_ipi.h"
25 #include "zynqmp_pm_api_sys.h"
26 #include "zynqmp_pm_defs.h"
27 
28 /* pm_up = !0 - UP, pm_up = 0 - DOWN */
29 static int32_t pm_up, ipi_irq_flag;
30 
31 #if ZYNQMP_WDT_RESTART
32 static spinlock_t inc_lock;
33 static int active_cores = 0;
34 #endif
35 
36 /**
37  * typedef pm_ctx_t - Structure which contains data for power management.
38  * @api_version: version of PM API, must match with one on PMU side.
39  * @payload: payload array used to store received.
40  *           data from ipi buffer registers.
41  *
42  */
43 typedef struct {
44 	uint32_t api_version;
45 	uint32_t payload[PAYLOAD_ARG_CNT];
46 } pm_ctx_t;
47 
48 static pm_ctx_t pm_ctx;
49 
50 #if ZYNQMP_WDT_RESTART
51 /**
52  * trigger_wdt_restart() - Trigger warm restart event to APU cores.
53  *
54  * This function triggers SGI for all active APU CPUs. SGI handler then
55  * power down CPU and call system reset.
56  *
57  */
trigger_wdt_restart(void)58 static void trigger_wdt_restart(void)
59 {
60 	uint32_t core_count = 0;
61 	uint32_t core_status[3];
62 	uint32_t target_cpu_list = 0;
63 	int i;
64 
65 	for (i = 0; i < 4; i++) {
66 		pm_get_node_status(NODE_APU_0 + i, core_status);
67 		if (core_status[0] == 1) {
68 			core_count++;
69 			target_cpu_list |= (1 << i);
70 		}
71 	}
72 
73 	spin_lock(&inc_lock);
74 	active_cores = core_count;
75 	spin_unlock(&inc_lock);
76 
77 	INFO("Active Cores: %d\n", active_cores);
78 
79 	for (i = PLATFORM_CORE_COUNT - 1; i >= 0; i--) {
80 		if (target_cpu_list & (1 << i)) {
81 			/* trigger SGI to active cores */
82 			plat_ic_raise_el3_sgi(ARM_IRQ_SEC_SGI_7, i);
83 		}
84 	}
85 }
86 
87 /**
88  * ttc_fiq_handler() - TTC Handler for timer event.
89  * @id: number of the highest priority pending interrupt of the type
90  *      that this handler was registered for.
91  * @flags: security state, bit[0].
92  * @handle: pointer to 'cpu_context' structure of the current CPU for the
93  *           security state specified in the 'flags' parameter.
94  * @cookie: unused.
95  *
96  * Function registered as INTR_TYPE_EL3 interrupt handler.
97  *
98  * When WDT event is received in PMU, PMU needs to notify master to do cleanup
99  * if required. PMU sets up timer and starts timer to overflow in zero time upon
100  * WDT event. TF-A handles this timer event and takes necessary action required
101  * for warm restart.
102  *
103  * In presence of non-secure software layers (EL1/2) sets the interrupt
104  * at registered entrance in GIC and informs that PMU responded or demands
105  * action.
106  *
107  * Return: 0 on success.
108  *
109  */
ttc_fiq_handler(uint32_t id,uint32_t flags,void * handle,void * cookie)110 static uint64_t ttc_fiq_handler(uint32_t id, uint32_t flags, void *handle,
111 				void *cookie)
112 {
113 	INFO("BL31: Got TTC FIQ\n");
114 
115 	plat_ic_end_of_interrupt(id);
116 
117 	/* Clear TTC interrupt by reading interrupt register */
118 	mmio_read_32(TTC3_INTR_REGISTER_1);
119 
120 	/* Disable the timer interrupts */
121 	mmio_write_32(TTC3_INTR_ENABLE_1, 0);
122 
123 	trigger_wdt_restart();
124 
125 	return 0;
126 }
127 
128 /**
129  * zynqmp_sgi7_irq() - Handler for SGI7 IRQ.
130  * @id: number of the highest priority pending interrupt of the type
131  *      that this handler was registered for.
132  * @flags: security state, bit[0].
133  * @handle: pointer to 'cpu_context' structure of the current CPU for the
134  *           security state specified in the 'flags' parameter.
135  * @cookie: unused.
136  *
137  * Function registered as INTR_TYPE_EL3 interrupt handler
138  *
139  * On receiving WDT event from PMU, TF-A generates SGI7 to all running CPUs.
