xref: /btstack/3rd-party/micro-ecc/uECC.c (revision c824d78c0a34df89b57d535abafcc7dacf30bb06)
1 /* Copyright 2014, Kenneth MacKay. Licensed under the BSD 2-clause license. */
2 
3 #include "uECC.h"
4 
5 // NULL
6 #include "stddef.h"
7 
8 // suppress MSVC C4244: conversion from uECC_word_t to int
9 #ifdef _MSC_VER
10 #pragma warning( disable : 4244 )
11 #endif
12 
13 #ifndef uECC_PLATFORM
14     #if __AVR__
15         #define uECC_PLATFORM uECC_avr
16     #elif defined(__thumb2__) || defined(_M_ARMT) /* I think MSVC only supports Thumb-2 targets */
17         #define uECC_PLATFORM uECC_arm_thumb2
18     #elif defined(__thumb__)
19         #define uECC_PLATFORM uECC_arm_thumb
20     #elif defined(__arm__) || defined(_M_ARM)
21         #define uECC_PLATFORM uECC_arm
22     #elif defined(__i386__) || defined(_M_IX86) || defined(_X86_) || defined(__I86__)
23         #define uECC_PLATFORM uECC_x86
24     #elif defined(__amd64__) || defined(_M_X64)
25         #define uECC_PLATFORM uECC_x86_64
26     #else
27         #define uECC_PLATFORM uECC_arch_other
28     #endif
29 #endif
30 
31 #ifndef uECC_WORD_SIZE
32     #if uECC_PLATFORM == uECC_avr
33         #define uECC_WORD_SIZE 1
34     #elif (uECC_PLATFORM == uECC_x86_64)
35         #define uECC_WORD_SIZE 8
36     #else
37         #define uECC_WORD_SIZE 4
38     #endif
39 #endif
40 
41 #if (uECC_CURVE == uECC_secp160r1 || uECC_CURVE == uECC_secp224r1) && (uECC_WORD_SIZE == 8)
42     #undef uECC_WORD_SIZE
43     #define uECC_WORD_SIZE 4
44     #if (uECC_PLATFORM == uECC_x86_64)
45         #undef uECC_PLATFORM
46         #define uECC_PLATFORM uECC_x86
47     #endif
48 #endif
49 
50 #if (uECC_WORD_SIZE != 1) && (uECC_WORD_SIZE != 4) && (uECC_WORD_SIZE != 8)
51     #error "Unsupported value for uECC_WORD_SIZE"
52 #endif
53 
54 #if (uECC_ASM && (uECC_PLATFORM == uECC_avr) && (uECC_WORD_SIZE != 1))
55     #pragma message ("uECC_WORD_SIZE must be 1 when using AVR asm")
56     #undef uECC_WORD_SIZE
57     #define uECC_WORD_SIZE 1
58 #endif
59 
60 #if (uECC_ASM && \
61      (uECC_PLATFORM == uECC_arm || uECC_PLATFORM == uECC_arm_thumb) && \
62      (uECC_WORD_SIZE != 4))
63     #pragma message ("uECC_WORD_SIZE must be 4 when using ARM asm")
64     #undef uECC_WORD_SIZE
65     #define uECC_WORD_SIZE 4
66 #endif
67 
68 #if __STDC_VERSION__ >= 199901L
69     #define RESTRICT restrict
70 #else
71     #define RESTRICT
72 #endif
73 
74 #if defined(__SIZEOF_INT128__) || ((__clang_major__ * 100 + __clang_minor__) >= 302)
75     #define SUPPORTS_INT128 1
76 #else
77     #define SUPPORTS_INT128 0
78 #endif
79 
80 #define MAX_TRIES 64
81 
82 #if (uECC_WORD_SIZE == 1)
83 
84 typedef uint8_t uECC_word_t;
85 typedef uint16_t uECC_dword_t;
86 typedef uint8_t wordcount_t;
87 typedef int8_t swordcount_t;
88 typedef int16_t bitcount_t;
89 typedef int8_t cmpresult_t;
90 
91 #define HIGH_BIT_SET 0x80
92 #define uECC_WORD_BITS 8
93 #define uECC_WORD_BITS_SHIFT 3
94 #define uECC_WORD_BITS_MASK 0x07
95 
96 #define uECC_WORDS_1 20
97 #define uECC_WORDS_2 24
98 #define uECC_WORDS_3 32
99 #define uECC_WORDS_4 32
100 #define uECC_WORDS_5 28
101 
102 #define uECC_N_WORDS_1 21
103 #define uECC_N_WORDS_2 24
104 #define uECC_N_WORDS_3 32
105 #define uECC_N_WORDS_4 32
106 #define uECC_N_WORDS_5 28
107 
108 #define Curve_P_1 {0xFF, 0xFF, 0xFF, 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, \
109                    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, \
110                    0xFF, 0xFF, 0xFF, 0xFF}
111 #define Curve_P_2 {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, \
112                    0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, \
113                    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}
114 #define Curve_P_3 {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, \
115                    0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, \
116                    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \
117                    0x01, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF}
118 #define Curve_P_4 {0x2F, 0xFC, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, \
119                    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, \
120                    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, \
121                    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}
122 #define Curve_P_5 {0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \
123                    0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, \
124                    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, \
125                    0xFF, 0xFF, 0xFF, 0xFF}
126 
127 #define Curve_B_1 {0x45, 0xFA, 0x65, 0xC5, 0xAD, 0xD4, 0xD4, 0x81, \
128                    0x9F, 0xF8, 0xAC, 0x65, 0x8B, 0x7A, 0xBD, 0x54, \
129                    0xFC, 0xBE, 0x97, 0x1C}
130 #define Curve_B_2 {0xB1, 0xB9, 0x46, 0xC1, 0xEC, 0xDE, 0xB8, 0xFE, \
131                    0x49, 0x30, 0x24, 0x72, 0xAB, 0xE9, 0xA7, 0x0F, \
132                    0xE7, 0x80, 0x9C, 0xE5, 0x19, 0x05, 0x21, 0x64}
133 #define Curve_B_3 {0x4B, 0x60, 0xD2, 0x27, 0x3E, 0x3C, 0xCE, 0x3B, \
134                    0xF6, 0xB0, 0x53, 0xCC, 0xB0, 0x06, 0x1D, 0x65, \
135                    0xBC, 0x86, 0x98, 0x76, 0x55, 0xBD, 0xEB, 0xB3, \
136                    0xE7, 0x93, 0x3A, 0xAA, 0xD8, 0x35, 0xC6, 0x5A}
137 #define Curve_B_4 {0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \
138                    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \
139                    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \
140                    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}
141 #define Curve_B_5 {0xB4, 0xFF, 0x55, 0x23, 0x43, 0x39, 0x0B, 0x27, \
142                    0xBA, 0xD8, 0xBF, 0xD7, 0xB7, 0xB0, 0x44, 0x50, \
143                    0x56, 0x32, 0x41, 0xF5, 0xAB, 0xB3, 0x04, 0x0C, \
144                    0x85, 0x0A, 0x05, 0xB4}
145 
146 #define Curve_G_1 { \
147     {0x82, 0xFC, 0xCB, 0x13, 0xB9, 0x8B, 0xC3, 0x68, \
148         0x89, 0x69, 0x64, 0x46, 0x28, 0x73, 0xF5, 0x8E, \
149         0x68, 0xB5, 0x96, 0x4A}, \
150     {0x32, 0xFB, 0xC5, 0x7A, 0x37, 0x51, 0x23, 0x04, \
151         0x12, 0xC9, 0xDC, 0x59, 0x7D, 0x94, 0x68, 0x31, \
152         0x55, 0x28, 0xA6, 0x23}}
153 
154 #define Curve_G_2 { \
155     {0x12, 0x10, 0xFF, 0x82, 0xFD, 0x0A, 0xFF, 0xF4, \
156         0x00, 0x88, 0xA1, 0x43, 0xEB, 0x20, 0xBF, 0x7C, \
157         0xF6, 0x90, 0x30, 0xB0, 0x0E, 0xA8, 0x8D, 0x18}, \
158     {0x11, 0x48, 0x79, 0x1E, 0xA1, 0x77, 0xF9, 0x73, \
159         0xD5, 0xCD, 0x24, 0x6B, 0xED, 0x11, 0x10, 0x63, \
160         0x78, 0xDA, 0xC8, 0xFF, 0x95, 0x2B, 0x19, 0x07}}
161 
162 #define Curve_G_3 { \
163     {0x96, 0xC2, 0x98, 0xD8, 0x45, 0x39, 0xA1, 0xF4, \
164         0xA0, 0x33, 0xEB, 0x2D, 0x81, 0x7D, 0x03, 0x77, \
165         0xF2, 0x40, 0xA4, 0x63, 0xE5, 0xE6, 0xBC, 0xF8, \
166         0x47, 0x42, 0x2C, 0xE1, 0xF2, 0xD1, 0x17, 0x6B}, \
167     {0xF5, 0x51, 0xBF, 0x37, 0x68, 0x40, 0xB6, 0xCB, \
168         0xCE, 0x5E, 0x31, 0x6B, 0x57, 0x33, 0xCE, 0x2B, \
169         0x16, 0x9E, 0x0F, 0x7C, 0x4A, 0xEB, 0xE7, 0x8E, \
170         0x9B, 0x7F, 0x1A, 0xFE, 0xE2, 0x42, 0xE3, 0x4F}}
171 
172 #define Curve_G_4 { \
173     {0x98, 0x17, 0xF8, 0x16, 0x5B, 0x81, 0xF2, 0x59, \
174         0xD9, 0x28, 0xCE, 0x2D, 0xDB, 0xFC, 0x9B, 0x02, \
175         0x07, 0x0B, 0x87, 0xCE, 0x95, 0x62, 0xA0, 0x55, \
176         0xAC, 0xBB, 0xDC, 0xF9, 0x7E, 0x66, 0xBE, 0x79}, \
177     {0xB8, 0xD4, 0x10, 0xFB, 0x8F, 0xD0, 0x47, 0x9C, \
178         0x19, 0x54, 0x85, 0xA6, 0x48, 0xB4, 0x17, 0xFD, \
179         0xA8, 0x08, 0x11, 0x0E, 0xFC, 0xFB, 0xA4, 0x5D, \
180         0x65, 0xC4, 0xA3, 0x26, 0x77, 0xDA, 0x3A, 0x48}}
181 
182 #define Curve_G_5 { \
183     {0x21, 0x1D, 0x5C, 0x11, 0xD6, 0x80, 0x32, 0x34, \
184         0x22, 0x11, 0xC2, 0x56, 0xD3, 0xC1, 0x03, 0x4A, \
185         0xB9, 0x90, 0x13, 0x32, 0x7F, 0xBF, 0xB4, 0x6B, \
186         0xBD, 0x0C, 0x0E, 0xB7}, \
187     {0x34, 0x7E, 0x00, 0x85, 0x99, 0x81, 0xD5, 0x44, \
188         0x64, 0x47, 0x07, 0x5A, 0xA0, 0x75, 0x43, 0xCD, \
189         0xE6, 0xDF, 0x22, 0x4C, 0xFB, 0x23, 0xF7, 0xB5, \
190         0x88, 0x63, 0x37, 0xBD}}
191 
192 #define Curve_N_1 {0x57, 0x22, 0x75, 0xCA, 0xD3, 0xAE, 0x27, 0xF9, \
193                    0xC8, 0xF4, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, \
194                    0x00, 0x00, 0x00, 0x00, 0x01}
195 #define Curve_N_2 {0x31, 0x28, 0xD2, 0xB4, 0xB1, 0xC9, 0x6B, 0x14, \
196                    0x36, 0xF8, 0xDE, 0x99, 0xFF, 0xFF, 0xFF, 0xFF, \
197                    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}
198 #define Curve_N_3 {0x51, 0x25, 0x63, 0xFC, 0xC2, 0xCA, 0xB9, 0xF3, \
199                    0x84, 0x9E, 0x17, 0xA7, 0xAD, 0xFA, 0xE6, 0xBC, \
200                    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, \
201                    0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF}
202 #define Curve_N_4 {0x41, 0x41, 0x36, 0xD0, 0x8C, 0x5E, 0xD2, 0xBF, \
203                    0x3B, 0xA0, 0x48, 0xAF, 0xE6, 0xDC, 0xAE, 0xBA, \
204                    0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, \
205                    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}
206 #define Curve_N_5 {0x3D, 0x2A, 0x5C, 0x5C, 0x45, 0x29, 0xDD, 0x13, \
207                    0x3E, 0xF0, 0xB8, 0xE0, 0xA2, 0x16, 0xFF, 0xFF, \
208                    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, \
209                    0xFF, 0xFF, 0xFF, 0xFF}
210 
211 #elif (uECC_WORD_SIZE == 4)
212 
213 typedef uint32_t uECC_word_t;
214 typedef uint64_t uECC_dword_t;
215 typedef unsigned wordcount_t;
216 typedef int swordcount_t;
217 typedef int bitcount_t;
218 typedef int cmpresult_t;
219 
220 #define HIGH_BIT_SET 0x80000000
221 #define uECC_WORD_BITS 32
222 #define uECC_WORD_BITS_SHIFT 5
223 #define uECC_WORD_BITS_MASK 0x01F
224 
225 #define uECC_WORDS_1 5
226 #define uECC_WORDS_2 6
227 #define uECC_WORDS_3 8
228 #define uECC_WORDS_4 8
229 #define uECC_WORDS_5 7
230 
231 #define uECC_N_WORDS_1 6
232 #define uECC_N_WORDS_2 6
233 #define uECC_N_WORDS_3 8
234 #define uECC_N_WORDS_4 8
235 #define uECC_N_WORDS_5 7
236 
237 #define Curve_P_1 {0x7FFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF}
238 #define Curve_P_2 {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFE, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF}
239 #define Curve_P_3 {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, \
240                    0x00000000, 0x00000000, 0x00000001, 0xFFFFFFFF}
241 #define Curve_P_4 {0xFFFFFC2F, 0xFFFFFFFE, 0xFFFFFFFF, 0xFFFFFFFF, \
242                    0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF}
243 #define Curve_P_5 {0x00000001, 0x00000000, 0x00000000, 0xFFFFFFFF, \
244                    0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF}
245 
246 #define Curve_B_1 {0xC565FA45, 0x81D4D4AD, 0x65ACF89F, 0x54BD7A8B, 0x1C97BEFC}
247 #define Curve_B_2 {0xC146B9B1, 0xFEB8DEEC, 0x72243049, 0x0FA7E9AB, 0xE59C80E7, 0x64210519}
248 #define Curve_B_3 {0x27D2604B, 0x3BCE3C3E, 0xCC53B0F6, 0x651D06B0, \
249                    0x769886BC, 0xB3EBBD55, 0xAA3A93E7, 0x5AC635D8}
250 #define Curve_B_4 {0x00000007, 0x00000000, 0x00000000, 0x00000000, \
251                    0x00000000, 0x00000000, 0x00000000, 0x00000000}
252 #define Curve_B_5 {0x2355FFB4, 0x270B3943, 0xD7BFD8BA, 0x5044B0B7, \
253                    0xF5413256, 0x0C04B3AB, 0xB4050A85}
254 
255 #define Curve_G_1 { \
256     {0x13CBFC82, 0x68C38BB9, 0x46646989, 0x8EF57328, 0x4A96B568}, \
257     {0x7AC5FB32, 0x04235137, 0x59DCC912, 0x3168947D, 0x23A62855}}
258 
259 #define Curve_G_2 { \
260     {0x82FF1012, 0xF4FF0AFD, 0x43A18800, 0x7CBF20EB, 0xB03090F6, 0x188DA80E}, \
261     {0x1E794811, 0x73F977A1, 0x6B24CDD5, 0x631011ED, 0xFFC8DA78, 0x07192B95}}
262 
263 #define Curve_G_3 { \
264     {0xD898C296, 0xF4A13945, 0x2DEB33A0, 0x77037D81,  \
265      0x63A440F2, 0xF8BCE6E5, 0xE12C4247, 0x6B17D1F2}, \
266     {0x37BF51F5, 0xCBB64068, 0x6B315ECE, 0x2BCE3357,  \
267      0x7C0F9E16, 0x8EE7EB4A, 0xFE1A7F9B, 0x4FE342E2}}
268 
269 #define Curve_G_4 { \
270     {0x16F81798, 0x59F2815B, 0x2DCE28D9, 0x029BFCDB,  \
271      0xCE870B07, 0x55A06295, 0xF9DCBBAC, 0x79BE667E}, \
272     {0xFB10D4B8, 0x9C47D08F, 0xA6855419, 0xFD17B448,  \
273      0x0E1108A8, 0x5DA4FBFC, 0x26A3C465, 0x483ADA77}}
274 
275 #define Curve_G_5 { \
276     {0x115C1D21, 0x343280D6, 0x56C21122, 0x4A03C1D3, \
277      0x321390B9, 0x6BB4BF7F, 0xB70E0CBD}, \
278     {0x85007E34, 0x44D58199, 0x5A074764, 0xCD4375A0, \
279      0x4C22DFE6, 0xB5F723FB, 0xBD376388}}
280 
281 #define Curve_N_1 {0xCA752257, 0xF927AED3, 0x0001F4C8, 0x00000000, 0x00000000, 0x00000001}
282 #define Curve_N_2 {0xB4D22831, 0x146BC9B1, 0x99DEF836, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF}
283 #define Curve_N_3 {0xFC632551, 0xF3B9CAC2, 0xA7179E84, 0xBCE6FAAD, \
284                    0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0xFFFFFFFF}
285 #define Curve_N_4 {0xD0364141, 0xBFD25E8C, 0xAF48A03B, 0xBAAEDCE6, \
286                    0xFFFFFFFE, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF}
287 #define Curve_N_5 {0x5C5C2A3D, 0x13DD2945, 0xE0B8F03E, 0xFFFF16A2, \
288                    0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF}
289 
290 #elif (uECC_WORD_SIZE == 8)
291 
292 typedef uint64_t uECC_word_t;
293 #if SUPPORTS_INT128
294 typedef unsigned __int128 uECC_dword_t;
295 #endif
296 typedef unsigned wordcount_t;
297 typedef int swordcount_t;
298 typedef int bitcount_t;
299 typedef int cmpresult_t;
300 
301 #define HIGH_BIT_SET 0x8000000000000000ull
302 #define uECC_WORD_BITS 64
303 #define uECC_WORD_BITS_SHIFT 6
304 #define uECC_WORD_BITS_MASK 0x03F
305 
306 #define uECC_WORDS_1 3
307 #define uECC_WORDS_2 3
308 #define uECC_WORDS_3 4
309 #define uECC_WORDS_4 4
310 #define uECC_WORDS_5 4
311 
312 #define uECC_N_WORDS_1 3
313 #define uECC_N_WORDS_2 3
314 #define uECC_N_WORDS_3 4
315 #define uECC_N_WORDS_4 4
316 #define uECC_N_WORDS_5 4
317 
318 #define Curve_P_1 {0xFFFFFFFF7FFFFFFFull, 0xFFFFFFFFFFFFFFFFull, 0x00000000FFFFFFFFull}
319 #define Curve_P_2 {0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFFFFFFFFFEull, 0xFFFFFFFFFFFFFFFFull}
320 #define Curve_P_3 {0xFFFFFFFFFFFFFFFFull, 0x00000000FFFFFFFFull, \
321                    0x0000000000000000ull, 0xFFFFFFFF00000001ull}
322 #define Curve_P_4 {0xFFFFFFFEFFFFFC2Full, 0xFFFFFFFFFFFFFFFFull, \
323                    0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFFFFFFFFFFull}
324 #define Curve_P_5 {0x0000000000000001ull, 0xFFFFFFFF00000000ull, \
325                    0xFFFFFFFFFFFFFFFFull, 0x00000000FFFFFFFFull}
326 
327 #define Curve_B_1 {0x81D4D4ADC565FA45ull, 0x54BD7A8B65ACF89Full, 0x000000001C97BEFCull}
328 #define Curve_B_2 {0xFEB8DEECC146B9B1ull, 0x0FA7E9AB72243049ull, 0x64210519E59C80E7ull}
329 #define Curve_B_3 {0x3BCE3C3E27D2604Bull, 0x651D06B0CC53B0F6ull, \
330                    0xB3EBBD55769886BCull, 0x5AC635D8AA3A93E7ull}
331 #define Curve_B_4 {0x0000000000000007ull, 0x0000000000000000ull, \
332                    0x0000000000000000ull, 0x0000000000000000ull}
333 #define Curve_B_5 {0x270B39432355FFB4ull, 0x5044B0B7D7BFD8BAull, \
334                    0x0C04B3ABF5413256ull, 0x00000000B4050A85ull}
335 
336 #define Curve_G_1 { \
337     {0x68C38BB913CBFC82ull, 0x8EF5732846646989ull, 0x000000004A96B568ull}, \
338     {0x042351377AC5FB32ull, 0x3168947D59DCC912ull, 0x0000000023A62855ull}}
339 
340 #define Curve_G_2 { \
341     {0xF4FF0AFD82FF1012ull, 0x7CBF20EB43A18800ull, 0x188DA80EB03090F6ull}, \
342     {0x73F977A11E794811ull, 0x631011ED6B24CDD5ull, 0x07192B95FFC8DA78ull}}
343 
344 #define Curve_G_3 { \
345     {0xF4A13945D898C296ull, 0x77037D812DEB33A0ull, 0xF8BCE6E563A440F2ull, 0x6B17D1F2E12C4247ull}, \
346     {0xCBB6406837BF51F5ull, 0x2BCE33576B315ECEull, 0x8EE7EB4A7C0F9E16ull, 0x4FE342E2FE1A7F9Bull}}
347 
348 #define Curve_G_4 { \
349     {0x59F2815B16F81798ull, 0x029BFCDB2DCE28D9ull, 0x55A06295CE870B07ull, 0x79BE667EF9DCBBACull}, \