140  * In response to SGI7 interrupt, each CPUs do clean up if required and last
141  * running CPU calls system restart.
142  *
143  * Return: This function does not return a value and it enters into wfi.
144  */
zynqmp_sgi7_irq(uint32_t id,uint32_t flags,void * handle,void * cookie)145 static uint64_t __unused __dead2 zynqmp_sgi7_irq(uint32_t id, uint32_t flags,
146 						 void *handle, void *cookie)
147 {
148 	int i;
149 	uint32_t value;
150 
151 	/* enter wfi and stay there */
152 	INFO("Entering wfi\n");
153 
154 	spin_lock(&inc_lock);
155 	active_cores--;
156 
157 	for (i = 0; i < 4; i++) {
158 		mmio_write_32(BASE_GICD_BASE + GICD_CPENDSGIR + 4 * i,
159 				0xffffffff);
160 	}
161 
162 	dsb();
163 
164 	spin_unlock(&inc_lock);
165 
166 	if (active_cores == 0) {
167 		pm_mmio_read(PMU_GLOBAL_GEN_STORAGE4, &value);
168 		value = (value & RESTART_SCOPE_MASK) >> RESTART_SCOPE_SHIFT;
169 		pm_system_shutdown(PMF_SHUTDOWN_TYPE_RESET, value);
170 	}
171 
172 	/* enter wfi and stay there */
173 	while (1)
174 		wfi();
175 }
176 
177 /**
178  * pm_wdt_restart_setup() - Setup warm restart interrupts.
179  *
180  * Return: Returns status, 0 on success or error+reason.
181  *
182  * This function sets up handler for SGI7 and TTC interrupts
183  * used for warm restart.
184  */
pm_wdt_restart_setup(void)185 static int pm_wdt_restart_setup(void)
186 {
187 	int ret;
188 
189 	/* register IRQ handler for SGI7 */
190 	ret = request_intr_type_el3(ARM_IRQ_SEC_SGI_7, zynqmp_sgi7_irq);
191 	if (ret) {
192 		WARN("BL31: registering SGI7 interrupt failed\n");
193 		goto err;
194 	}
195 
196 	ret = request_intr_type_el3(IRQ_TTC3_1, ttc_fiq_handler);
197 	if (ret)
198 		WARN("BL31: registering TTC3 interrupt failed\n");
199 
200 err:
201 	return ret;
202 }
203 #endif
204 
205 /**
206  * pm_setup() - PM service setup.
207  *
208  * Return: On success, the initialization function must return 0.
209  *         Any other return value will cause the framework to ignore
210  *         the service.
211  *
212  * Initialization functions for ZynqMP power management for
213  * communicaton with PMU.
214  *
215  * Called from sip_svc_setup initialization function with the
216  * rt_svc_init signature.
217  *
218  */
pm_setup(void)219 int32_t pm_setup(void)
220 {
221 	enum pm_ret_status err;
222 
223 	pm_ipi_init(primary_proc);
224 
225 	err = pm_get_api_version(&pm_ctx.api_version);
226 	if (err != PM_RET_SUCCESS) {
227 		ERROR("BL31: Failed to read Platform Management API version. "
228 		      "Return: %d\n", err);
229 		return -EINVAL;
230 	}
231 	if (pm_ctx.api_version < PM_VERSION) {
232 		ERROR("BL31: Platform Management API version error. Expected: "
233 		      "v%d.%d - Found: v%d.%d\n", PM_VERSION_MAJOR,
234 		      PM_VERSION_MINOR, pm_ctx.api_version >> 16,
235 		      pm_ctx.api_version & 0xFFFFU);
236 		return -EINVAL;
237 	}
238 
239 	int32_t status = 0, ret = 0;
240 #if ZYNQMP_WDT_RESTART
241 	status = pm_wdt_restart_setup();
242 	if (status)
243 		WARN("BL31: warm-restart setup failed\n");
244 #endif
245 
246 	if (status >= 0) {
247 		INFO("BL31: PM Service Init Complete: API v%d.%d\n",
248 		     PM_VERSION_MAJOR, PM_VERSION_MINOR);
249 		ret = 0;
250 	} else {
251 		INFO("BL31: PM Service Init Failed, Error Code %d!\n", status);
252 		ret = status;
253 	}
254 
255 	pm_up = !status;
256 
257 	return ret;
258 }
259 
260 /**
261  * pm_smc_handler() - SMC handler for PM-API calls coming from EL1/EL2.
262  * @smc_fid: Function Identifier.
263  * @x1: Arguments.
264  * @x2: Arguments.
265  * @x3: Arguments.
266  * @x4: Arguments.
267  * @cookie: Unused.
268  * @handle: Pointer to caller's context structure.
269  * @flags: SECURE_FLAG or NON_SECURE_FLAG.
270  *
271  * Determines that smc_fid is valid and supported PM SMC Function ID from the
272  * list of pm_api_ids, otherwise completes the request with
273  * the unknown SMC Function ID.
274  *
275  * The SMC calls for PM service are forwarded from SIP Service SMC handler
276  * function with rt_svc_handle signature.
277  *
278  * Return: Unused.
279  *
280  */
pm_smc_handler(uint32_t smc_fid,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,const void * cookie,void * handle,uint64_t flags)281 uint64_t pm_smc_handler(uint32_t smc_fid, uint64_t x1, uint64_t x2, uint64_t x3,
282 			uint64_t x4, const void *cookie, void *handle, uint64_t flags)
283 {
284 	enum pm_ret_status ret;
285 	uint32_t payload[PAYLOAD_ARG_CNT];
286 
287 	uint32_t pm_arg[5];
288 	uint32_t result[PAYLOAD_ARG_CNT] = {0};
289 	uint32_t api_id;
290 
291 	/* Handle case where PM wasn't initialized properly */
292 	if (pm_up == 0)
293 		SMC_RET1(handle, SMC_UNK);
294 
295 	pm_arg[0] = (uint32_t)x1;
296 	pm_arg[1] = (uint32_t)(x1 >> 32);
297 	pm_arg[2] = (uint32_t)x2;
298 	pm_arg[3] = (uint32_t)(x2 >> 32);
299 	pm_arg[4] = (uint32_t)x3;
300 
301 	api_id = smc_fid & FUNCID_NUM_MASK;
302 
303 	switch (api_id) {
304 	/* PM API Functions */
305 	case PM_SELF_SUSPEND:
306 		ret = pm_self_suspend(pm_arg[0], pm_arg[1], pm_arg[2],
307 				      pm_arg[3]);
308 		SMC_RET1(handle, (uint64_t)ret);
309 
310 	case PM_REQ_SUSPEND:
311 		ret = pm_req_suspend(pm_arg[0], pm_arg[1], pm_arg[2],
312 				     pm_arg[3]);
313 		SMC_RET1(handle, (uint64_t)ret);
314 
315 	case PM_REQ_WAKEUP:
316 	{
317 		/* Use address flag is encoded in the 1st bit of the low-word */
318 		uint32_t set_addr = pm_arg[1] & 0x1U;
319 		uint64_t address = (uint64_t)pm_arg[2] << 32U;
320 
321 		address |= pm_arg[1] & (~0x1U);
322 		ret = pm_req_wakeup(pm_arg[0], set_addr, address,
323 				    pm_arg[3]);
324 		SMC_RET1(handle, (uint64_t)ret);
325 	}
326 
327 	case PM_FORCE_POWERDOWN:
328 		ret = pm_force_powerdown(pm_arg[0], pm_arg[1]);
329 		SMC_RET1(handle, (uint64_t)ret);
330 
331 	case PM_ABORT_SUSPEND:
332 		ret = pm_abort_suspend(pm_arg[0]);
333 		SMC_RET1(handle, (uint64_t)ret);
334 
335 	case PM_SET_WAKEUP_SOURCE:
336 		ret = pm_set_wakeup_source(pm_arg[0], pm_arg[1], pm_arg[2]);
337 		SMC_RET1(handle, (uint64_t)ret);
338 
339 	case PM_SYSTEM_SHUTDOWN:
340 		ret = pm_system_shutdown(pm_arg[0], pm_arg[1]);
341 		SMC_RET1(handle, (uint64_t)ret);
342 
343 	case PM_REQ_NODE:
344 		ret = pm_req_node(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3]);
345 		SMC_RET1(handle, (uint64_t)ret);
346 
347 	case PM_SET_REQUIREMENT:
348 		ret = pm_set_requirement(pm_arg[0], pm_arg[1], pm_arg[2],
349 					 pm_arg[3]);
350 		SMC_RET1(handle, (uint64_t)ret);
351 
352 	case PM_GET_API_VERSION:
353 		if (ipi_irq_flag == 0U) {
354 			/*
355 			 * Enable IPI IRQ
356 			 * assume the rich OS is OK to handle callback IRQs now.