350     {0x9C47D08FFB10D4B8ull, 0xFD17B448A6855419ull, 0x5DA4FBFC0E1108A8ull, 0x483ADA7726A3C465ull}}
351 
352 #define Curve_G_5 { \
353     {0x343280D6115C1D21ull, 0x4A03C1D356C21122ull, 0x6BB4BF7F321390B9ull, 0x00000000B70E0CBDull}, \
354     {0x44D5819985007E34ull, 0xCD4375A05A074764ull, 0xB5F723FB4C22DFE6ull, 0x00000000BD376388ull}}
355 
356 #define Curve_N_1 {0xF927AED3CA752257ull, 0x000000000001F4C8ull, 0x0000000100000000ull}
357 #define Curve_N_2 {0x146BC9B1B4D22831ull, 0xFFFFFFFF99DEF836ull, 0xFFFFFFFFFFFFFFFFull}
358 #define Curve_N_3 {0xF3B9CAC2FC632551ull, 0xBCE6FAADA7179E84ull, \
359                    0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFF00000000ull}
360 #define Curve_N_4 {0xBFD25E8CD0364141ull, 0xBAAEDCE6AF48A03Bull, \
361                    0xFFFFFFFFFFFFFFFEull, 0xFFFFFFFFFFFFFFFFull}
362 #define Curve_N_5 {0x13DD29455C5C2A3Dull, 0xFFFF16A2E0B8F03Eull, \
363                    0xFFFFFFFFFFFFFFFFull, 0x00000000FFFFFFFFull}
364 
365 #endif /* (uECC_WORD_SIZE == 8) */
366 
367 #define uECC_WORDS uECC_CONCAT(uECC_WORDS_, uECC_CURVE)
368 #define uECC_N_WORDS uECC_CONCAT(uECC_N_WORDS_, uECC_CURVE)
369 
370 typedef struct EccPoint {
371     uECC_word_t x[uECC_WORDS];
372     uECC_word_t y[uECC_WORDS];
373 } EccPoint;
374 
375 static const uECC_word_t curve_p[uECC_WORDS] = uECC_CONCAT(Curve_P_, uECC_CURVE);
376 // Global object `curve_b' is only referenced from function `curve_x_side', it should be defined within that functions block scope
377 static const EccPoint curve_G = uECC_CONCAT(Curve_G_, uECC_CURVE);
378 static const uECC_word_t curve_n[uECC_N_WORDS] = uECC_CONCAT(Curve_N_, uECC_CURVE);
379 
380 static void vli_clear(uECC_word_t *vli);
381 static uECC_word_t vli_isZero(const uECC_word_t *vli);
382 static uECC_word_t vli_testBit(const uECC_word_t *vli, bitcount_t bit);
383 #ifdef ENABLE_MICRO_ECC_ECDSA
384 static bitcount_t vli_numBits(const uECC_word_t *vli, wordcount_t max_words);
385 #endif
386 static void vli_set(uECC_word_t *dest, const uECC_word_t *src);
387 static cmpresult_t vli_cmp(const uECC_word_t *left, const uECC_word_t *right);
388 #ifdef ENABLE_MICRO_ECC_ECDSA
389 static cmpresult_t vli_equal(const uECC_word_t *left, const uECC_word_t *right);
390 #endif
391 static void vli_rshift1(uECC_word_t *vli);
392 static uECC_word_t vli_add(uECC_word_t *result,
393                            const uECC_word_t *left,
394                            const uECC_word_t *right);
395 static uECC_word_t vli_sub(uECC_word_t *result,
396                            const uECC_word_t *left,
397                            const uECC_word_t *right);
398 static void vli_mult(uECC_word_t *result, const uECC_word_t *left, const uECC_word_t *right);
399 static void vli_modAdd(uECC_word_t *result,
400                        const uECC_word_t *left,
401                        const uECC_word_t *right,
402                        const uECC_word_t *mod);
403 static void vli_modSub(uECC_word_t *result,
404                        const uECC_word_t *left,
405                        const uECC_word_t *right,
406                        const uECC_word_t *mod);
407 static void vli_mmod_fast(uECC_word_t *RESTRICT result, uECC_word_t *RESTRICT product);
408 static void vli_modMult_fast(uECC_word_t *result,
409                              const uECC_word_t *left,
410                              const uECC_word_t *right);
411 static void vli_modInv(uECC_word_t *result, const uECC_word_t *input, const uECC_word_t *mod);
412 #if uECC_SQUARE_FUNC
413 static void vli_square(uECC_word_t *result, const uECC_word_t *left);
414 static void vli_modSquare_fast(uECC_word_t *result, const uECC_word_t *left);
415 #endif
416 
417 #if ((defined(_WIN32) || defined(_WIN64)) && !defined(uECC_NO_DEFAULT_RNG))
418 /* Windows */
419 
420 #define WIN32_LEAN_AND_MEAN
421 #include <windows.h>
422 #include <wincrypt.h>
423 
default_RNG(uint8_t * dest,unsigned size)424 static int default_RNG(uint8_t *dest, unsigned size) {
425     HCRYPTPROV prov;
426     if (!CryptAcquireContext(&prov, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT)) {
427         return 0;
428     }
429 
430     CryptGenRandom(prov, size, (BYTE *)dest);
431     CryptReleaseContext(prov, 0);
432     return 1;
433 }
434 
435 #elif (defined(unix) || defined(__linux__) || defined(__unix__) || defined(__unix) || \
436     (defined(__APPLE__) && defined(__MACH__)) || defined(uECC_POSIX)) && !defined(uECC_NO_DEFAULT_RNG)
437 
438 /* Some POSIX-like system with /dev/urandom or /dev/random. */
439 #include <sys/types.h>
440 #include <fcntl.h>
441 #include <unistd.h>
442 
443 #ifndef O_CLOEXEC
444     #define O_CLOEXEC 0
445 #endif
446 
default_RNG(uint8_t * dest,unsigned size)447 static int default_RNG(uint8_t *dest, unsigned size) {
448     int fd = open("/dev/urandom", O_RDONLY | O_CLOEXEC);
449     if (fd == -1) {
450         fd = open("/dev/random", O_RDONLY | O_CLOEXEC);
451         if (fd == -1) {
452             return 0;
453         }
454     }
455 
456     char *ptr = (char *)dest;
457     size_t left = size;
458     while (left > 0) {
459         ssize_t bytes_read = read(fd, ptr, left);
460         if (bytes_read <= 0) { // read failed
461             close(fd);
462             return 0;
463         }
464         left -= bytes_read;
465         ptr += bytes_read;
466     }
467 
468     close(fd);
469     return 1;
470 }
471 
472 #else /* Some other platform */
473 
default_RNG(uint8_t * dest,unsigned size)474 static int default_RNG(uint8_t *dest, unsigned size) {
475     (void) dest;
476     (void) size;
477     return 0;
478 }
479 
480 #endif
481 
482 static uECC_RNG_Function g_rng_function = &default_RNG;
483 
uECC_set_rng(uECC_RNG_Function rng_function)484 void uECC_set_rng(uECC_RNG_Function rng_function) {
485     g_rng_function = rng_function;
486 }
487 
488 #ifdef __GNUC__ /* Only support GCC inline asm for now */
489     #if (uECC_ASM && (uECC_PLATFORM == uECC_avr))
490         #include "asm_avr.inc"
491     #endif
492 
493     #if (uECC_ASM && (uECC_PLATFORM == uECC_arm || uECC_PLATFORM == uECC_arm_thumb || \
494                       uECC_PLATFORM == uECC_arm_thumb2))
495         #include "asm_arm.inc"
496     #endif
497 #endif
498 
499 #if !asm_clear
vli_clear(uECC_word_t * vli)500 static void vli_clear(uECC_word_t *vli) {
501     wordcount_t i;
502     for (i = 0; i < uECC_WORDS; ++i) {
503         vli[i] = 0;
504     }
505 }
506 #endif
507 
508 /* Returns 1 if vli == 0, 0 otherwise. */
509 #if !asm_isZero
vli_isZero(const uECC_word_t * vli)510 static uECC_word_t vli_isZero(const uECC_word_t *vli) {
511     wordcount_t i;
512     for (i = 0; i < uECC_WORDS; ++i) {
513         if (vli[i]) {
514             return 0;
515         }
516     }
517     return 1;
518 }
519 #endif
520 
521 /* Returns nonzero if bit 'bit' of vli is set. */
522 #if !asm_testBit
vli_testBit(const uECC_word_t * vli,bitcount_t bit)523 static uECC_word_t vli_testBit(const uECC_word_t *vli, bitcount_t bit) {
524     return (vli[bit >> uECC_WORD_BITS_SHIFT] & ((uECC_word_t)1 << (bit & uECC_WORD_BITS_MASK)));
525 }
526 #endif
527 
528 #ifdef ENABLE_MICO_ECC_ECDSA
529 
530 /* Counts the number of words in vli. */
531 #if !asm_numBits
vli_numDigits(const uECC_word_t * vli,wordcount_t max_words)532 static wordcount_t vli_numDigits(const uECC_word_t *vli, wordcount_t max_words) {
533     swordcount_t i;
534     /* Search from the end until we find a non-zero digit.
535        We do it in reverse because we expect that most digits will be nonzero. */
536     for (i = max_words - 1; i >= 0 && vli[i] == 0; --i) {
537     }
538 
539     return (i + 1);
540 }
541 
542 /* Counts the number of bits required to represent vli. */
vli_numBits(const uECC_word_t * vli,wordcount_t max_words)543 static bitcount_t vli_numBits(const uECC_word_t *vli, wordcount_t max_words) {
544     uECC_word_t i;
545     uECC_word_t digit;
546 
547     wordcount_t num_digits = vli_numDigits(vli, max_words);
548     if (num_digits == 0) {
549         return 0;
550     }
551 
552     digit = vli[num_digits - 1];
553     for (i = 0; digit; ++i) {
554         digit >>= 1;
555     }
556 
557     return (((bitcount_t)(num_digits - 1) << uECC_WORD_BITS_SHIFT) + i);
558 }
559 
560 #endif /* ENABLE_MICO_ECC_ECDSA */
561 
562 #endif /* !asm_numBits */
563 
564 /* Sets dest = src. */
565 #if !asm_set
vli_set(uECC_word_t * dest,const uECC_word_t * src)566 static void vli_set(uECC_word_t *dest, const uECC_word_t *src) {
567     wordcount_t i;
568     for (i = 0; i < uECC_WORDS; ++i) {
569         dest[i] = src[i];
570     }
571 }
572 #endif
573 
574 /* Returns sign of left - right. */
575 #if !asm_cmp
vli_cmp(const uECC_word_t * left,const uECC_word_t * right)576 static cmpresult_t vli_cmp(const uECC_word_t *left, const uECC_word_t *right) {
577     swordcount_t i;
578     for (i = uECC_WORDS - 1; i >= 0; --i) {
579         if (left[i] > right[i]) {
580             return 1;
581         } else if (left[i] < right[i]) {
582             return -1;
583         }
584     }
585     return 0;
586 }
587 #endif
588 
589 #ifdef ENABLE_MICRO_ECC_ECDSA
590 
vli_equal(const uECC_word_t * left,const uECC_word_t * right)591 static cmpresult_t vli_equal(const uECC_word_t *left, const uECC_word_t *right) {
592     uECC_word_t result = 0;
593     swordcount_t i;
594     for (i = uECC_WORDS - 1; i >= 0; --i) {
595         result |= (left[i] ^ right[i]);
596     }
597     return (result == 0);
598 }
599 
600 #endif
601 
602 /* Computes vli = vli >> 1. */
603 #if !asm_rshift1
vli_rshift1(uECC_word_t * vli)604 static void vli_rshift1(uECC_word_t *vli) {
605     uECC_word_t *end = vli;
606     uECC_word_t carry = 0;
607     uECC_word_t *vli_ = vli;
608 
609     vli_ += uECC_WORDS;
610     while (vli_-- > end) {
611         uECC_word_t temp = *vli_;
612         *vli_ = (temp >> 1) | carry;
613         carry = temp << (uECC_WORD_BITS - 1);
614     }
615 }
616 #endif
617 
618 /* Computes result = left + right, returning carry. Can modify in place. */
619 #if !asm_add
vli_add(uECC_word_t * result,const uECC_word_t * left,const uECC_word_t * right)620 static uECC_word_t vli_add(uECC_word_t *result, const uECC_word_t *left, const uECC_word_t *right) {
621     uECC_word_t carry = 0;
622     wordcount_t i;
623     for (i = 0; i < uECC_WORDS; ++i) {
624         uECC_word_t sum = left[i] + right[i] + carry;
625         if (sum != left[i]) {
626             carry = (sum < left[i]);
627         }
628         result[i] = sum;
629     }
630     return carry;
631 }
632 #endif
633 
634 /* Computes result = left - right, returning borrow. Can modify in place. */
635 #if !asm_sub
vli_sub(uECC_word_t * result,const uECC_word_t * left,const uECC_word_t * right)636 static uECC_word_t vli_sub(uECC_word_t *result, const uECC_word_t *left, const uECC_word_t *right) {
637     uECC_word_t borrow = 0;
638     wordcount_t i;
639     for (i = 0; i < uECC_WORDS; ++i) {
640         uECC_word_t diff = left[i] - right[i] - borrow;
641         if (diff != left[i]) {
642             borrow = (diff > left[i]);
643         }
644         result[i] = diff;
645     }
646     return borrow;
647 }
648 #endif
649 
650 #if (!asm_mult || (uECC_SQUARE_FUNC && !asm_square) || uECC_CURVE == uECC_secp256k1)
muladd(uECC_word_t a,uECC_word_t b,uECC_word_t * r0,uECC_word_t * r1,uECC_word_t * r2)651 static void muladd(uECC_word_t a,
652                    uECC_word_t b,
653                    uECC_word_t *r0,
654                    uECC_word_t *r1,
655                    uECC_word_t *r2) {
656 #if uECC_WORD_SIZE == 8 && !SUPPORTS_INT128
657     uint64_t a0 = a & 0xffffffffull;
658     uint64_t a1 = a >> 32;
659     uint64_t b0 = b & 0xffffffffull;
660     uint64_t b1 = b >> 32;
661 
662     uint64_t i0 = a0 * b0;
663     uint64_t i1 = a0 * b1;
664     uint64_t i2 = a1 * b0;
665     uint64_t i3 = a1 * b1;
666 
667     uint64_t p0, p1;
668 
669     i2 += (i0 >> 32);
670     i2 += i1;
671     if (i2 < i1) { // overflow
672         i3 += 0x100000000ull;
673     }
674 
675     p0 = (i0 & 0xffffffffull) | (i2 << 32);
676     p1 = i3 + (i2 >> 32);
677 
678     *r0 += p0;
679     *r1 += (p1 + (*r0 < p0));
680     *r2 += ((*r1 < p1) || (*r1 == p1 && *r0 < p0));
681 #else
682     uECC_dword_t p = (uECC_dword_t)a * b;
683     uECC_dword_t r01 = ((uECC_dword_t)(*r1) << uECC_WORD_BITS) | *r0;
684     r01 += p;
685     *r2 += (r01 < p);
686     *r1 = r01 >> uECC_WORD_BITS;
687     *r0 = (uECC_word_t)r01;
688 #endif
689 }
690 #define muladd_exists 1
691 #endif
692 
693 #if !asm_mult
vli_mult(uECC_word_t * result,const uECC_word_t * left,const uECC_word_t * right)694 static void vli_mult(uECC_word_t *result, const uECC_word_t *left, const uECC_word_t *right) {
695     uECC_word_t r0 = 0;
696     uECC_word_t r1 = 0;
697     uECC_word_t r2 = 0;
698     wordcount_t i, k;
699 
700     /* Compute each digit of result in sequence, maintaining the carries. */
701     for (k = 0; k < uECC_WORDS; ++k) {
702         for (i = 0; i <= k; ++i) {
703             muladd(left[i], right[k - i], &r0, &r1, &r2);
704         }
705         result[k] = r0;
706         r0 = r1;
707         r1 = r2;
708         r2 = 0;
709     }
710     for (k = uECC_WORDS; k < uECC_WORDS * 2 - 1; ++k) {
711         for (i = (k + 1) - uECC_WORDS; i < uECC_WORDS; ++i) {
712             muladd(left[i], right[k - i], &r0, &r1, &r2);
713         }
714         result[k] = r0;
715         r0 = r1;
716         r1 = r2;
717         r2 = 0;
718     }
719     result[uECC_WORDS * 2 - 1] = r0;
720 }
721 #endif
722 
723 #if uECC_SQUARE_FUNC
724 
725 #if !asm_square
mul2add(uECC_word_t a,uECC_word_t b,uECC_word_t * r0,uECC_word_t * r1,uECC_word_t * r2)726 static void mul2add(uECC_word_t a,
727                     uECC_word_t b,
728                     uECC_word_t *r0,
729                     uECC_word_t *r1,
730                     uECC_word_t *r2) {
731 #if uECC_WORD_SIZE == 8 && !SUPPORTS_INT128
732     uint64_t a0 = a & 0xffffffffull;
733     uint64_t a1 = a >> 32;
734     uint64_t b0 = b & 0xffffffffull;
735     uint64_t b1 = b >> 32;
736 
737     uint64_t i0 = a0 * b0;
738     uint64_t i1 = a0 * b1;
739     uint64_t i2 = a1 * b0;
740     uint64_t i3 = a1 * b1;
741 
742     uint64_t p0, p1;
743 
744     i2 += (i0 >> 32);
745     i2 += i1;
746     if (i2 < i1)
747     { // overflow
748         i3 += 0x100000000ull;
749     }
750 
751     p0 = (i0 & 0xffffffffull) | (i2 << 32);
752     p1 = i3 + (i2 >> 32);
753 
754     *r2 += (p1 >> 63);
755     p1 = (p1 << 1) | (p0 >> 63);
756     p0 <<= 1;
757 
758     *r0 += p0;
759     *r1 += (p1 + (*r0 < p0));
760     *r2 += ((*r1 < p1) || (*r1 == p1 && *r0 < p0));
761 #else
762     uECC_dword_t p = (uECC_dword_t)a * b;
763     uECC_dword_t r01 = ((uECC_dword_t)(*r1) << uECC_WORD_BITS) | *r0;
764     *r2 += (p >> (uECC_WORD_BITS * 2 - 1));
765     p *= 2;
766     r01 += p;
767     *r2 += (r01 < p);
768     *r1 = r01 >> uECC_WORD_BITS;
769     *r0 = (uECC_word_t)r01;
770 #endif
771 }
772 
vli_square(uECC_word_t * result,const uECC_word_t * left)773 static void vli_square(uECC_word_t *result, const uECC_word_t *left) {
774     uECC_word_t r0 = 0;
775     uECC_word_t r1 = 0;
776     uECC_word_t r2 = 0;
777 
778     wordcount_t i, k;
779 
780     for (k = 0; k < uECC_WORDS * 2 - 1; ++k) {
781         uECC_word_t min = (k < uECC_WORDS ? 0 : (k + 1) - uECC_WORDS);
782         for (i = min; i <= k && i <= k - i; ++i) {
783             if (i < k-i) {
784                 mul2add(left[i], left[k - i], &r0, &r1, &r2);
785             } else {
786                 muladd(left[i], left[k - i], &r0, &r1, &r2);
787             }
788         }
789         result[k] = r0;
790         r0 = r1;
791         r1 = r2;
792         r2 = 0;
793     }
794 
795     result[uECC_WORDS * 2 - 1] = r0;
796 }
797 #endif
798 
799 #else /* uECC_SQUARE_FUNC */
800 
801 #define vli_square(result, left, size) vli_mult((result), (left), (left), (size))
802 
803 #endif /* uECC_SQUARE_FUNC */
804 
805 
806 /* Computes result = (left + right) % mod.