357 			 * Even if we were wrong, it would not enable the IRQ in
358 			 * the GIC.
359 			 */
360 			pm_ipi_irq_enable(primary_proc);
361 			ipi_irq_flag = 1U;
362 		}
363 		SMC_RET1(handle, (uint64_t)PM_RET_SUCCESS |
364 			 ((uint64_t)pm_ctx.api_version << 32));
365 	case PM_FPGA_LOAD:
366 		ret = pm_fpga_load(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3]);
367 		SMC_RET1(handle, (uint64_t)ret);
368 
369 	case PM_FPGA_GET_STATUS:
370 	{
371 		uint32_t value = 0U;
372 
373 		ret = pm_fpga_get_status(&value);
374 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
375 	}
376 
377 	case PM_SECURE_RSA_AES:
378 		ret = pm_secure_rsaaes(pm_arg[0], pm_arg[1], pm_arg[2],
379 				       pm_arg[3]);
380 		SMC_RET1(handle, (uint64_t)ret);
381 
382 	case PM_GET_CALLBACK_DATA:
383 		ret = pm_get_callbackdata(result, ARRAY_SIZE(result));
384 		if (ret != PM_RET_SUCCESS) {
385 			result[0] = ret;
386 		}
387 
388 		SMC_RET2(handle,
389 			 (uint64_t)result[0] | ((uint64_t)result[1] << 32),
390 			 (uint64_t)result[2] | ((uint64_t)result[3] << 32));
391 	case PM_IOCTL:
392 	{
393 		uint32_t value = 0U;
394 
395 		ret = pm_ioctl(pm_arg[0], pm_arg[1], pm_arg[2],
396 			       pm_arg[3], &value);
397 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
398 	}
399 
400 	case PM_QUERY_DATA:
401 	{
402 		uint32_t data[4] = { 0 };
403 
404 		pm_query_data(pm_arg[0], pm_arg[1], pm_arg[2],
405 			      pm_arg[3], data);
406 		SMC_RET2(handle, (uint64_t)data[0]  | ((uint64_t)data[1] << 32),
407 			 (uint64_t)data[2] | ((uint64_t)data[3] << 32));
408 	}
409 
410 	case PM_CLOCK_ENABLE:
411 		ret = pm_clock_enable(pm_arg[0]);
412 		SMC_RET1(handle, (uint64_t)ret);
413 
414 	case PM_CLOCK_DISABLE:
415 		ret = pm_clock_disable(pm_arg[0]);
416 		SMC_RET1(handle, (uint64_t)ret);
417 
418 	case PM_CLOCK_GETSTATE:
419 	{
420 		uint32_t value = 0U;
421 
422 		ret = pm_clock_getstate(pm_arg[0], &value);
423 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
424 	}
425 
426 	case PM_CLOCK_SETDIVIDER:
427 		ret = pm_clock_setdivider(pm_arg[0], pm_arg[1]);
428 		SMC_RET1(handle, (uint64_t)ret);
429 
430 	case PM_CLOCK_GETDIVIDER:
431 	{
432 		uint32_t value = 0U;
433 
434 		ret = pm_clock_getdivider(pm_arg[0], &value);
435 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
436 	}
437 
438 	case PM_CLOCK_SETPARENT:
439 		ret = pm_clock_setparent(pm_arg[0], pm_arg[1]);
440 		SMC_RET1(handle, (uint64_t)ret);
441 
442 	case PM_CLOCK_GETPARENT:
443 	{
444 		uint32_t value = 0U;
445 
446 		ret = pm_clock_getparent(pm_arg[0], &value);
447 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32U);
448 	}
449 
450 	case PM_GET_TRUSTZONE_VERSION:
451 		SMC_RET1(handle, (uint64_t)PM_RET_SUCCESS |
452 			 ((uint64_t)ZYNQMP_TZ_VERSION << 32U));
453 
454 	case PM_SET_SUSPEND_MODE:
455 		ret = pm_set_suspend_mode(pm_arg[0]);
456 		SMC_RET1(handle, (uint64_t)ret);
457 
458 	case PM_SECURE_SHA:
459 		ret = pm_sha_hash(pm_arg[0], pm_arg[1], pm_arg[2],
460 				pm_arg[3]);
461 		SMC_RET1(handle, (uint64_t)ret);
462 
463 	case PM_SECURE_RSA:
464 		ret = pm_rsa_core(pm_arg[0], pm_arg[1], pm_arg[2],
465 				       pm_arg[3]);
466 		SMC_RET1(handle, (uint64_t)ret);
467 
468 	case PM_SECURE_IMAGE:
469 	{
470 		ret = pm_secure_image(pm_arg[0], pm_arg[1], pm_arg[2],
471 				      pm_arg[3], &result[0]);
472 		SMC_RET2(handle, (uint64_t)ret | ((uint64_t)result[0] << 32U),
473 			 result[1]);
474 	}
475 
476 	case PM_FPGA_READ:
477 	{
478 		uint32_t value = 0U;
479 
480 		ret = pm_fpga_read(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3],
481 				   &value);
482 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32U);
483 	}
484 
485 	case PM_SECURE_AES:
486 	{
487 		uint32_t value = 0U;
488 
489 		ret = pm_aes_engine(pm_arg[0], pm_arg[1], &value);
490 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32U);
491 	}
492 
493 	case PM_PLL_SET_PARAMETER:
494 		ret = pm_pll_set_parameter(pm_arg[0], pm_arg[1], pm_arg[2]);
495 		SMC_RET1(handle, (uint64_t)ret);
496 
497 	case PM_PLL_GET_PARAMETER:
498 	{
499 		uint32_t value = 0U;
500 
501 		ret = pm_pll_get_parameter(pm_arg[0], pm_arg[1], &value);
502 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value << 32U));
503 	}
504 
505 	case PM_PLL_SET_MODE:
506 		ret = pm_pll_set_mode(pm_arg[0], pm_arg[1]);
507 		SMC_RET1(handle, (uint64_t)ret);
508 
509 	case PM_PLL_GET_MODE:
510 	{
511 		uint32_t mode = 0U;
512 
513 		ret = pm_pll_get_mode(pm_arg[0], &mode);
514 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)mode << 32U));
515 	}
516 
517 	case PM_REGISTER_ACCESS:
518 	{
519 		uint32_t value = 0U;
520 
521 		ret = pm_register_access(pm_arg[0], pm_arg[1], pm_arg[2],
522 					 pm_arg[3], &value);
523 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32U);
524 	}
525 
526 	case PM_EFUSE_ACCESS:
527 	{
528 		uint32_t value = 0U;
529 
530 #if defined(ZYNQMP_SECURE_EFUSES)
531 		if (is_caller_non_secure(flags)) {
532 			SMC_RET1(handle,
533 				 (((uint64_t)PM_RET_ERROR_NOT_ENABLED) << 32U) |
534 				 (uint64_t)PM_RET_ERROR_ACCESS);
535 		}
536 #endif
537 		ret = pm_efuse_access(pm_arg[0], pm_arg[1], &value);
538 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32U);
539 	}
540 
541 	case PM_FPGA_GET_VERSION:
542 	case PM_FPGA_GET_FEATURE_LIST:
543 	{
544 		uint32_t ret_payload[PAYLOAD_ARG_CNT];
545 
546 		PM_PACK_PAYLOAD5(payload, smc_fid & FUNCID_NUM_MASK,
547 				 pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3]);
548 		ret = pm_ipi_send_sync(primary_proc, payload, ret_payload, 3U);
549 		SMC_RET2(handle, (uint64_t)ret | (uint64_t)ret_payload[0] << 32U,
550 			 (uint64_t)ret_payload[1] | (uint64_t)ret_payload[2] << 32U);
551 	}
552 
553 	case PM_FEATURE_CHECK:
554 	{
555 		uint32_t version = 0;
556 		uint32_t bit_mask[2] = {0};
557 
558 		ret = pm_feature_check(pm_arg[0], &version, bit_mask,
559 				       ARRAY_SIZE(bit_mask));
560 		SMC_RET2(handle, (uint64_t)ret | ((uint64_t)version << 32U),
561 			 (uint64_t)bit_mask[0] | ((uint64_t)bit_mask[1] << 32U));
562 	}
563 
564 	default:
565 		/* Send request to the PMU */
566 		PM_PACK_PAYLOAD6(payload, api_id, pm_arg[0], pm_arg[1],
567 				 pm_arg[2], pm_arg[3], pm_arg[4]);
568 		ret = pm_ipi_send_sync(primary_proc, payload, result,
569 				       PAYLOAD_ARG_CNT);
570 		SMC_RET2(handle, (uint64_t)ret | ((uint64_t)result[0] << 32U),
571 			 (uint64_t)result[1] | ((uint64_t)result[2] << 32U));
572 	}
573 }
574