807    Assumes that left < mod and right < mod, and that result does not overlap mod. */
808 #if !asm_modAdd
vli_modAdd(uECC_word_t * result,const uECC_word_t * left,const uECC_word_t * right,const uECC_word_t * mod)809 static void vli_modAdd(uECC_word_t *result,
810                        const uECC_word_t *left,
811                        const uECC_word_t *right,
812                        const uECC_word_t *mod) {
813     uECC_word_t carry = vli_add(result, left, right);
814     if (carry || vli_cmp(result, mod) >= 0) {
815         /* result > mod (result = mod + remainder), so subtract mod to get remainder. */
816         vli_sub(result, result, mod);
817     }
818 }
819 #endif
820 
821 /* Computes result = (left - right) % mod.
822    Assumes that left < mod and right < mod, and that result does not overlap mod. */
823 #if !asm_modSub
vli_modSub(uECC_word_t * result,const uECC_word_t * left,const uECC_word_t * right,const uECC_word_t * mod)824 static void vli_modSub(uECC_word_t *result,
825                        const uECC_word_t *left,
826                        const uECC_word_t *right,
827                        const uECC_word_t *mod) {
828     uECC_word_t l_borrow = vli_sub(result, left, right);
829     if (l_borrow) {
830         /* In this case, result == -diff == (max int) - diff. Since -x % d == d - x,
831            we can get the correct result from result + mod (with overflow). */
832         vli_add(result, result, mod);
833     }
834 }
835 #endif
836 
837 #if !asm_modSub_fast
838     #define vli_modSub_fast(result, left, right) vli_modSub((result), (left), (right), curve_p)
839 #endif
840 
841 #if !asm_mmod_fast
842 
843 #if (uECC_CURVE == uECC_secp160r1 || uECC_CURVE == uECC_secp256k1)
844 /* omega_mult() is defined farther below for the different curves / word sizes */
845 static void omega_mult(uECC_word_t * RESTRICT result, const uECC_word_t * RESTRICT right);
846 
847 /* Computes result = product % curve_p
848     see http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf page 354
849 
850     Note that this only works if log2(omega) < log2(p) / 2 */
vli_mmod_fast(uECC_word_t * RESTRICT result,uECC_word_t * RESTRICT product)851 static void vli_mmod_fast(uECC_word_t *RESTRICT result, uECC_word_t *RESTRICT product) {
852     uECC_word_t tmp[2 * uECC_WORDS];
853     uECC_word_t carry;
854 
855     vli_clear(tmp);
856     vli_clear(tmp + uECC_WORDS);
857 
858     omega_mult(tmp, product + uECC_WORDS); /* (Rq, q) = q * c */
859 
860     carry = vli_add(result, product, tmp); /* (C, r) = r + q       */
861     vli_clear(product);
862     omega_mult(product, tmp + uECC_WORDS); /* Rq*c */
863     carry += vli_add(result, result, product); /* (C1, r) = r + Rq*c */
864 
865     while (carry > 0) {
866         --carry;
867         vli_sub(result, result, curve_p);
868     }
869     if (vli_cmp(result, curve_p) > 0) {
870         vli_sub(result, result, curve_p);
871     }
872 }
873 
874 #endif
875 
876 #if uECC_CURVE == uECC_secp160r1
877 
878 #if uECC_WORD_SIZE == 1
omega_mult(uint8_t * RESTRICT result,const uint8_t * RESTRICT right)879 static void omega_mult(uint8_t * RESTRICT result, const uint8_t * RESTRICT right) {
880     uint8_t carry;
881     uint8_t i;
882 
883     /* Multiply by (2^31 + 1). */
884     vli_set(result + 4, right); /* 2^32 */
885     vli_rshift1(result + 4); /* 2^31 */
886     result[3] = right[0] << 7; /* get last bit from shift */
887 
888     carry = vli_add(result, result, right); /* 2^31 + 1 */
889     for (i = uECC_WORDS; carry; ++i) {
890         uint16_t sum = (uint16_t)result[i] + carry;
891         result[i] = (uint8_t)sum;
892         carry = sum >> 8;
893     }
894 }
895 #elif uECC_WORD_SIZE == 4
omega_mult(uint32_t * RESTRICT result,const uint32_t * RESTRICT right)896 static void omega_mult(uint32_t * RESTRICT result, const uint32_t * RESTRICT right) {
897     uint32_t carry;
898     unsigned i;
899 
900     /* Multiply by (2^31 + 1). */
901     vli_set(result + 1, right); /* 2^32 */
902     vli_rshift1(result + 1); /* 2^31 */
903     result[0] = right[0] << 31; /* get last bit from shift */
904 
905     carry = vli_add(result, result, right); /* 2^31 + 1 */
906     for (i = uECC_WORDS; carry; ++i) {
907         uint64_t sum = (uint64_t)result[i] + carry;
908         result[i] = (uint32_t)sum;
909         carry = sum >> 32;
910     }
911 }
912 #endif /* uECC_WORD_SIZE */
913 
914 #elif uECC_CURVE == uECC_secp192r1
915 
916 /* Computes result = product % curve_p.
917    See algorithm 5 and 6 from http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf */
918 #if uECC_WORD_SIZE == 1
vli_mmod_fast(uint8_t * RESTRICT result,uint8_t * RESTRICT product)919 static void vli_mmod_fast(uint8_t *RESTRICT result, uint8_t *RESTRICT product) {
920     uint8_t tmp[uECC_WORDS];
921     uint8_t carry;
922 
923     vli_set(result, product);
924 
925     vli_set(tmp, &product[24]);
926     carry = vli_add(result, result, tmp);
927 
928     tmp[0] = tmp[1] = tmp[2] = tmp[3] = tmp[4] = tmp[5] = tmp[6] = tmp[7] = 0;
929     tmp[8] = product[24]; tmp[9] = product[25]; tmp[10] = product[26]; tmp[11] = product[27];
930     tmp[12] = product[28]; tmp[13] = product[29]; tmp[14] = product[30]; tmp[15] = product[31];
931     tmp[16] = product[32]; tmp[17] = product[33]; tmp[18] = product[34]; tmp[19] = product[35];
932     tmp[20] = product[36]; tmp[21] = product[37]; tmp[22] = product[38]; tmp[23] = product[39];
933     carry += vli_add(result, result, tmp);
934 
935     tmp[0] = tmp[8] = product[40];
936     tmp[1] = tmp[9] = product[41];
937     tmp[2] = tmp[10] = product[42];
938     tmp[3] = tmp[11] = product[43];
939     tmp[4] = tmp[12] = product[44];
940     tmp[5] = tmp[13] = product[45];
941     tmp[6] = tmp[14] = product[46];
942     tmp[7] = tmp[15] = product[47];
943     tmp[16] = tmp[17] = tmp[18] = tmp[19] = tmp[20] = tmp[21] = tmp[22] = tmp[23] = 0;
944     carry += vli_add(result, result, tmp);
945 
946     while (carry || vli_cmp(curve_p, result) != 1) {
947         carry -= vli_sub(result, result, curve_p);
948     }
949 }
950 #elif uECC_WORD_SIZE == 4
vli_mmod_fast(uint32_t * RESTRICT result,uint32_t * RESTRICT product)951 static void vli_mmod_fast(uint32_t *RESTRICT result, uint32_t *RESTRICT product) {
952     uint32_t tmp[uECC_WORDS];
953     int carry;
954 
955     vli_set(result, product);
956 
957     vli_set(tmp, &product[6]);
958     carry = vli_add(result, result, tmp);
959 
960     tmp[0] = tmp[1] = 0;
961     tmp[2] = product[6];
962     tmp[3] = product[7];
963     tmp[4] = product[8];
964     tmp[5] = product[9];
965     carry += vli_add(result, result, tmp);
966 
967     tmp[0] = tmp[2] = product[10];
968     tmp[1] = tmp[3] = product[11];
969     tmp[4] = tmp[5] = 0;
970     carry += vli_add(result, result, tmp);
971 
972     while (carry || vli_cmp(curve_p, result) != 1) {
973         carry -= vli_sub(result, result, curve_p);
974     }
975 }
976 #else
vli_mmod_fast(uint64_t * RESTRICT result,uint64_t * RESTRICT product)977 static void vli_mmod_fast(uint64_t *RESTRICT result, uint64_t *RESTRICT product) {
978     uint64_t tmp[uECC_WORDS];
979     int carry;
980 
981     vli_set(result, product);
982 
983     vli_set(tmp, &product[3]);
984     carry = vli_add(result, result, tmp);
985 
986     tmp[0] = 0;
987     tmp[1] = product[3];
988     tmp[2] = product[4];
989     carry += vli_add(result, result, tmp);
990 
991     tmp[0] = tmp[1] = product[5];
992     tmp[2] = 0;
993     carry += vli_add(result, result, tmp);
994 
995     while (carry || vli_cmp(curve_p, result) != 1) {
996         carry -= vli_sub(result, result, curve_p);
997     }
998 }
999 #endif /* uECC_WORD_SIZE */
1000 
1001 #elif uECC_CURVE == uECC_secp256r1
1002 
1003 /* Computes result = product % curve_p
1004    from www.nsa.gov/ia/_files/nist-routines.pdf */
1005 #if uECC_WORD_SIZE == 1
vli_mmod_fast(uint8_t * RESTRICT result,uint8_t * RESTRICT product)1006 static void vli_mmod_fast(uint8_t *RESTRICT result, uint8_t *RESTRICT product) {
1007     uint8_t tmp[uECC_BYTES];
1008     int8_t carry;
1009 
1010     /* t */
1011     vli_set(result, product);
1012 
1013     /* s1 */
1014     tmp[0] = tmp[1] = tmp[2] = tmp[3] = 0;
1015     tmp[4] = tmp[5] = tmp[6] = tmp[7] = 0;
1016     tmp[8] = tmp[9] = tmp[10] = tmp[11] = 0;
1017     tmp[12] = product[44]; tmp[13] = product[45]; tmp[14] = product[46]; tmp[15] = product[47];
1018     tmp[16] = product[48]; tmp[17] = product[49]; tmp[18] = product[50]; tmp[19] = product[51];
1019     tmp[20] = product[52]; tmp[21] = product[53]; tmp[22] = product[54]; tmp[23] = product[55];
1020     tmp[24] = product[56]; tmp[25] = product[57]; tmp[26] = product[58]; tmp[27] = product[59];
1021     tmp[28] = product[60]; tmp[29] = product[61]; tmp[30] = product[62]; tmp[31] = product[63];
1022     carry = vli_add(tmp, tmp, tmp);
1023     carry += vli_add(result, result, tmp);
1024 
1025     /* s2 */
1026     tmp[12] = product[48]; tmp[13] = product[49]; tmp[14] = product[50]; tmp[15] = product[51];
1027     tmp[16] = product[52]; tmp[17] = product[53]; tmp[18] = product[54]; tmp[19] = product[55];
1028     tmp[20] = product[56]; tmp[21] = product[57]; tmp[22] = product[58]; tmp[23] = product[59];
1029     tmp[24] = product[60]; tmp[25] = product[61]; tmp[26] = product[62]; tmp[27] = product[63];
1030     tmp[28] = tmp[29] = tmp[30] = tmp[31] = 0;
1031     carry += vli_add(tmp, tmp, tmp);
1032     carry += vli_add(result, result, tmp);
1033 
1034     /* s3 */
1035     tmp[0] = product[32]; tmp[1] = product[33]; tmp[2] = product[34]; tmp[3] = product[35];
1036     tmp[4] = product[36]; tmp[5] = product[37]; tmp[6] = product[38]; tmp[7] = product[39];
1037     tmp[8] = product[40]; tmp[9] = product[41]; tmp[10] = product[42]; tmp[11] = product[43];
1038     tmp[12] = tmp[13] = tmp[14] = tmp[15] = 0;
1039     tmp[16] = tmp[17] = tmp[18] = tmp[19] = 0;
1040     tmp[20] = tmp[21] = tmp[22] = tmp[23] = 0;
1041     tmp[24] = product[56]; tmp[25] = product[57]; tmp[26] = product[58]; tmp[27] = product[59];
1042     tmp[28] = product[60]; tmp[29] = product[61]; tmp[30] = product[62]; tmp[31] = product[63];
1043     carry += vli_add(result, result, tmp);
1044 
1045     /* s4 */
1046     tmp[0] = product[36]; tmp[1] = product[37]; tmp[2] = product[38]; tmp[3] = product[39];
1047     tmp[4] = product[40]; tmp[5] = product[41]; tmp[6] = product[42]; tmp[7] = product[43];
1048     tmp[8] = product[44]; tmp[9] = product[45]; tmp[10] = product[46]; tmp[11] = product[47];
1049     tmp[12] = product[52]; tmp[13] = product[53]; tmp[14] = product[54]; tmp[15] = product[55];
1050     tmp[16] = product[56]; tmp[17] = product[57]; tmp[18] = product[58]; tmp[19] = product[59];
1051     tmp[20] = product[60]; tmp[21] = product[61]; tmp[22] = product[62]; tmp[23] = product[63];
1052     tmp[24] = product[52]; tmp[25] = product[53]; tmp[26] = product[54]; tmp[27] = product[55];
1053     tmp[28] = product[32]; tmp[29] = product[33]; tmp[30] = product[34]; tmp[31] = product[35];
1054     carry += vli_add(result, result, tmp);
1055 
1056     /* d1 */
1057     tmp[0] = product[44]; tmp[1] = product[45]; tmp[2] = product[46]; tmp[3] = product[47];
1058     tmp[4] = product[48]; tmp[5] = product[49]; tmp[6] = product[50]; tmp[7] = product[51];
1059     tmp[8] = product[52]; tmp[9] = product[53]; tmp[10] = product[54]; tmp[11] = product[55];
1060     tmp[12] = tmp[13] = tmp[14] = tmp[15] = 0;
1061     tmp[16] = tmp[17] = tmp[18] = tmp[19] = 0;
1062     tmp[20] = tmp[21] = tmp[22] = tmp[23] = 0;
1063     tmp[24] = product[32]; tmp[25] = product[33]; tmp[26] = product[34]; tmp[27] = product[35];
1064     tmp[28] = product[40]; tmp[29] = product[41]; tmp[30] = product[42]; tmp[31] = product[43];
1065     carry -= vli_sub(result, result, tmp);
1066 
1067     /* d2 */
1068     tmp[0] = product[48]; tmp[1] = product[49]; tmp[2] = product[50]; tmp[3] = product[51];
1069     tmp[4] = product[52]; tmp[5] = product[53]; tmp[6] = product[54]; tmp[7] = product[55];
1070     tmp[8] = product[56]; tmp[9] = product[57]; tmp[10] = product[58]; tmp[11] = product[59];
1071     tmp[12] = product[60]; tmp[13] = product[61]; tmp[14] = product[62]; tmp[15] = product[63];
1072     tmp[16] = tmp[17] = tmp[18] = tmp[19] = 0;
1073     tmp[20] = tmp[21] = tmp[22] = tmp[23] = 0;
1074     tmp[24] = product[36]; tmp[25] = product[37]; tmp[26] = product[38]; tmp[27] = product[39];
1075     tmp[28] = product[44]; tmp[29] = product[45]; tmp[30] = product[46]; tmp[31] = product[47];
1076     carry -= vli_sub(result, result, tmp);
1077 
1078     /* d3 */
1079     tmp[0] = product[52]; tmp[1] = product[53]; tmp[2] = product[54]; tmp[3] = product[55];
1080     tmp[4] = product[56]; tmp[5] = product[57]; tmp[6] = product[58]; tmp[7] = product[59];
1081     tmp[8] = product[60]; tmp[9] = product[61]; tmp[10] = product[62]; tmp[11] = product[63];
1082     tmp[12] = product[32]; tmp[13] = product[33]; tmp[14] = product[34]; tmp[15] = product[35];
1083     tmp[16] = product[36]; tmp[17] = product[37]; tmp[18] = product[38]; tmp[19] = product[39];
1084     tmp[20] = product[40]; tmp[21] = product[41]; tmp[22] = product[42]; tmp[23] = product[43];
1085     tmp[24] = tmp[25] = tmp[26] = tmp[27] = 0;
1086     tmp[28] = product[48]; tmp[29] = product[49]; tmp[30] = product[50]; tmp[31] = product[51];
1087     carry -= vli_sub(result, result, tmp);
1088 
1089     /* d4 */
1090     tmp[0] = product[56]; tmp[1] = product[57]; tmp[2] = product[58]; tmp[3] = product[59];
1091     tmp[4] = product[60]; tmp[5] = product[61]; tmp[6] = product[62]; tmp[7] = product[63];
1092     tmp[8] = tmp[9] = tmp[10] = tmp[11] = 0;
1093     tmp[12] = product[36]; tmp[13] = product[37]; tmp[14] = product[38]; tmp[15] = product[39];
1094     tmp[16] = product[40]; tmp[17] = product[41]; tmp[18] = product[42]; tmp[19] = product[43];
1095     tmp[20] = product[44]; tmp[21] = product[45]; tmp[22] = product[46]; tmp[23] = product[47];
1096     tmp[24] = tmp[25] = tmp[26] = tmp[27] = 0;
1097     tmp[28] = product[52]; tmp[29] = product[53]; tmp[30] = product[54]; tmp[31] = product[55];
1098     carry -= vli_sub(result, result, tmp);
1099 
1100     if (carry < 0) {
1101         do {
1102             carry += vli_add(result, result, curve_p);
1103         } while (carry < 0);
1104     } else {
1105         while (carry || vli_cmp(curve_p, result) != 1) {
1106             carry -= vli_sub(result, result, curve_p);
1107         }
1108     }
1109 }
1110 #elif uECC_WORD_SIZE == 4
vli_mmod_fast(uint32_t * RESTRICT result,uint32_t * RESTRICT product)1111 static void vli_mmod_fast(uint32_t *RESTRICT result, uint32_t *RESTRICT product) {
1112     uint32_t tmp[uECC_WORDS];
1113     int carry;
1114 
1115     /* t */
1116     vli_set(result, product);
1117 
1118     /* s1 */
1119     tmp[0] = tmp[1] = tmp[2] = 0;
1120     tmp[3] = product[11];
1121     tmp[4] = product[12];
1122     tmp[5] = product[13];
1123     tmp[6] = product[14];
1124     tmp[7] = product[15];
1125     carry = vli_add(tmp, tmp, tmp);
1126     carry += vli_add(result, result, tmp);
1127 
1128     /* s2 */
1129     tmp[3] = product[12];
1130     tmp[4] = product[13];
1131     tmp[5] = product[14];
1132     tmp[6] = product[15];
1133     tmp[7] = 0;
1134     carry += vli_add(tmp, tmp, tmp);
1135     carry += vli_add(result, result, tmp);
1136 
1137     /* s3 */
1138     tmp[0] = product[8];
1139     tmp[1] = product[9];
1140     tmp[2] = product[10];
1141     tmp[3] = tmp[4] = tmp[5] = 0;
1142     tmp[6] = product[14];
1143     tmp[7] = product[15];
1144     carry += vli_add(result, result, tmp);
1145 
1146     /* s4 */
1147     tmp[0] = product[9];
1148     tmp[1] = product[10];
1149     tmp[2] = product[11];
1150     tmp[3] = product[13];
1151     tmp[4] = product[14];
1152     tmp[5] = product[15];
1153     tmp[6] = product[13];
1154     tmp[7] = product[8];
1155     carry += vli_add(result, result, tmp);
1156 
1157     /* d1 */
1158     tmp[0] = product[11];
1159     tmp[1] = product[12];
1160     tmp[2] = product[13];
1161     tmp[3] = tmp[4] = tmp[5] = 0;
1162     tmp[6] = product[8];
1163     tmp[7] = product[10];
1164     carry -= vli_sub(result, result, tmp);
1165 
1166     /* d2 */
1167     tmp[0] = product[12];
1168     tmp[1] = product[13];
1169     tmp[2] = product[14];
1170     tmp[3] = product[15];
1171     tmp[4] = tmp[5] = 0;
1172     tmp[6] = product[9];
1173     tmp[7] = product[11];
1174     carry -= vli_sub(result, result, tmp);
1175 
1176     /* d3 */
1177     tmp[0] = product[13];
1178     tmp[1] = product[14];
1179     tmp[2] = product[15];
1180     tmp[3] = product[8];
1181     tmp[4] = product[9];
1182     tmp[5] = product[10];
1183     tmp[6] = 0;
1184     tmp[7] = product[12];
1185     carry -= vli_sub(result, result, tmp);
1186 
1187     /* d4 */
1188     tmp[0] = product[14];
1189     tmp[1] = product[15];
1190     tmp[2] = 0;
1191     tmp[3] = product[9];
1192     tmp[4] = product[10];
1193     tmp[5] = product[11];
1194     tmp[6] = 0;
1195     tmp[7] = product[13];
1196     carry -= vli_sub(result, result, tmp);
1197 
1198     if (carry < 0) {
1199         do {
1200             carry += vli_add(result, result, curve_p);
1201         } while (carry < 0);
1202     } else {
1203         while (carry || vli_cmp(curve_p, result) != 1) {
1204             carry -= vli_sub(result, result, curve_p);
1205         }
1206     }
1207 }
1208 #else
vli_mmod_fast(uint64_t * RESTRICT result,uint64_t * RESTRICT product)1209 static void vli_mmod_fast(uint64_t *RESTRICT result, uint64_t *RESTRICT product) {
1210     uint64_t tmp[uECC_WORDS];
1211     int carry;
1212 
1213     /* t */
1214     vli_set(result, product);
1215 
1216     /* s1 */
1217     tmp[0] = 0;
1218     tmp[1] = product[5] & 0xffffffff00000000ull;
1219     tmp[2] = product[6];
1220     tmp[3] = product[7];
1221     carry = vli_add(tmp, tmp, tmp);
1222     carry += vli_add(result, result, tmp);
1223 
1224     /* s2 */
1225     tmp[1] = product[6] << 32;
1226     tmp[2] = (product[6] >> 32) | (product[7] << 32);
1227     tmp[3] = product[7] >> 32;
1228     carry += vli_add(tmp, tmp, tmp);
1229     carry += vli_add(result, result, tmp);
1230 
1231     /* s3 */
1232     tmp[0] = product[4];
1233     tmp[1] = product[5] & 0xffffffff;
1234     tmp[2] = 0;
1235     tmp[3] = product[7];
1236     carry += vli_add(result, result, tmp);
1237 
1238     /* s4 */
1239     tmp[0] = (product[4] >> 32) | (product[5] << 32);
1240     tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull);
1241     tmp[2] = product[7];
1242     tmp[3] = (product[6] >> 32) | (product[4] << 32);
1243     carry += vli_add(result, result, tmp);
1244 
1245     /* d1 */
1246     tmp[0] = (product[5] >> 32) | (product[6] << 32);
1247     tmp[1] = (product[6] >> 32);
1248     tmp[2] = 0;
1249     tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32);
1250     carry -= vli_sub(result, result, tmp);
1251 
1252     /* d2 */
1253     tmp[0] = product[6];
1254     tmp[1] = product[7];
1255     tmp[2] = 0;
1256     tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull);
1257     carry -= vli_sub(result, result, tmp);
1258 
1259     /* d3 */
1260     tmp[0] = (product[6] >> 32) | (product[7] << 32);
1261     tmp[1] = (product[7] >> 32) | (product[4] << 32);
1262     tmp[2] = (product[4] >> 32) | (product[5] << 32);
1263     tmp[3] = (product[6] << 32);
1264     carry -= vli_sub(result, result, tmp);
1265 
1266     /* d4 */
1267     tmp[0] = product[7];
1268     tmp[1] = product[4] & 0xffffffff00000000ull;
1269     tmp[2] = product[5];
1270     tmp[3] = product[6] & 0xffffffff00000000ull;
1271     carry -= vli_sub(result, result, tmp);
1272 
1273     if (carry < 0) {
1274         do {
1275             carry += vli_add(result, result, curve_p);
1276         } while (carry < 0);
1277     } else {
1278         while (carry || vli_cmp(curve_p, result) != 1) {
1279             carry -= vli_sub(result, result, curve_p);
1280         }
1281     }
1282 }
1283 #endif /* uECC_WORD_SIZE */
1284 
1285 #elif uECC_CURVE == uECC_secp256k1
1286 
1287 #if uECC_WORD_SIZE == 1
omega_mult(uint8_t * RESTRICT result,const uint8_t * RESTRICT right)1288 static void omega_mult(uint8_t * RESTRICT result, const uint8_t * RESTRICT right) {
1289     /* Multiply by (2^32 + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1). */
1290     uECC_word_t r0 = 0;
1291     uECC_word_t r1 = 0;
1292     uECC_word_t r2 = 0;
1293     wordcount_t k;
1294 
1295     /* Multiply by (2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1). */
1296     muladd(0xD1, right[0], &r0, &r1, &r2);
1297     result[0] = r0;
1298     r0 = r1;
1299     r1 = r2;
1300     /* r2 is still 0 */
1301 
1302     for (k = 1; k < uECC_WORDS; ++k) {
1303         muladd(0x03, right[k - 1], &r0, &r1, &r2);
1304         muladd(0xD1, right[k], &r0, &r1, &r2);
1305         result[k] = r0;
1306         r0 = r1;
1307         r1 = r2;
1308         r2 = 0;
1309     }
1310     muladd(0x03, right[uECC_WORDS - 1], &r0, &r1, &r2);
1311     result[uECC_WORDS] = r0;
1312     result[uECC_WORDS + 1] = r1;
1313 
1314     result[4 + uECC_WORDS] = vli_add(result + 4, result + 4, right); /* add the 2^32 multiple */
1315 }
1316 #elif uECC_WORD_SIZE == 4
omega_mult(uint32_t * RESTRICT result,const uint32_t * RESTRICT right)1317 static void omega_mult(uint32_t * RESTRICT result, const uint32_t * RESTRICT right) {
1318     /* Multiply by (2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1). */
1319     uint32_t carry = 0;
1320     wordcount_t k;
1321 
1322     for (k = 0; k < uECC_WORDS; ++k) {
1323         uint64_t p = (uint64_t)0x3D1 * right[k] + carry;
1324         result[k] = (p & 0xffffffff);
1325         carry = p >> 32;
1326     }
1327     result[uECC_WORDS] = carry;
1328 
1329     result[1 + uECC_WORDS] = vli_add(result + 1, result + 1, right); /* add the 2^32 multiple */
1330 }
1331 #else
omega_mult(uint64_t * RESTRICT result,const uint64_t * RESTRICT right)1332 static void omega_mult(uint64_t * RESTRICT result, const uint64_t * RESTRICT right) {
1333     uECC_word_t r0 = 0;
1334     uECC_word_t r1 = 0;
1335     uECC_word_t r2 = 0;
1336     wordcount_t k;
1337 
1338     /* Multiply by (2^32 + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1). */
1339     for (k = 0; k < uECC_WORDS; ++k) {
1340         muladd(0x1000003D1ull, right[k], &r0, &r1, &r2);
1341         result[k] = r0;
1342         r0 = r1;
1343         r1 = r2;
1344         r2 = 0;
1345     }
1346     result[uECC_WORDS] = r0;
1347 }
1348 #endif /* uECC_WORD_SIZE */
1349 
1350 #elif uECC_CURVE == uECC_secp224r1
1351 
1352 /* Computes result = product % curve_p
1353    from http://www.nsa.gov/ia/_files/nist-routines.pdf */
1354 #if uECC_WORD_SIZE == 1
1355 // TODO it may be faster to use the omega_mult method when fully asm optimized.
vli_mmod_fast(uint8_t * RESTRICT result,uint8_t * RESTRICT product)1356 void vli_mmod_fast(uint8_t *RESTRICT result, uint8_t *RESTRICT product) {
1357     uint8_t tmp[uECC_WORDS];
1358     int8_t carry;
1359 
1360     /* t */
1361     vli_set(result, product);
1362 
1363     /* s1 */
1364     tmp[0] = tmp[1] = tmp[2] = tmp[3] = 0;
1365     tmp[4] = tmp[5] = tmp[6] = tmp[7] = 0;
1366     tmp[8] = tmp[9] = tmp[10] = tmp[11] = 0;
1367     tmp[12] = product[28]; tmp[13] = product[29]; tmp[14] = product[30]; tmp[15] = product[31];
1368     tmp[16] = product[32]; tmp[17] = product[33]; tmp[18] = product[34]; tmp[19] = product[35];
1369     tmp[20] = product[36]; tmp[21] = product[37]; tmp[22] = product[38]; tmp[23] = product[39];
1370     tmp[24] = product[40]; tmp[25] = product[41]; tmp[26] = product[42]; tmp[27] = product[43];
1371     carry = vli_add(result, result, tmp);
1372 
1373     /* s2 */
1374     tmp[12] = product[44]; tmp[13] = product[45]; tmp[14] = product[46]; tmp[15] = product[47];
1375     tmp[16] = product[48]; tmp[17] = product[49]; tmp[18] = product[50]; tmp[19] = product[51];
1376     tmp[20] = product[52]; tmp[21] = product[53]; tmp[22] = product[54]; tmp[23] = product[55];
1377     tmp[24] = tmp[25] = tmp[26] = tmp[27] = 0;
1378     carry += vli_add(result, result, tmp);
1379 
1380     /* d1 */
1381     tmp[0]  = product[28]; tmp[1]  = product[29]; tmp[2]  = product[30]; tmp[3]  = product[31];
1382     tmp[4]  = product[32]; tmp[5]  = product[33]; tmp[6]  = product[34]; tmp[7]  = product[35];
1383     tmp[8]  = product[36]; tmp[9]  = product[37]; tmp[10] = product[38]; tmp[11] = product[39];
1384     tmp[12] = product[40]; tmp[13] = product[41]; tmp[14] = product[42]; tmp[15] = product[43];
1385     tmp[16] = product[44]; tmp[17] = product[45]; tmp[18] = product[46]; tmp[19] = product[47];
1386     tmp[20] = product[48]; tmp[21] = product[49]; tmp[22] = product[50]; tmp[23] = product[51];
1387     tmp[24] = product[52]; tmp[25] = product[53]; tmp[26] = product[54]; tmp[27] = product[55];
1388     carry -= vli_sub(result, result, tmp);
1389 
1390     /* d2 */
1391     tmp[0]  = product[44]; tmp[1]  = product[45]; tmp[2]  = product[46]; tmp[3]  = product[47];
1392     tmp[4]  = product[48]; tmp[5]  = product[49]; tmp[6]  = product[50]; tmp[7]  = product[51];
1393     tmp[8]  = product[52]; tmp[9]  = product[53]; tmp[10] = product[54]; tmp[11] = product[55];
1394     tmp[12] = tmp[13] = tmp[14] = tmp[15] = 0;
1395     tmp[16] = tmp[17] = tmp[18] = tmp[19] = 0;
1396     tmp[20] = tmp[21] = tmp[22] = tmp[23] = 0;
1397     tmp[24] = tmp[25] = tmp[26] = tmp[27] = 0;
1398     carry -= vli_sub(result, result, tmp);
1399 
1400     if (carry < 0) {
1401         do {
1402             carry += vli_add(result, result, curve_p);
1403         } while (carry < 0);
1404     } else {
1405         while (carry || vli_cmp(curve_p, result) != 1) {
1406             carry -= vli_sub(result, result, curve_p);
1407         }
1408     }
1409 }
1410 #elif uECC_WORD_SIZE == 4
vli_mmod_fast(uint32_t * RESTRICT result,uint32_t * RESTRICT product)1411 void vli_mmod_fast(uint32_t *RESTRICT result, uint32_t *RESTRICT product)
1412 {
1413     uint32_t tmp[uECC_WORDS];
1414     int carry;
1415 
1416     /* t */
1417     vli_set(result, product);
1418 
1419     /* s1 */
1420     tmp[0] = tmp[1] = tmp[2] = 0;
1421     tmp[3] = product[7];
1422     tmp[4] = product[8];
1423     tmp[5] = product[9];
1424     tmp[6] = product[10];
1425     carry = vli_add(result, result, tmp);
1426 
1427     /* s2 */
1428     tmp[3] = product[11];
1429     tmp[4] = product[12];
1430     tmp[5] = product[13];
1431     tmp[6] = 0;
1432     carry += vli_add(result, result, tmp);
1433 
1434     /* d1 */
1435     tmp[0] = product[7];
1436     tmp[1] = product[8];
1437     tmp[2] = product[9];
1438     tmp[3] = product[10];
1439     tmp[4] = product[11];
1440     tmp[5] = product[12];
1441     tmp[6] = product[13];
1442     carry -= vli_sub(result, result, tmp);
1443 
1444     /* d2 */
1445     tmp[0] = product[11];
1446     tmp[1] = product[12];
1447     tmp[2] = product[13];
1448     tmp[3] = tmp[4] = tmp[5] = tmp[6] = 0;
1449     carry -= vli_sub(result, result, tmp);
1450 
1451     if (carry < 0) {
1452         do {
1453             carry += vli_add(result, result, curve_p);
1454         } while (carry < 0);
1455     } else {
1456         while (carry || vli_cmp(curve_p, result) != 1) {
1457             carry -= vli_sub(result, result, curve_p);
1458         }
1459     }
1460 }
1461 #endif /* uECC_WORD_SIZE */
1462 
1463 #endif /* uECC_CURVE */
1464 #endif /* !asm_mmod_fast */
1465 
1466 /* Computes result = (left * right) % curve_p. */
vli_modMult_fast(uECC_word_t * result,const uECC_word_t * left,const uECC_word_t * right)1467 static void vli_modMult_fast(uECC_word_t *result,
1468                              const uECC_word_t *left,
1469                              const uECC_word_t *right) {
1470     uECC_word_t product[2 * uECC_WORDS];
1471     vli_mult(product, left, right);
1472     vli_mmod_fast(result, product);
1473 }
1474 
1475 #if uECC_SQUARE_FUNC
1476 
1477 /* Computes result = left^2 % curve_p. */
vli_modSquare_fast(uECC_word_t * result,const uECC_word_t * left)1478 static void vli_modSquare_fast(uECC_word_t *result, const uECC_word_t *left) {
1479     uECC_word_t product[2 * uECC_WORDS];
1480     vli_square(product, left);
1481     vli_mmod_fast(result, product);
1482 }
1483 
1484 #else /* uECC_SQUARE_FUNC */
1485 
1486 #define vli_modSquare_fast(result, left) vli_modMult_fast((result), (left), (left))
1487 
1488 #endif /* uECC_SQUARE_FUNC */
1489 
1490 
1491 #define EVEN(vli) (!(vli[0] & 1))
1492 /* Computes result = (1 / input) % mod. All VLIs are the same size.
1493    See "From Euclid's GCD to Montgomery Multiplication to the Great Divide"
1494    labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf */
1495 #if !asm_modInv
vli_modInv(uECC_word_t * result,const uECC_word_t * input,const uECC_word_t * mod)1496 static void vli_modInv(uECC_word_t *result, const uECC_word_t *input, const uECC_word_t *mod) {
1497     uECC_word_t a[uECC_WORDS], b[uECC_WORDS], u[uECC_WORDS], v[uECC_WORDS];
1498     uECC_word_t carry;
1499     cmpresult_t cmpResult;
1500 
1501     if (vli_isZero(input)) {
1502         vli_clear(result);
1503         return;
1504     }
1505 
1506     vli_set(a, input);
1507     vli_set(b, mod);
1508     vli_clear(u);
1509     u[0] = 1;
1510     vli_clear(v);
1511     while ((cmpResult = vli_cmp(a, b)) != 0) {
1512         carry = 0;
1513         if (EVEN(a)) {
1514             vli_rshift1(a);
1515             if (!EVEN(u)) {
1516                 carry = vli_add(u, u, mod);
1517             }
1518             vli_rshift1(u);
1519             if (carry) {
1520                 u[uECC_WORDS - 1] |= HIGH_BIT_SET;
1521             }
1522         } else if (EVEN(b)) {
1523             vli_rshift1(b);
1524             if (!EVEN(v)) {
1525                 carry = vli_add(v, v, mod);
1526             }
1527             vli_rshift1(v);
1528             if (carry) {
1529                 v[uECC_WORDS - 1] |= HIGH_BIT_SET;
1530             }
1531         } else if (cmpResult > 0) {
1532             vli_sub(a, a, b);
1533             vli_rshift1(a);
1534             if (vli_cmp(u, v) < 0) {
1535                 vli_add(u, u, mod);
1536             }
1537             vli_sub(u, u, v);
1538             if (!EVEN(u)) {
1539                 carry = vli_add(u, u, mod);
1540             }
1541             vli_rshift1(u);
1542             if (carry) {
1543                 u[uECC_WORDS - 1] |= HIGH_BIT_SET;
1544             }
1545         } else {
1546             vli_sub(b, b, a);
1547             vli_rshift1(b);
1548             if (vli_cmp(v, u) < 0) {
1549                 vli_add(v, v, mod);
1550             }
1551             vli_sub(v, v, u);
1552             if (!EVEN(v)) {
1553                 carry = vli_add(v, v, mod);
1554             }
1555             vli_rshift1(v);
1556             if (carry) {
1557                 v[uECC_WORDS - 1] |= HIGH_BIT_SET;
1558             }
1559         }
1560     }
1561     vli_set(result, u);
1562 }
1563 #endif /* !asm_modInv */
1564 
1565 /* ------ Point operations ------ */
1566 
1567 /* Returns 1 if 'point' is the point at infinity, 0 otherwise. */
EccPoint_isZero(const EccPoint * point)1568 static cmpresult_t EccPoint_isZero(const EccPoint *point) {
1569     return (vli_isZero(point->x) && vli_isZero(point->y));
1570 }
1571 
1572 /* Point multiplication algorithm using Montgomery's ladder with co-Z coordinates.
1573 From eprint.iacr.org/2011/338.pdf
1574 */
1575 
1576 /* Double in place */
1577 #if (uECC_CURVE == uECC_secp256k1)
EccPoint_double_jacobian(uECC_word_t * RESTRICT X1,uECC_word_t * RESTRICT Y1,uECC_word_t * RESTRICT Z1)1578 static void EccPoint_double_jacobian(uECC_word_t * RESTRICT X1,
1579                                      uECC_word_t * RESTRICT Y1,
1580                                      uECC_word_t * RESTRICT Z1) {
1581     /* t1 = X, t2 = Y, t3 = Z */
1582     uECC_word_t t4[uECC_WORDS];
1583     uECC_word_t t5[uECC_WORDS];
1584 
1585     if (vli_isZero(Z1)) {
1586         return;
1587     }
1588 
1589     vli_modSquare_fast(t5, Y1);   /* t5 = y1^2 */
1590     vli_modMult_fast(t4, X1, t5); /* t4 = x1*y1^2 = A */
1591     vli_modSquare_fast(X1, X1);   /* t1 = x1^2 */
1592     vli_modSquare_fast(t5, t5);   /* t5 = y1^4 */
1593     vli_modMult_fast(Z1, Y1, Z1); /* t3 = y1*z1 = z3 */
1594 
1595     vli_modAdd(Y1, X1, X1, curve_p); /* t2 = 2*x1^2 */
1596     vli_modAdd(Y1, Y1, X1, curve_p); /* t2 = 3*x1^2 */
1597     if (vli_testBit(Y1, 0)) {
1598         uECC_word_t carry = vli_add(Y1, Y1, curve_p);
1599         vli_rshift1(Y1);
1600         Y1[uECC_WORDS - 1] |= carry << (uECC_WORD_BITS - 1);
1601     } else {
1602         vli_rshift1(Y1);
1603     }
1604     /* t2 = 3/2*(x1^2) = B */
1605 
1606     vli_modSquare_fast(X1, Y1);      /* t1 = B^2 */
1607     vli_modSub(X1, X1, t4, curve_p); /* t1 = B^2 - A */
1608     vli_modSub(X1, X1, t4, curve_p); /* t1 = B^2 - 2A = x3 */
1609 
1610     vli_modSub(t4, t4, X1, curve_p); /* t4 = A - x3 */
1611     vli_modMult_fast(Y1, Y1, t4);    /* t2 = B * (A - x3) */
1612     vli_modSub(Y1, Y1, t5, curve_p); /* t2 = B * (A - x3) - y1^4 = y3 */
1613 }
1614 #else
EccPoint_double_jacobian(uECC_word_t * RESTRICT X1,uECC_word_t * RESTRICT Y1,uECC_word_t * RESTRICT Z1)1615 static void EccPoint_double_jacobian(uECC_word_t * RESTRICT X1,
1616                                      uECC_word_t * RESTRICT Y1,
1617                                      uECC_word_t * RESTRICT Z1) {
1618     /* t1 = X, t2 = Y, t3 = Z */
1619     uECC_word_t t4[uECC_WORDS];
1620     uECC_word_t t5[uECC_WORDS];
1621 
1622     if (vli_isZero(Z1)) {
1623         return;
1624     }
1625 
1626     vli_modSquare_fast(t4, Y1);   /* t4 = y1^2 */
1627     vli_modMult_fast(t5, X1, t4); /* t5 = x1*y1^2 = A */
1628     vli_modSquare_fast(t4, t4);   /* t4 = y1^4 */
1629     vli_modMult_fast(Y1, Y1, Z1); /* t2 = y1*z1 = z3 */
1630     vli_modSquare_fast(Z1, Z1);   /* t3 = z1^2 */
1631 
1632     vli_modAdd(X1, X1, Z1, curve_p); /* t1 = x1 + z1^2 */
1633     vli_modAdd(Z1, Z1, Z1, curve_p); /* t3 = 2*z1^2 */
1634     vli_modSub_fast(Z1, X1, Z1);     /* t3 = x1 - z1^2 */
1635     vli_modMult_fast(X1, X1, Z1);    /* t1 = x1^2 - z1^4 */
1636 
1637     vli_modAdd(Z1, X1, X1, curve_p); /* t3 = 2*(x1^2 - z1^4) */
1638     vli_modAdd(X1, X1, Z1, curve_p); /* t1 = 3*(x1^2 - z1^4) */
1639     if (vli_testBit(X1, 0)) {
1640         uECC_word_t l_carry = vli_add(X1, X1, curve_p);
1641         vli_rshift1(X1);
1642         X1[uECC_WORDS - 1] |= l_carry << (uECC_WORD_BITS - 1);
1643     } else {
1644         vli_rshift1(X1);
1645     }
1646     /* t1 = 3/2*(x1^2 - z1^4) = B */
1647 
1648     vli_modSquare_fast(Z1, X1);   /* t3 = B^2 */
1649     vli_modSub_fast(Z1, Z1, t5);  /* t3 = B^2 - A */
1650     vli_modSub_fast(Z1, Z1, t5);  /* t3 = B^2 - 2A = x3 */
1651     vli_modSub_fast(t5, t5, Z1);  /* t5 = A - x3 */
1652     vli_modMult_fast(X1, X1, t5); /* t1 = B * (A - x3) */
1653     vli_modSub_fast(t4, X1, t4);  /* t4 = B * (A - x3) - y1^4 = y3 */
1654 
1655     vli_set(X1, Z1);
1656     vli_set(Z1, Y1);
1657     vli_set(Y1, t4);
1658 }
1659 #endif
1660 
1661 /* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
apply_z(uECC_word_t * RESTRICT X1,uECC_word_t * RESTRICT Y1,const uECC_word_t * RESTRICT Z)1662 static void apply_z(uECC_word_t * RESTRICT X1,
1663                     uECC_word_t * RESTRICT Y1,
1664                     const uECC_word_t * RESTRICT Z) {
1665     uECC_word_t t1[uECC_WORDS];
1666 
1667     vli_modSquare_fast(t1, Z);    /* z^2 */
1668     vli_modMult_fast(X1, X1, t1); /* x1 * z^2 */
1669     vli_modMult_fast(t1, t1, Z);  /* z^3 */
1670     vli_modMult_fast(Y1, Y1, t1); /* y1 * z^3 */
1671 }
1672 
1673 /* P = (x1, y1) => 2P, (x2, y2) => P' */
XYcZ_initial_double(uECC_word_t * RESTRICT X1,uECC_word_t * RESTRICT Y1,uECC_word_t * RESTRICT X2,uECC_word_t * RESTRICT Y2,const uECC_word_t * RESTRICT initial_Z)1674 static void XYcZ_initial_double(uECC_word_t * RESTRICT X1,
1675                                 uECC_word_t * RESTRICT Y1,
1676                                 uECC_word_t * RESTRICT X2,
1677                                 uECC_word_t * RESTRICT Y2,
1678                                 const uECC_word_t * RESTRICT initial_Z) {
1679     uECC_word_t z[uECC_WORDS];
1680     if (initial_Z) {
1681         vli_set(z, initial_Z);
1682     } else {
1683         vli_clear(z);
1684         z[0] = 1;
1685     }
1686 
1687     vli_set(X2, X1);
1688     vli_set(Y2, Y1);
1689 
1690     apply_z(X1, Y1, z);
1691     EccPoint_double_jacobian(X1, Y1, z);
1692     apply_z(X2, Y2, z);
1693 }
1694 
1695 /* Input P = (x1, y1, Z), Q = (x2, y2, Z)
1696    Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
1697    or P => P', Q => P + Q
1698 */
XYcZ_add(uECC_word_t * RESTRICT X1,uECC_word_t * RESTRICT Y1,uECC_word_t * RESTRICT X2,uECC_word_t * RESTRICT Y2)1699 static void XYcZ_add(uECC_word_t * RESTRICT X1,
1700                      uECC_word_t * RESTRICT Y1,
1701                      uECC_word_t * RESTRICT X2,
1702                      uECC_word_t * RESTRICT Y2) {
1703     /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
1704     uECC_word_t t5[uECC_WORDS];
1705 
1706     vli_modSub_fast(t5, X2, X1);  /* t5 = x2 - x1 */
1707     vli_modSquare_fast(t5, t5);   /* t5 = (x2 - x1)^2 = A */
1708     vli_modMult_fast(X1, X1, t5); /* t1 = x1*A = B */
1709     vli_modMult_fast(X2, X2, t5); /* t3 = x2*A = C */
1710     vli_modSub_fast(Y2, Y2, Y1);  /* t4 = y2 - y1 */
1711     vli_modSquare_fast(t5, Y2);   /* t5 = (y2 - y1)^2 = D */
1712 
1713     vli_modSub_fast(t5, t5, X1);  /* t5 = D - B */
1714     vli_modSub_fast(t5, t5, X2);  /* t5 = D - B - C = x3 */
1715     vli_modSub_fast(X2, X2, X1);  /* t3 = C - B */
1716     vli_modMult_fast(Y1, Y1, X2); /* t2 = y1*(C - B) */
1717     vli_modSub_fast(X2, X1, t5);  /* t3 = B - x3 */
1718     vli_modMult_fast(Y2, Y2, X2); /* t4 = (y2 - y1)*(B - x3) */
1719     vli_modSub_fast(Y2, Y2, Y1);  /* t4 = y3 */
1720 
1721     vli_set(X2, t5);
1722 }
1723 
1724 /* Input P = (x1, y1, Z), Q = (x2, y2, Z)
1725    Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
1726    or P => P - Q, Q => P + Q
1727 */
XYcZ_addC(uECC_word_t * RESTRICT X1,uECC_word_t * RESTRICT Y1,uECC_word_t * RESTRICT X2,uECC_word_t * RESTRICT Y2)1728 static void XYcZ_addC(uECC_word_t * RESTRICT X1,
1729                       uECC_word_t * RESTRICT Y1,
1730                       uECC_word_t * RESTRICT X2,
1731                       uECC_word_t * RESTRICT Y2) {
1732     /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
1733     uECC_word_t t5[uECC_WORDS];
1734     uECC_word_t t6[uECC_WORDS];
1735     uECC_word_t t7[uECC_WORDS];
1736 
1737     vli_modSub_fast(t5, X2, X1);     /* t5 = x2 - x1 */
1738     vli_modSquare_fast(t5, t5);      /* t5 = (x2 - x1)^2 = A */
1739     vli_modMult_fast(X1, X1, t5);    /* t1 = x1*A = B */
1740     vli_modMult_fast(X2, X2, t5);    /* t3 = x2*A = C */
1741     vli_modAdd(t5, Y2, Y1, curve_p); /* t5 = y2 + y1 */
1742     vli_modSub_fast(Y2, Y2, Y1);     /* t4 = y2 - y1 */
1743 
1744     vli_modSub_fast(t6, X2, X1);     /* t6 = C - B */
1745     vli_modMult_fast(Y1, Y1, t6);    /* t2 = y1 * (C - B) = E */
1746     vli_modAdd(t6, X1, X2, curve_p); /* t6 = B + C */
1747     vli_modSquare_fast(X2, Y2);      /* t3 = (y2 - y1)^2 = D */
1748     vli_modSub_fast(X2, X2, t6);     /* t3 = D - (B + C) = x3 */
1749 
1750     vli_modSub_fast(t7, X1, X2);  /* t7 = B - x3 */
1751     vli_modMult_fast(Y2, Y2, t7); /* t4 = (y2 - y1)*(B - x3) */
1752     vli_modSub_fast(Y2, Y2, Y1);  /* t4 = (y2 - y1)*(B - x3) - E = y3 */
1753 
1754     vli_modSquare_fast(t7, t5);   /* t7 = (y2 + y1)^2 = F */
1755     vli_modSub_fast(t7, t7, t6);  /* t7 = F - (B + C) = x3' */
1756     vli_modSub_fast(t6, t7, X1);  /* t6 = x3' - B */
1757     vli_modMult_fast(t6, t6, t5); /* t6 = (y2 + y1)*(x3' - B) */
1758     vli_modSub_fast(Y1, t6, Y1);  /* t2 = (y2 + y1)*(x3' - B) - E = y3' */
1759 
1760     vli_set(X1, t7);
1761 }
1762 
EccPoint_mult(EccPoint * RESTRICT result,const EccPoint * RESTRICT point,const uECC_word_t * RESTRICT scalar,const uECC_word_t * RESTRICT initialZ,bitcount_t numBits)1763 static void EccPoint_mult(EccPoint * RESTRICT result,
1764                           const EccPoint * RESTRICT point,
1765                           const uECC_word_t * RESTRICT scalar,
1766                           const uECC_word_t * RESTRICT initialZ,
1767                           bitcount_t numBits) {
1768     /* R0 and R1 */
1769     uECC_word_t Rx[2][uECC_WORDS];
1770     uECC_word_t Ry[2][uECC_WORDS];
1771     uECC_word_t z[uECC_WORDS];
1772     bitcount_t i;
1773     uECC_word_t nb;
1774 
1775     vli_set(Rx[1], point->x);
1776     vli_set(Ry[1], point->y);
1777 
1778     XYcZ_initial_double(Rx[1], Ry[1], Rx[0], Ry[0], initialZ);
1779 
1780     for (i = numBits - 2; i > 0; --i) {
1781         nb = !vli_testBit(scalar, i);
1782         XYcZ_addC(Rx[1 - nb], Ry[1 - nb], Rx[nb], Ry[nb]);
1783         XYcZ_add(Rx[nb], Ry[nb], Rx[1 - nb], Ry[1 - nb]);
1784     }
1785 
1786     nb = !vli_testBit(scalar, 0);
1787     XYcZ_addC(Rx[1 - nb], Ry[1 - nb], Rx[nb], Ry[nb]);
1788 
1789     /* Find final 1/Z value. */
1790     vli_modSub_fast(z, Rx[1], Rx[0]);   /* X1 - X0 */
1791     vli_modMult_fast(z, z, Ry[1 - nb]); /* Yb * (X1 - X0) */
1792     vli_modMult_fast(z, z, point->x); /* xP * Yb * (X1 - X0) */
1793     vli_modInv(z, z, curve_p);          /* 1 / (xP * Yb * (X1 - X0)) */
1794     vli_modMult_fast(z, z, point->y); /* yP / (xP * Yb * (X1 - X0)) */
1795     vli_modMult_fast(z, z, Rx[1 - nb]); /* Xb * yP / (xP * Yb * (X1 - X0)) */
1796     /* End 1/Z calculation */
1797 
1798     XYcZ_add(Rx[nb], Ry[nb], Rx[1 - nb], Ry[1 - nb]);
1799     apply_z(Rx[0], Ry[0], z);
1800 
1801     vli_set(result->x, Rx[0]);
1802     vli_set(result->y, Ry[0]);
1803 }
1804 
EccPoint_compute_public_key(EccPoint * result,uECC_word_t * private)1805 static int EccPoint_compute_public_key(EccPoint *result, uECC_word_t *private) {
1806     uECC_word_t tmp1[uECC_WORDS];
1807     uECC_word_t tmp2[uECC_WORDS];
1808     uECC_word_t *p2[2] = {tmp1, tmp2};
1809     uECC_word_t carry;
1810 
1811     /* Make sure the private key is in the range [1, n-1]. */
1812     if (vli_isZero(private)) {
1813         return 0;
1814     }
1815 
1816 #if (uECC_CURVE == uECC_secp160r1)
1817     // Don't regularize the bitcount for secp160r1, since it would have a larger performance
1818     // impact (about 2% slower on average) and requires the vli_xxx_n functions, leading to
1819     // a significant increase in code size.
1820 
1821     EccPoint_mult(result, &curve_G, private, NULL, vli_numBits(private, uECC_WORDS));
1822 #else
1823     if (vli_cmp(curve_n, private) != 1) {
1824         return 0;
1825     }
1826 
1827     // Regularize the bitcount for the private key so that attackers cannot use a side channel
1828     // attack to learn the number of leading zeros.
1829     carry = vli_add(tmp1, private, curve_n);
1830     vli_add(tmp2, tmp1, curve_n);
1831     EccPoint_mult(result, &curve_G, p2[!carry], NULL, (uECC_BYTES * 8) + 1);
1832 #endif
1833 
1834     if (EccPoint_isZero(result)) {
1835         return 0;
1836     }
1837     return 1;
1838 }
1839 
1840 #ifdef ENABLE_MICRO_ECC_COMPRESSION
1841 
1842 #if uECC_CURVE == uECC_secp224r1
1843 
1844 /* Routine 3.2.4 RS;  from http://www.nsa.gov/ia/_files/nist-routines.pdf */
mod_sqrt_secp224r1_rs(uECC_word_t * d1,uECC_word_t * e1,uECC_word_t * f1,const uECC_word_t * d0,const uECC_word_t * e0,const uECC_word_t * f0)1845 static void mod_sqrt_secp224r1_rs(uECC_word_t *d1,
1846                                   uECC_word_t *e1,
1847                                   uECC_word_t *f1,
1848                                   const uECC_word_t *d0,
1849                                   const uECC_word_t *e0,
1850                                   const uECC_word_t *f0) {
1851     uECC_word_t t[uECC_WORDS];
1852 
1853     vli_modSquare_fast(t, d0);                 /* t <-- d0 ^ 2 */
1854     vli_modMult_fast(e1, d0, e0);              /* e1 <-- d0 * e0 */
1855     vli_modAdd(d1, t, f0, curve_p);            /* d1 <-- t  + f0 */
1856     vli_modAdd(e1, e1, e1, curve_p);           /* e1 <-- e1 + e1 */
1857     vli_modMult_fast(f1, t, f0);               /* f1 <-- t  * f0 */
1858     vli_modAdd(f1, f1, f1, curve_p);           /* f1 <-- f1 + f1 */
1859     vli_modAdd(f1, f1, f1, curve_p);           /* f1 <-- f1 + f1 */
1860 }
1861 
1862 /* Routine 3.2.5 RSS;  from http://www.nsa.gov/ia/_files/nist-routines.pdf */
mod_sqrt_secp224r1_rss(uECC_word_t * d1,uECC_word_t * e1,uECC_word_t * f1,const uECC_word_t * d0,const uECC_word_t * e0,const uECC_word_t * f0,const bitcount_t j)1863 static void mod_sqrt_secp224r1_rss(uECC_word_t *d1,
1864                                    uECC_word_t *e1,
1865                                    uECC_word_t *f1,
1866                                    const uECC_word_t *d0,
1867                                    const uECC_word_t *e0,
1868                                    const uECC_word_t *f0,
1869                                    const bitcount_t j) {
1870     bitcount_t i;
1871 
1872     vli_set(d1, d0);                           /* d1 <-- d0 */
1873     vli_set(e1, e0);                           /* e1 <-- e0 */
1874     vli_set(f1, f0);                           /* f1 <-- f0 */
1875     for (i = 1; i <= j; i++) {
1876         mod_sqrt_secp224r1_rs(d1, e1, f1, d1, e1, f1); /* RS (d1,e1,f1,d1,e1,f1) */
1877     }
1878 }
1879 
1880 /* Routine 3.2.6 RM;  from http://www.nsa.gov/ia/_files/nist-routines.pdf */
mod_sqrt_secp224r1_rm(uECC_word_t * d2,uECC_word_t * e2,uECC_word_t * f2,const uECC_word_t * c,const uECC_word_t * d0,const uECC_word_t * e0,const uECC_word_t * d1,const uECC_word_t * e1)1881 static void mod_sqrt_secp224r1_rm(uECC_word_t *d2,
1882                                   uECC_word_t *e2,
1883                                   uECC_word_t *f2,
1884                                   const uECC_word_t *c,
1885                                   const uECC_word_t *d0,
1886                                   const uECC_word_t *e0,
1887                                   const uECC_word_t *d1,
1888                                   const uECC_word_t *e1) {
1889     uECC_word_t t1[uECC_WORDS];
1890     uECC_word_t t2[uECC_WORDS];
1891 
1892     vli_modMult_fast(t1, e0, e1);              /* t1 <-- e0 * e1 */
1893     vli_modMult_fast(t1, t1, c);               /* t1 <-- t1 * c */
1894     vli_modSub_fast(t1, curve_p, t1);          /* t1 <-- p  - t1 */
1895     vli_modMult_fast(t2, d0, d1);              /* t2 <-- d0 * d1 */
1896     vli_modAdd(t2, t2, t1, curve_p);           /* t2 <-- t2 + t1 */
1897     vli_modMult_fast(t1, d0, e1);              /* t1 <-- d0 * e1 */
1898     vli_modMult_fast(e2, d1, e0);              /* e2 <-- d1 * e0 */
1899     vli_modAdd(e2, e2, t1, curve_p);           /* e2 <-- e2 + t1 */
1900     vli_modSquare_fast(f2, e2);                /* f2 <-- e2^2 */
1901     vli_modMult_fast(f2, f2, c);               /* f2 <-- f2 * c */
1902     vli_modSub_fast(f2, curve_p, f2);          /* f2 <-- p  - f2 */
1903     vli_set(d2, t2);                           /* d2 <-- t2 */
1904 }
1905 
1906 /* Routine 3.2.7 RP;  from http://www.nsa.gov/ia/_files/nist-routines.pdf */
mod_sqrt_secp224r1_rp(uECC_word_t * d1,uECC_word_t * e1,uECC_word_t * f1,const uECC_word_t * c,const uECC_word_t * r)1907 static void mod_sqrt_secp224r1_rp(uECC_word_t *d1,
1908                                   uECC_word_t *e1,
1909                                   uECC_word_t *f1,
1910                                   const uECC_word_t *c,
1911                                   const uECC_word_t *r) {
1912     wordcount_t i;
1913     wordcount_t pow2i = 1;
1914     uECC_word_t d0[uECC_WORDS];
1915     uECC_word_t e0[uECC_WORDS] = {1};          /* e0 <-- 1 */
1916     uECC_word_t f0[uECC_WORDS];
1917 
1918     vli_set(d0, r);                            /* d0 <-- r */
1919     vli_modSub_fast(f0, curve_p, c);           /* f0 <-- p  - c */
1920     for (i = 0; i <= 6; i++) {
1921         mod_sqrt_secp224r1_rss(d1, e1, f1, d0, e0, f0, pow2i); /* RSS (d1,e1,f1,d0,e0,f0,2^i) */
1922         mod_sqrt_secp224r1_rm(d1, e1, f1, c, d1, e1, d0, e0);  /* RM (d1,e1,f1,c,d1,e1,d0,e0) */
1923         vli_set(d0, d1);                       /* d0 <-- d1 */
1924         vli_set(e0, e1);                       /* e0 <-- e1 */
1925         vli_set(f0, f1);                       /* f0 <-- f1 */
1926         pow2i *= 2;
1927     }
1928 }
1929 
1930 /* Compute a = sqrt(a) (mod curve_p). */
1931 /* Routine 3.2.8 mp_mod_sqrt_224; from http://www.nsa.gov/ia/_files/nist-routines.pdf */
mod_sqrt(uECC_word_t * a)1932 static void mod_sqrt(uECC_word_t *a) {
1933     bitcount_t i;
1934     uECC_word_t e1[uECC_WORDS];
1935     uECC_word_t f1[uECC_WORDS];
1936     uECC_word_t d0[uECC_WORDS];
1937     uECC_word_t e0[uECC_WORDS];
1938     uECC_word_t f0[uECC_WORDS];
1939     uECC_word_t d1[uECC_WORDS];
1940 
1941     // s = a; using constant instead of random value
1942     mod_sqrt_secp224r1_rp(d0, e0, f0, a, a);           /* RP (d0, e0, f0, c, s) */
1943     mod_sqrt_secp224r1_rs(d1, e1, f1, d0, e0, f0);     /* RS (d1, e1, f1, d0, e0, f0) */
1944     for (i = 1; i <= 95; i++) {
1945         vli_set(d0, d1);                               /* d0 <-- d1 */
1946         vli_set(e0, e1);                               /* e0 <-- e1 */
1947         vli_set(f0, f1);                               /* f0 <-- f1 */
1948         mod_sqrt_secp224r1_rs(d1, e1, f1, d0, e0, f0); /* RS (d1, e1, f1, d0, e0, f0) */
1949         if (vli_isZero(d1)) {                          /* if d1 == 0 */
1950 	        break;
1951         }
1952     }
1953     vli_modInv(f1, e0, curve_p);                       /* f1 <-- 1 / e0 */
1954     vli_modMult_fast(a, d0, f1);                       /* a  <-- d0 / e0 */
1955 }
1956 
1957 #else /* uECC_CURVE */
1958 
1959 /* Compute a = sqrt(a) (mod curve_p). */
mod_sqrt(uECC_word_t * a)1960 static void mod_sqrt(uECC_word_t *a) {
1961     bitcount_t i;
1962     uECC_word_t p1[uECC_WORDS] = {1};
1963     uECC_word_t l_result[uECC_WORDS] = {1};
1964 
1965     /* Since curve_p == 3 (mod 4) for all supported curves, we can
1966        compute sqrt(a) = a^((curve_p + 1) / 4) (mod curve_p). */
1967     vli_add(p1, curve_p, p1); /* p1 = curve_p + 1 */
1968     for (i = vli_numBits(p1, uECC_WORDS) - 1; i > 1; --i) {
1969         vli_modSquare_fast(l_result, l_result);
1970         if (vli_testBit(p1, i)) {
1971             vli_modMult_fast(l_result, l_result, a);
1972         }
1973     }
1974     vli_set(a, l_result);
1975 }
1976 #endif /* uECC_CURVE */
1977 
1978 #endif /* ENABLE_MICRO_ECC_COMPRESSION */
1979 
1980 
1981 #if uECC_WORD_SIZE == 1
1982 
vli_nativeToBytes(uint8_t * RESTRICT dest,const uint8_t * RESTRICT src)1983 static void vli_nativeToBytes(uint8_t * RESTRICT dest, const uint8_t * RESTRICT src) {
1984     uint8_t i;
1985     for (i = 0; i < uECC_BYTES; ++i) {
1986         dest[i] = src[(uECC_BYTES - 1) - i];
1987     }
1988 }
1989 
1990 #define vli_bytesToNative(dest, src) vli_nativeToBytes((dest), (src))
1991 
1992 #elif uECC_WORD_SIZE == 4
1993 
vli_nativeToBytes(uint8_t * bytes,const uint32_t * native)1994 static void vli_nativeToBytes(uint8_t *bytes, const uint32_t *native) {
1995     unsigned i;
1996     for (i = 0; i < uECC_WORDS; ++i) {
1997         uint8_t *digit = bytes + 4 * (uECC_WORDS - 1 - i);
1998         digit[0] = native[i] >> 24;
1999         digit[1] = native[i] >> 16;
2000         digit[2] = native[i] >> 8;
2001         digit[3] = native[i];
2002     }
2003 }
2004 
vli_bytesToNative(uint32_t * native,const uint8_t * bytes)2005 static void vli_bytesToNative(uint32_t *native, const uint8_t *bytes) {
2006     unsigned i;
2007     for (i = 0; i < uECC_WORDS; ++i) {
2008         const uint8_t *digit = bytes + 4 * (uECC_WORDS - 1 - i);
2009         native[i] = ((uint32_t)digit[0] << 24) | ((uint32_t)digit[1] << 16) |
2010                     ((uint32_t)digit[2] << 8) | (uint32_t)digit[3];
2011     }
2012 }
2013 
2014 #else
2015 
vli_nativeToBytes(uint8_t * bytes,const uint64_t * native)2016 static void vli_nativeToBytes(uint8_t *bytes, const uint64_t *native) {
2017     unsigned i;
2018     for (i = 0; i < uECC_WORDS; ++i) {
2019         uint8_t *digit = bytes + 8 * (uECC_WORDS - 1 - i);
2020         digit[0] = native[i] >> 56;
2021         digit[1] = native[i] >> 48;
2022         digit[2] = native[i] >> 40;
2023         digit[3] = native[i] >> 32;
2024         digit[4] = native[i] >> 24;
2025         digit[5] = native[i] >> 16;
2026         digit[6] = native[i] >> 8;
2027         digit[7] = native[i];
2028     }
2029 }
2030 
vli_bytesToNative(uint64_t * native,const uint8_t * bytes)2031 static void vli_bytesToNative(uint64_t *native, const uint8_t *bytes) {
2032     unsigned i;
2033     for (i = 0; i < uECC_WORDS; ++i) {
2034         const uint8_t *digit = bytes + 8 * (uECC_WORDS - 1 - i);
2035         native[i] = ((uint64_t)digit[0] << 56) | ((uint64_t)digit[1] << 48) |
2036                     ((uint64_t)digit[2] << 40) | ((uint64_t)digit[3] << 32) |
2037                     ((uint64_t)digit[4] << 24) | ((uint64_t)digit[5] << 16) |
2038                     ((uint64_t)digit[6] << 8) | (uint64_t)digit[7];
2039     }
2040 }
2041 
2042 #endif /* uECC_WORD_SIZE */
2043 
uECC_make_key(uint8_t public_key[uECC_BYTES * 2],uint8_t private_key[uECC_BYTES])2044 int uECC_make_key(uint8_t public_key[uECC_BYTES*2], uint8_t private_key[uECC_BYTES]) {
2045     uECC_word_t private[uECC_WORDS];
2046     EccPoint public;
2047     uECC_word_t tries;
2048     for (tries = 0; tries < MAX_TRIES; ++tries) {
2049         if (g_rng_function((uint8_t *)private, sizeof(private)) &&
2050                 EccPoint_compute_public_key(&public, private)) {
2051             vli_nativeToBytes(private_key, private);
2052             vli_nativeToBytes(public_key, public.x);
2053             vli_nativeToBytes(public_key + uECC_BYTES, public.y);
2054             return 1;
2055         }
2056     }
2057     return 0;
2058 }
2059 
uECC_shared_secret(const uint8_t public_key[uECC_BYTES * 2],const uint8_t private_key[uECC_BYTES],uint8_t secret[uECC_BYTES])2060 int uECC_shared_secret(const uint8_t public_key[uECC_BYTES*2],
2061                        const uint8_t private_key[uECC_BYTES],
2062                        uint8_t secret[uECC_BYTES]) {
2063     EccPoint public;
2064     EccPoint product;
2065     uECC_word_t private[uECC_WORDS];
2066     uECC_word_t tmp[uECC_WORDS];
2067     uECC_word_t *p2[2] = {private, tmp};
2068     uECC_word_t random[uECC_WORDS];
2069     uECC_word_t *initial_Z = NULL;
2070     uECC_word_t tries;
2071     uECC_word_t carry;
2072 
2073     // Try to get a random initial Z value to improve protection against side-channel
2074     // attacks. If the RNG fails every time (eg it was not defined), we continue so that
2075     // uECC_shared_secret() can still work without an RNG defined.
2076     for (tries = 0; tries < MAX_TRIES; ++tries) {
2077         if (g_rng_function((uint8_t *)random, sizeof(random)) && !vli_isZero(random)) {
2078             initial_Z = random;
2079             break;
2080         }
2081     }
2082 
2083     vli_bytesToNative(private, private_key);
2084     vli_bytesToNative(public.x, public_key);
2085     vli_bytesToNative(public.y, public_key + uECC_BYTES);
2086 
2087 #if (uECC_CURVE == uECC_secp160r1)
2088     // Don't regularize the bitcount for secp160r1.
2089     EccPoint_mult(&product, &public, private, initial_Z, vli_numBits(private, uECC_WORDS));
2090 #else
2091     // Regularize the bitcount for the private key so that attackers cannot use a side channel
2092     // attack to learn the number of leading zeros.
2093     carry = vli_add(private, private, curve_n);
2094     vli_add(tmp, private, curve_n);
2095     EccPoint_mult(&product, &public, p2[!carry], initial_Z, (uECC_BYTES * 8) + 1);
2096 #endif
2097 
2098     vli_nativeToBytes(secret, product.x);
2099     return !EccPoint_isZero(&product);
2100 }
2101 
2102 #ifdef ENABLE_MICRO_ECC_COMPRESSION
2103 
uECC_compress(const uint8_t public_key[uECC_BYTES * 2],uint8_t compressed[uECC_BYTES+1])2104 void uECC_compress(const uint8_t public_key[uECC_BYTES*2], uint8_t compressed[uECC_BYTES+1]) {
2105     wordcount_t i;
2106     for (i = 0; i < uECC_BYTES; ++i) {
2107         compressed[i+1] = public_key[i];
2108     }
2109     compressed[0] = 2 + (public_key[uECC_BYTES * 2 - 1] & 0x01);
2110 }
2111 
2112 #endif
2113 
2114 /* Computes result = x^3 + ax + b. result must not overlap x. */
curve_x_side(uECC_word_t * RESTRICT result,const uECC_word_t * RESTRICT x)2115 static void curve_x_side(uECC_word_t * RESTRICT result, const uECC_word_t * RESTRICT x) {
2116     static const uECC_word_t curve_b[uECC_WORDS] = uECC_CONCAT(Curve_B_, uECC_CURVE);
2117 #if (uECC_CURVE == uECC_secp256k1)
2118     vli_modSquare_fast(result, x); /* r = x^2 */
2119     vli_modMult_fast(result, result, x); /* r = x^3 */
2120     vli_modAdd(result, result, curve_b, curve_p); /* r = x^3 + b */
2121 #else
2122     uECC_word_t _3[uECC_WORDS] = {3}; /* -a = 3 */
2123 
2124     vli_modSquare_fast(result, x); /* r = x^2 */
2125     vli_modSub_fast(result, result, _3); /* r = x^2 - 3 */
2126     vli_modMult_fast(result, result, x); /* r = x^3 - 3x */
2127     vli_modAdd(result, result, curve_b, curve_p); /* r = x^3 - 3x + b */
2128 #endif
2129 }
2130 
2131 #ifdef ENABLE_MICRO_ECC_COMPRESSION
2132 
uECC_decompress(const uint8_t compressed[uECC_BYTES+1],uint8_t public_key[uECC_BYTES * 2])2133 void uECC_decompress(const uint8_t compressed[uECC_BYTES+1], uint8_t public_key[uECC_BYTES*2]) {
2134     EccPoint point;
2135     vli_bytesToNative(point.x, compressed + 1);
2136     curve_x_side(point.y, point.x);
2137     mod_sqrt(point.y);
2138 
2139     if ((point.y[0] & 0x01) != (compressed[0] & 0x01)) {
2140         vli_sub(point.y, curve_p, point.y);
2141     }
2142 
2143     vli_nativeToBytes(public_key, point.x);
2144     vli_nativeToBytes(public_key + uECC_BYTES, point.y);
2145 }
2146 
2147 #endif /* ENABLE_MICRO_ECC_COMPRESSION */
2148 
uECC_valid_public_key(const uint8_t public_key[uECC_BYTES * 2])2149 int uECC_valid_public_key(const uint8_t public_key[uECC_BYTES*2]) {
2150     uECC_word_t tmp1[uECC_WORDS];
2151     uECC_word_t tmp2[uECC_WORDS];
2152     EccPoint public;
2153 
2154     vli_bytesToNative(public.x, public_key);
2155     vli_bytesToNative(public.y, public_key + uECC_BYTES);
2156 
2157     // The point at infinity is invalid.
2158     if (EccPoint_isZero(&public)) {
2159         return 0;
2160     }
2161 
2162     // x and y must be smaller than p.
2163     if (vli_cmp(curve_p, public.x) != 1 || vli_cmp(curve_p, public.y) != 1) {
2164         return 0;
2165     }
2166 
2167     vli_modSquare_fast(tmp1, public.y); /* tmp1 = y^2 */
2168     curve_x_side(tmp2, public.x); /* tmp2 = x^3 + ax + b */
2169 
2170     /* Make sure that y^2 == x^3 + ax + b */
2171     return (vli_cmp(tmp1, tmp2) == 0);
2172 }
2173 
uECC_compute_public_key(const uint8_t private_key[uECC_BYTES],uint8_t public_key[uECC_BYTES * 2])2174 int uECC_compute_public_key(const uint8_t private_key[uECC_BYTES],
2175                             uint8_t public_key[uECC_BYTES * 2]) {
2176     uECC_word_t private[uECC_WORDS];
2177     EccPoint public;
2178 
2179     vli_bytesToNative(private, private_key);
2180 
2181     if (!EccPoint_compute_public_key(&public, private)) {
2182         return 0;
2183     }
2184 
2185     vli_nativeToBytes(public_key, public.x);
2186     vli_nativeToBytes(public_key + uECC_BYTES, public.y);
2187     return 1;
2188 }
2189 
uECC_bytes(void)2190 int uECC_bytes(void) {
2191     return uECC_BYTES;
2192 }
2193 
uECC_curve(void)2194 int uECC_curve(void) {
2195     return uECC_CURVE;
2196 }
2197 
2198 /* -------- ECDSA code -------- */
2199 
2200 #ifdef ENABLE_MICRO_ECC_ECDSA
2201 
2202 #if (uECC_CURVE == uECC_secp160r1)
vli_clear_n(uECC_word_t * vli)2203 static void vli_clear_n(uECC_word_t *vli) {
2204     vli_clear(vli);
2205     vli[uECC_N_WORDS - 1] = 0;
2206 }
2207 
vli_isZero_n(const uECC_word_t * vli)2208 static uECC_word_t vli_isZero_n(const uECC_word_t *vli) {
2209     if (vli[uECC_N_WORDS - 1]) {
2210         return 0;
2211     }
2212     return vli_isZero(vli);
2213 }
2214 
vli_set_n(uECC_word_t * dest,const uECC_word_t * src)2215 static void vli_set_n(uECC_word_t *dest, const uECC_word_t *src) {
2216     vli_set(dest, src);
2217     dest[uECC_N_WORDS - 1] = src[uECC_N_WORDS - 1];
2218 }
2219 
vli_cmp_n(const uECC_word_t * left,const uECC_word_t * right)2220 static cmpresult_t vli_cmp_n(const uECC_word_t *left, const uECC_word_t *right) {
2221     if (left[uECC_N_WORDS - 1] > right[uECC_N_WORDS - 1]) {
2222         return 1;
2223     } else if (left[uECC_N_WORDS - 1] < right[uECC_N_WORDS - 1]) {
2224         return -1;
2225     }
2226     return vli_cmp(left, right);
2227 }
2228 
vli_rshift1_n(uECC_word_t * vli)2229 static void vli_rshift1_n(uECC_word_t *vli) {
2230     vli_rshift1(vli);
2231     vli[uECC_N_WORDS - 2] |= vli[uECC_N_WORDS - 1] << (uECC_WORD_BITS - 1);
2232     vli[uECC_N_WORDS - 1] = vli[uECC_N_WORDS - 1] >> 1;
2233 }
2234 
vli_add_n(uECC_word_t * result,const uECC_word_t * left,const uECC_word_t * right)2235 static uECC_word_t vli_add_n(uECC_word_t *result,
2236                              const uECC_word_t *left,
2237                              const uECC_word_t *right) {
2238     uECC_word_t carry = vli_add(result, left, right);
2239     uECC_word_t sum = left[uECC_N_WORDS - 1] + right[uECC_N_WORDS - 1] + carry;
2240     if (sum != left[uECC_N_WORDS - 1]) {
2241         carry = (sum < left[uECC_N_WORDS - 1]);
2242     }
2243     result[uECC_N_WORDS - 1] = sum;
2244     return carry;
2245 }
2246 
vli_sub_n(uECC_word_t * result,const uECC_word_t * left,const uECC_word_t * right)2247 static uECC_word_t vli_sub_n(uECC_word_t *result,
2248                              const uECC_word_t *left,
2249                              const uECC_word_t *right) {
2250     uECC_word_t borrow = vli_sub(result, left, right);
2251     uECC_word_t diff = left[uECC_N_WORDS - 1] - right[uECC_N_WORDS - 1] - borrow;
2252     if (diff != left[uECC_N_WORDS - 1]) {
2253         borrow = (diff > left[uECC_N_WORDS - 1]);
2254     }
2255     result[uECC_N_WORDS - 1] = diff;
2256     return borrow;
2257 }
2258 
2259 #if !muladd_exists
muladd(uECC_word_t a,uECC_word_t b,uECC_word_t * r0,uECC_word_t * r1,uECC_word_t * r2)2260 static void muladd(uECC_word_t a,
2261                    uECC_word_t b,
2262                    uECC_word_t *r0,
2263                    uECC_word_t *r1,
2264                    uECC_word_t *r2) {
2265     uECC_dword_t p = (uECC_dword_t)a * b;
2266     uECC_dword_t r01 = ((uECC_dword_t)(*r1) << uECC_WORD_BITS) | *r0;
2267     r01 += p;
2268     *r2 += (r01 < p);
2269     *r1 = r01 >> uECC_WORD_BITS;
2270     *r0 = (uECC_word_t)r01;
2271 }
2272 #define muladd_exists 1
2273 #endif
2274 
vli_mult_n(uECC_word_t * result,const uECC_word_t * left,const uECC_word_t * right)2275 static void vli_mult_n(uECC_word_t *result, const uECC_word_t *left, const uECC_word_t *right) {
2276     uECC_word_t r0 = 0;
2277     uECC_word_t r1 = 0;
2278     uECC_word_t r2 = 0;
2279     wordcount_t i, k;
2280 
2281     for (k = 0; k < uECC_N_WORDS * 2 - 1; ++k) {
2282         wordcount_t min = (k < uECC_N_WORDS ? 0 : (k + 1) - uECC_N_WORDS);
2283         wordcount_t max = (k < uECC_N_WORDS ? k : uECC_N_WORDS - 1);
2284         for (i = min; i <= max; ++i) {
2285             muladd(left[i], right[k - i], &r0, &r1, &r2);
2286         }
2287         result[k] = r0;
2288         r0 = r1;
2289         r1 = r2;
2290         r2 = 0;
2291     }
2292     result[uECC_N_WORDS * 2 - 1] = r0;
2293 }
2294 
vli_modAdd_n(uECC_word_t * result,const uECC_word_t * left,const uECC_word_t * right,const uECC_word_t * mod)2295 static void vli_modAdd_n(uECC_word_t *result,
2296                          const uECC_word_t *left,
2297                          const uECC_word_t *right,
2298                          const uECC_word_t *mod) {
2299     uECC_word_t carry = vli_add_n(result, left, right);
2300     if (carry || vli_cmp_n(result, mod) >= 0) {
2301         vli_sub_n(result, result, mod);
2302     }
2303 }
2304 
vli_modInv_n(uECC_word_t * result,const uECC_word_t * input,const uECC_word_t * mod)2305 static void vli_modInv_n(uECC_word_t *result, const uECC_word_t *input, const uECC_word_t *mod) {
2306     uECC_word_t a[uECC_N_WORDS], b[uECC_N_WORDS], u[uECC_N_WORDS], v[uECC_N_WORDS];
2307     uECC_word_t carry;
2308     cmpresult_t cmpResult;
2309 
2310     if (vli_isZero_n(input)) {
2311         vli_clear_n(result);
2312         return;
2313     }
2314 
2315     vli_set_n(a, input);
2316     vli_set_n(b, mod);
2317     vli_clear_n(u);
2318     u[0] = 1;
2319     vli_clear_n(v);
2320     while ((cmpResult = vli_cmp_n(a, b)) != 0) {
2321         carry = 0;
2322         if (EVEN(a)) {
2323             vli_rshift1_n(a);
2324             if (!EVEN(u)) {
2325                 carry = vli_add_n(u, u, mod);
2326             }
2327             vli_rshift1_n(u);
2328             if (carry) {
2329                 u[uECC_N_WORDS - 1] |= HIGH_BIT_SET;
2330             }
2331         } else if (EVEN(b)) {
2332             vli_rshift1_n(b);
2333             if (!EVEN(v)) {
2334                 carry = vli_add_n(v, v, mod);
2335             }
2336             vli_rshift1_n(v);
2337             if (carry) {
2338                 v[uECC_N_WORDS - 1] |= HIGH_BIT_SET;
2339             }
2340         } else if (cmpResult > 0) {
2341             vli_sub_n(a, a, b);
2342             vli_rshift1_n(a);
2343             if (vli_cmp_n(u, v) < 0) {
2344                 vli_add_n(u, u, mod);
2345             }
2346             vli_sub_n(u, u, v);
2347             if (!EVEN(u)) {
2348                 carry = vli_add_n(u, u, mod);
2349             }
2350             vli_rshift1_n(u);
2351             if (carry) {
2352                 u[uECC_N_WORDS - 1] |= HIGH_BIT_SET;
2353             }
2354         } else {
2355             vli_sub_n(b, b, a);
2356             vli_rshift1_n(b);
2357             if (vli_cmp_n(v, u) < 0) {
2358                 vli_add_n(v, v, mod);
2359             }
2360             vli_sub_n(v, v, u);
2361             if (!EVEN(v)) {
2362                 carry = vli_add_n(v, v, mod);
2363             }
2364             vli_rshift1_n(v);
2365             if (carry) {
2366                 v[uECC_N_WORDS - 1] |= HIGH_BIT_SET;
2367             }
2368         }
2369     }
2370     vli_set_n(result, u);
2371 }
2372 
vli2_rshift1_n(uECC_word_t * vli)2373 static void vli2_rshift1_n(uECC_word_t *vli) {
2374     vli_rshift1_n(vli);
2375     vli[uECC_N_WORDS - 1] |= vli[uECC_N_WORDS] << (uECC_WORD_BITS - 1);
2376     vli_rshift1_n(vli + uECC_N_WORDS);
2377 }
2378 
vli2_sub_n(uECC_word_t * result,const uECC_word_t * left,const uECC_word_t * right)2379 static uECC_word_t vli2_sub_n(uECC_word_t *result,
2380                               const uECC_word_t *left,
2381                               const uECC_word_t *right) {
2382     uECC_word_t borrow = 0;
2383     wordcount_t i;
2384     for (i = 0; i < uECC_N_WORDS * 2; ++i) {
2385         uECC_word_t diff = left[i] - right[i] - borrow;
2386         if (diff != left[i]) {
2387             borrow = (diff > left[i]);
2388         }
2389         result[i] = diff;
2390     }
2391     return borrow;
2392 }
2393 
2394 /* Computes result = (left * right) % curve_n. */
vli_modMult_n(uECC_word_t * result,const uECC_word_t * left,const uECC_word_t * right)2395 static void vli_modMult_n(uECC_word_t *result, const uECC_word_t *left, const uECC_word_t *right) {
2396     bitcount_t i;
2397     uECC_word_t product[2 * uECC_N_WORDS];
2398     uECC_word_t modMultiple[2 * uECC_N_WORDS];
2399     uECC_word_t tmp[2 * uECC_N_WORDS];
2400     uECC_word_t *v[2] = {tmp, product};
2401     uECC_word_t index = 1;
2402 
2403     vli_mult_n(product, left, right);
2404     vli_clear_n(modMultiple);
2405     vli_set(modMultiple + uECC_N_WORDS + 1, curve_n);
2406     vli_rshift1(modMultiple + uECC_N_WORDS + 1);
2407     modMultiple[2 * uECC_N_WORDS - 1] |= HIGH_BIT_SET;
2408     modMultiple[uECC_N_WORDS] = HIGH_BIT_SET;
2409 
2410     for (i = 0;
2411          i <= ((((bitcount_t)uECC_N_WORDS) << uECC_WORD_BITS_SHIFT) + (uECC_WORD_BITS - 1));
2412          ++i) {
2413         uECC_word_t borrow = vli2_sub_n(v[1 - index], v[index], modMultiple);
2414         index = !(index ^ borrow); /* Swap the index if there was no borrow */
2415         vli2_rshift1_n(modMultiple);
2416     }
2417     vli_set_n(result, v[index]);
2418 }
2419 
2420 #else
2421 
2422 #define vli_cmp_n vli_cmp
2423 #define vli_modInv_n vli_modInv
2424 #define vli_modAdd_n vli_modAdd
2425 
vli2_rshift1(uECC_word_t * vli)2426 static void vli2_rshift1(uECC_word_t *vli) {
2427     vli_rshift1(vli);
2428     vli[uECC_WORDS - 1] |= vli[uECC_WORDS] << (uECC_WORD_BITS - 1);
2429     vli_rshift1(vli + uECC_WORDS);
2430 }
2431 
vli2_sub(uECC_word_t * result,const uECC_word_t * left,const uECC_word_t * right)2432 static uECC_word_t vli2_sub(uECC_word_t *result,
2433                             const uECC_word_t *left,
2434                             const uECC_word_t *right) {
2435     uECC_word_t borrow = 0;
2436     wordcount_t i;
2437     for (i = 0; i < uECC_WORDS * 2; ++i) {
2438         uECC_word_t diff = left[i] - right[i] - borrow;
2439         if (diff != left[i]) {
2440             borrow = (diff > left[i]);
2441         }
2442         result[i] = diff;
2443     }
2444     return borrow;
2445 }
2446 
2447 /* Computes result = (left * right) % curve_n. */
vli_modMult_n(uECC_word_t * result,const uECC_word_t * left,const uECC_word_t * right)2448 static void vli_modMult_n(uECC_word_t *result, const uECC_word_t *left, const uECC_word_t *right) {
2449     uECC_word_t product[2 * uECC_WORDS];
2450     uECC_word_t modMultiple[2 * uECC_WORDS];
2451     uECC_word_t tmp[2 * uECC_WORDS];
2452     uECC_word_t *v[2] = {tmp, product};
2453     bitcount_t i;
2454     uECC_word_t index = 1;
2455 
2456     vli_mult(product, left, right);
2457     vli_set(modMultiple + uECC_WORDS, curve_n); /* works if curve_n has its highest bit set */
2458     vli_clear(modMultiple);
2459 
2460     for (i = 0; i <= uECC_BYTES * 8; ++i) {
2461         uECC_word_t borrow = vli2_sub(v[1 - index], v[index], modMultiple);
2462         index = !(index ^ borrow); /* Swap the index if there was no borrow */
2463         vli2_rshift1(modMultiple);
2464     }
2465     vli_set(result, v[index]);
2466 }
2467 #endif /* (uECC_CURVE != uECC_secp160r1) */
2468 
uECC_sign_with_k(const uint8_t private_key[uECC_BYTES],const uint8_t message_hash[uECC_BYTES],uECC_word_t k[uECC_N_WORDS],uint8_t signature[uECC_BYTES * 2])2469 static int uECC_sign_with_k(const uint8_t private_key[uECC_BYTES],
2470                             const uint8_t message_hash[uECC_BYTES],
2471                             uECC_word_t k[uECC_N_WORDS],
2472                             uint8_t signature[uECC_BYTES*2]) {
2473     uECC_word_t tmp[uECC_N_WORDS];
2474     uECC_word_t s[uECC_N_WORDS];
2475     uECC_word_t *k2[2] = {tmp, s};
2476     EccPoint p;
2477     uECC_word_t carry;
2478     uECC_word_t tries;
2479 
2480     /* Make sure 0 < k < curve_n */
2481     if (vli_isZero(k) || vli_cmp_n(curve_n, k) != 1) {
2482         return 0;
2483     }
2484 
2485 #if (uECC_CURVE == uECC_secp160r1)
2486     /* Make sure that we don't leak timing information about k.
2487        See http://eprint.iacr.org/2011/232.pdf */
2488     vli_add_n(tmp, k, curve_n);
2489     carry = (tmp[uECC_WORDS] & 0x02);
2490     vli_add_n(s, tmp, curve_n);
2491 
2492     /* p = k * G */
2493     EccPoint_mult(&p, &curve_G, k2[!carry], NULL, (uECC_BYTES * 8) + 2);
2494 #else
2495     /* Make sure that we don't leak timing information about k.
2496        See http://eprint.iacr.org/2011/232.pdf */
2497     carry = vli_add(tmp, k, curve_n);
2498     vli_add(s, tmp, curve_n);
2499 
2500     /* p = k * G */
2501     EccPoint_mult(&p, &curve_G, k2[!carry], NULL, (uECC_BYTES * 8) + 1);
2502 
2503     /* r = x1 (mod n) */
2504     if (vli_cmp(curve_n, p.x) != 1) {
2505         vli_sub(p.x, p.x, curve_n);
2506     }
2507 #endif
2508     if (vli_isZero(p.x)) {
2509         return 0;
2510     }
2511 
2512     // Attempt to get a random number to prevent side channel analysis of k.
2513     // If the RNG fails every time (eg it was not defined), we continue so that
2514     // deterministic signing can still work (with reduced security) without
2515     // an RNG defined.
2516     carry = 0; // use to signal that the RNG succeeded at least once.
2517     for (tries = 0; tries < MAX_TRIES; ++tries) {
2518         if (!g_rng_function((uint8_t *)tmp, sizeof(tmp))) {
2519             continue;
2520         }
2521         carry = 1;
2522         if (!vli_isZero(tmp)) {
2523             break;
2524         }
2525     }
2526     if (!carry) {
2527         vli_clear(tmp);
2528         tmp[0] = 1;
2529     }
2530 
2531     /* Prevent side channel analysis of vli_modInv() to determine
2532        bits of k / the private key by premultiplying by a random number */
2533     vli_modMult_n(k, k, tmp); /* k' = rand * k */
2534     vli_modInv_n(k, k, curve_n); /* k = 1 / k' */
2535     vli_modMult_n(k, k, tmp); /* k = 1 / k */
2536 
2537     vli_nativeToBytes(signature, p.x); /* store r */
2538 
2539     tmp[uECC_N_WORDS - 1] = 0;
2540     vli_bytesToNative(tmp, private_key); /* tmp = d */
2541     s[uECC_N_WORDS - 1] = 0;
2542     vli_set(s, p.x);
2543     vli_modMult_n(s, tmp, s); /* s = r*d */
2544 
2545     vli_bytesToNative(tmp, message_hash);
2546     vli_modAdd_n(s, tmp, s, curve_n); /* s = e + r*d */
2547     vli_modMult_n(s, s, k); /* s = (e + r*d) / k */
2548 #if (uECC_CURVE == uECC_secp160r1)
2549     if (s[uECC_N_WORDS - 1]) {
2550         return 0;
2551     }
2552 #endif
2553     vli_nativeToBytes(signature + uECC_BYTES, s);
2554     return 1;
2555 }
2556 
uECC_sign(const uint8_t private_key[uECC_BYTES],const uint8_t message_hash[uECC_BYTES],uint8_t signature[uECC_BYTES * 2])2557 int uECC_sign(const uint8_t private_key[uECC_BYTES],
2558               const uint8_t message_hash[uECC_BYTES],
2559               uint8_t signature[uECC_BYTES*2]) {
2560     uECC_word_t k[uECC_N_WORDS];
2561     uECC_word_t tries;
2562 
2563     for (tries = 0; tries < MAX_TRIES; ++tries) {
2564         if(g_rng_function((uint8_t *)k, sizeof(k))) {
2565         #if (uECC_CURVE == uECC_secp160r1)
2566             k[uECC_WORDS] &= 0x01;
2567         #endif
2568             if (uECC_sign_with_k(private_key, message_hash, k, signature)) {
2569                 return 1;
2570             }
2571         }
2572     }
2573     return 0;
2574 }
2575 
2576 /* Compute an HMAC using K as a key (as in RFC 6979). Note that K is always
2577    the same size as the hash result size. */
HMAC_init(uECC_HashContext * hash_context,const uint8_t * K)2578 static void HMAC_init(uECC_HashContext *hash_context, const uint8_t *K) {
2579     uint8_t *pad = hash_context->tmp + 2 * hash_context->result_size;
2580     unsigned i;
2581     for (i = 0; i < hash_context->result_size; ++i)
2582         pad[i] = K[i] ^ 0x36;
2583     for (; i < hash_context->block_size; ++i)
2584         pad[i] = 0x36;
2585 
2586     hash_context->init_hash(hash_context);
2587     hash_context->update_hash(hash_context, pad, hash_context->block_size);
2588 }
2589 
HMAC_update(uECC_HashContext * hash_context,const uint8_t * message,unsigned message_size)2590 static void HMAC_update(uECC_HashContext *hash_context,
2591                         const uint8_t *message,
2592                         unsigned message_size) {
2593     hash_context->update_hash(hash_context, message, message_size);
2594 }
2595 
HMAC_finish(uECC_HashContext * hash_context,const uint8_t * K,uint8_t * result)2596 static void HMAC_finish(uECC_HashContext *hash_context, const uint8_t *K, uint8_t *result) {
2597     uint8_t *pad = hash_context->tmp + 2 * hash_context->result_size;
2598     unsigned i;
2599     for (i = 0; i < hash_context->result_size; ++i)
2600         pad[i] = K[i] ^ 0x5c;
2601     for (; i < hash_context->block_size; ++i)
2602         pad[i] = 0x5c;
2603 
2604     hash_context->finish_hash(hash_context, result);
2605 
2606     hash_context->init_hash(hash_context);
2607     hash_context->update_hash(hash_context, pad, hash_context->block_size);
2608     hash_context->update_hash(hash_context, result, hash_context->result_size);
2609     hash_context->finish_hash(hash_context, result);
2610 }
2611 
2612 /* V = HMAC_K(V) */
update_V(uECC_HashContext * hash_context,uint8_t * K,uint8_t * V)2613 static void update_V(uECC_HashContext *hash_context, uint8_t *K, uint8_t *V) {
2614     HMAC_init(hash_context, K);
2615     HMAC_update(hash_context, V, hash_context->result_size);
2616     HMAC_finish(hash_context, K, V);
2617 }
2618 
2619 /* Deterministic signing, similar to RFC 6979. Differences are:
2620     * We just use (truncated) H(m) directly rather than bits2octets(H(m))
2621       (it is not reduced modulo curve_n).
2622     * We generate a value for k (aka T) directly rather than converting endianness.
2623 
2624    Layout of hash_context->tmp: <K> | <V> | (1 byte overlapped 0x00 or 0x01) / <HMAC pad> */
uECC_sign_deterministic(const uint8_t private_key[uECC_BYTES],const uint8_t message_hash[uECC_BYTES],uECC_HashContext * hash_context,uint8_t signature[uECC_BYTES * 2])2625 int uECC_sign_deterministic(const uint8_t private_key[uECC_BYTES],
2626                             const uint8_t message_hash[uECC_BYTES],
2627                             uECC_HashContext *hash_context,
2628                             uint8_t signature[uECC_BYTES*2]) {
2629     uint8_t *K = hash_context->tmp;
2630     uint8_t *V = K + hash_context->result_size;
2631     uECC_word_t tries;
2632     unsigned i;
2633     for (i = 0; i < hash_context->result_size; ++i) {
2634         V[i] = 0x01;
2635         K[i] = 0;
2636     }
2637 
2638     // K = HMAC_K(V || 0x00 || int2octets(x) || h(m))
2639     HMAC_init(hash_context, K);
2640     V[hash_context->result_size] = 0x00;
2641     HMAC_update(hash_context, V, hash_context->result_size + 1);
2642     HMAC_update(hash_context, private_key, uECC_BYTES);
2643     HMAC_update(hash_context, message_hash, uECC_BYTES);
2644     HMAC_finish(hash_context, K, K);
2645 
2646     update_V(hash_context, K, V);
2647 
2648     // K = HMAC_K(V || 0x01 || int2octets(x) || h(m))
2649     HMAC_init(hash_context, K);
2650     V[hash_context->result_size] = 0x01;
2651     HMAC_update(hash_context, V, hash_context->result_size + 1);
2652     HMAC_update(hash_context, private_key, uECC_BYTES);
2653     HMAC_update(hash_context, message_hash, uECC_BYTES);
2654     HMAC_finish(hash_context, K, K);
2655 
2656     update_V(hash_context, K, V);
2657 
2658     for (tries = 0; tries < MAX_TRIES; ++tries) {
2659         uECC_word_t T[uECC_N_WORDS];
2660         uint8_t *T_ptr = (uint8_t *)T;
2661         unsigned T_bytes = 0;
2662         while (T_bytes < sizeof(T)) {
2663             update_V(hash_context, K, V);
2664             for (i = 0; i < hash_context->result_size && T_bytes < sizeof(T); ++i, ++T_bytes) {
2665                 T_ptr[T_bytes] = V[i];
2666             }
2667         }
2668     #if (uECC_CURVE == uECC_secp160r1)
2669         T[uECC_WORDS] &= 0x01;
2670     #endif
2671 
2672         if (uECC_sign_with_k(private_key, message_hash, T, signature)) {
2673             return 1;
2674         }
2675 
2676         // K = HMAC_K(V || 0x00)
2677         HMAC_init(hash_context, K);
2678         V[hash_context->result_size] = 0x00;
2679         HMAC_update(hash_context, V, hash_context->result_size + 1);
2680         HMAC_finish(hash_context, K, K);
2681 
2682         update_V(hash_context, K, V);
2683     }
2684     return 0;
2685 }
2686 
smax(bitcount_t a,bitcount_t b)2687 static bitcount_t smax(bitcount_t a, bitcount_t b) {
2688     return (a > b ? a : b);
2689 }
2690 
uECC_verify(const uint8_t public_key[uECC_BYTES * 2],const uint8_t hash[uECC_BYTES],const uint8_t signature[uECC_BYTES * 2])2691 int uECC_verify(const uint8_t public_key[uECC_BYTES*2],
2692                 const uint8_t hash[uECC_BYTES],
2693                 const uint8_t signature[uECC_BYTES*2]) {
2694     uECC_word_t u1[uECC_N_WORDS], u2[uECC_N_WORDS];
2695     uECC_word_t z[uECC_N_WORDS];
2696     EccPoint public, sum;
2697     uECC_word_t rx[uECC_WORDS];
2698     uECC_word_t ry[uECC_WORDS];
2699     uECC_word_t tx[uECC_WORDS];
2700     uECC_word_t ty[uECC_WORDS];
2701     uECC_word_t tz[uECC_WORDS];
2702     const EccPoint *points[4];
2703     const EccPoint *point;
2704     bitcount_t numBits;
2705     bitcount_t i;
2706     uECC_word_t r[uECC_N_WORDS], s[uECC_N_WORDS];
2707     r[uECC_N_WORDS - 1] = 0;
2708     s[uECC_N_WORDS - 1] = 0;
2709 
2710     vli_bytesToNative(public.x, public_key);
2711     vli_bytesToNative(public.y, public_key + uECC_BYTES);
2712     vli_bytesToNative(r, signature);
2713     vli_bytesToNative(s, signature + uECC_BYTES);
2714 
2715     if (vli_isZero(r) || vli_isZero(s)) { /* r, s must not be 0. */
2716         return 0;
2717     }
2718 
2719 #if (uECC_CURVE != uECC_secp160r1)
2720     if (vli_cmp(curve_n, r) != 1 || vli_cmp(curve_n, s) != 1) { /* r, s must be < n. */
2721         return 0;
2722     }
2723 #endif
2724 
2725     /* Calculate u1 and u2. */
2726     vli_modInv_n(z, s, curve_n); /* Z = s^-1 */
2727     u1[uECC_N_WORDS - 1] = 0;
2728     vli_bytesToNative(u1, hash);
2729     vli_modMult_n(u1, u1, z); /* u1 = e/s */
2730     vli_modMult_n(u2, r, z); /* u2 = r/s */
2731 
2732     /* Calculate sum = G + Q. */
2733     vli_set(sum.x, public.x);
2734     vli_set(sum.y, public.y);
2735     vli_set(tx, curve_G.x);
2736     vli_set(ty, curve_G.y);
2737     vli_modSub_fast(z, sum.x, tx); /* Z = x2 - x1 */
2738     XYcZ_add(tx, ty, sum.x, sum.y);
2739     vli_modInv(z, z, curve_p); /* Z = 1/Z */
2740     apply_z(sum.x, sum.y, z);
2741 
2742     /* Use Shamir's trick to calculate u1*G + u2*Q */
2743     points[0] = 0;
2744     points[1] = &curve_G;
2745     points[2] = &public;
2746     points[3] = &sum;
2747     numBits = smax(vli_numBits(u1, uECC_N_WORDS), vli_numBits(u2, uECC_N_WORDS));
2748 
2749     point = points[(!!vli_testBit(u1, numBits - 1)) | ((!!vli_testBit(u2, numBits - 1)) << 1)];
2750     vli_set(rx, point->x);
2751     vli_set(ry, point->y);
2752     vli_clear(z);
2753     z[0] = 1;
2754 
2755     for (i = numBits - 2; i >= 0; --i) {
2756         uECC_word_t index;
2757         EccPoint_double_jacobian(rx, ry, z);
2758 
2759         index = (!!vli_testBit(u1, i)) | ((!!vli_testBit(u2, i)) << 1);
2760         point = points[index];
2761         if (point) {
2762             vli_set(tx, point->x);
2763             vli_set(ty, point->y);
2764             apply_z(tx, ty, z);
2765             vli_modSub_fast(tz, rx, tx); /* Z = x2 - x1 */
2766             XYcZ_add(tx, ty, rx, ry);
2767             vli_modMult_fast(z, z, tz);
2768         }
2769     }
2770 
2771     vli_modInv(z, z, curve_p); /* Z = 1/Z */
2772     apply_z(rx, ry, z);
2773 
2774     /* v = x1 (mod n) */
2775 #if (uECC_CURVE != uECC_secp160r1)
2776     if (vli_cmp(curve_n, rx) != 1) {
2777         vli_sub(rx, rx, curve_n);
2778     }
2779 #endif
2780 
2781     /* Accept only if v == r. */
2782     return vli_equal(rx, r);
2783 }
2784 
2785 #endif
2786