1// Copyright 2021 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package types
6
7import (
8	"fmt"
9	"go/ast"
10	"go/token"
11	. "internal/types/errors"
12)
13
14// ----------------------------------------------------------------------------
15// API
16
17// A Signature represents a (non-builtin) function or method type.
18// The receiver is ignored when comparing signatures for identity.
19type Signature struct {
20	// We need to keep the scope in Signature (rather than passing it around
21	// and store it in the Func Object) because when type-checking a function
22	// literal we call the general type checker which returns a general Type.
23	// We then unpack the *Signature and use the scope for the literal body.
24	rparams  *TypeParamList // receiver type parameters from left to right, or nil
25	tparams  *TypeParamList // type parameters from left to right, or nil
26	scope    *Scope         // function scope for package-local and non-instantiated signatures; nil otherwise
27	recv     *Var           // nil if not a method
28	params   *Tuple         // (incoming) parameters from left to right; or nil
29	results  *Tuple         // (outgoing) results from left to right; or nil
30	variadic bool           // true if the last parameter's type is of the form ...T (or string, for append built-in only)
31}
32
33// NewSignature returns a new function type for the given receiver, parameters,
34// and results, either of which may be nil. If variadic is set, the function
35// is variadic, it must have at least one parameter, and the last parameter
36// must be of unnamed slice type.
37//
38// Deprecated: Use [NewSignatureType] instead which allows for type parameters.
39func NewSignature(recv *Var, params, results *Tuple, variadic bool) *Signature {
40	return NewSignatureType(recv, nil, nil, params, results, variadic)
41}
42
43// NewSignatureType creates a new function type for the given receiver,
44// receiver type parameters, type parameters, parameters, and results. If
45// variadic is set, params must hold at least one parameter and the last
46// parameter's core type must be of unnamed slice or bytestring type.
47// If recv is non-nil, typeParams must be empty. If recvTypeParams is
48// non-empty, recv must be non-nil.
49func NewSignatureType(recv *Var, recvTypeParams, typeParams []*TypeParam, params, results *Tuple, variadic bool) *Signature {
50	if variadic {
51		n := params.Len()
52		if n == 0 {
53			panic("variadic function must have at least one parameter")
54		}
55		core := coreString(params.At(n - 1).typ)
56		if _, ok := core.(*Slice); !ok && !isString(core) {
57			panic(fmt.Sprintf("got %s, want variadic parameter with unnamed slice type or string as core type", core.String()))
58		}
59	}
60	sig := &Signature{recv: recv, params: params, results: results, variadic: variadic}
61	if len(recvTypeParams) != 0 {
62		if recv == nil {
63			panic("function with receiver type parameters must have a receiver")
64		}
65		sig.rparams = bindTParams(recvTypeParams)
66	}
67	if len(typeParams) != 0 {
68		if recv != nil {
69			panic("function with type parameters cannot have a receiver")
70		}
71		sig.tparams = bindTParams(typeParams)
72	}
73	return sig
74}
75
76// Recv returns the receiver of signature s (if a method), or nil if a
77// function. It is ignored when comparing signatures for identity.
78//
79// For an abstract method, Recv returns the enclosing interface either
80// as a *[Named] or an *[Interface]. Due to embedding, an interface may
81// contain methods whose receiver type is a different interface.
82func (s *Signature) Recv() *Var { return s.recv }
83
84// TypeParams returns the type parameters of signature s, or nil.
85func (s *Signature) TypeParams() *TypeParamList { return s.tparams }
86
87// RecvTypeParams returns the receiver type parameters of signature s, or nil.
88func (s *Signature) RecvTypeParams() *TypeParamList { return s.rparams }
89
90// Params returns the parameters of signature s, or nil.
91func (s *Signature) Params() *Tuple { return s.params }
92
93// Results returns the results of signature s, or nil.
94func (s *Signature) Results() *Tuple { return s.results }
95
96// Variadic reports whether the signature s is variadic.
97func (s *Signature) Variadic() bool { return s.variadic }
98
99func (t *Signature) Underlying() Type { return t }
100func (t *Signature) String() string   { return TypeString(t, nil) }
101
102// ----------------------------------------------------------------------------
103// Implementation
104
105// funcType type-checks a function or method type.
106func (check *Checker) funcType(sig *Signature, recvPar *ast.FieldList, ftyp *ast.FuncType) {
107	check.openScope(ftyp, "function")
108	check.scope.isFunc = true
109	check.recordScope(ftyp, check.scope)
110	sig.scope = check.scope
111	defer check.closeScope()
112
113	if recvPar != nil && len(recvPar.List) > 0 {
114		// collect generic receiver type parameters, if any
115		// - a receiver type parameter is like any other type parameter, except that it is declared implicitly
116		// - the receiver specification acts as local declaration for its type parameters, which may be blank
117		_, rname, rparams := check.unpackRecv(recvPar.List[0].Type, true)
118		if len(rparams) > 0 {
119			// The scope of the type parameter T in "func (r T[T]) f()"
120			// starts after f, not at "r"; see #52038.
121			scopePos := ftyp.Params.Pos()
122			tparams := check.declareTypeParams(nil, rparams, scopePos)
123			sig.rparams = bindTParams(tparams)
124			// Blank identifiers don't get declared, so naive type-checking of the
125			// receiver type expression would fail in Checker.collectParams below,
126			// when Checker.ident cannot resolve the _ to a type.
127			//
128			// Checker.recvTParamMap maps these blank identifiers to their type parameter
129			// types, so that they may be resolved in Checker.ident when they fail
130			// lookup in the scope.
131			for i, p := range rparams {
132				if p.Name == "_" {
133					if check.recvTParamMap == nil {
134						check.recvTParamMap = make(map[*ast.Ident]*TypeParam)
135					}
136					check.recvTParamMap[p] = tparams[i]
137				}
138			}
139			// determine receiver type to get its type parameters
140			// and the respective type parameter bounds
141			var recvTParams []*TypeParam
142			if rname != nil {
143				// recv should be a Named type (otherwise an error is reported elsewhere)
144				// Also: Don't report an error via genericType since it will be reported
145				//       again when we type-check the signature.
146				// TODO(gri) maybe the receiver should be marked as invalid instead?
147				if recv := asNamed(check.genericType(rname, nil)); recv != nil {
148					recvTParams = recv.TypeParams().list()
149				}
150			}
151			// provide type parameter bounds
152			if len(tparams) == len(recvTParams) {
153				smap := makeRenameMap(recvTParams, tparams)
154				for i, tpar := range tparams {
155					recvTPar := recvTParams[i]
156					check.mono.recordCanon(tpar, recvTPar)
157					// recvTPar.bound is (possibly) parameterized in the context of the
158					// receiver type declaration. Substitute parameters for the current
159					// context.
160					tpar.bound = check.subst(tpar.obj.pos, recvTPar.bound, smap, nil, check.context())
161				}
162			} else if len(tparams) < len(recvTParams) {
163				// Reporting an error here is a stop-gap measure to avoid crashes in the
164				// compiler when a type parameter/argument cannot be inferred later. It
165				// may lead to follow-on errors (see issues go.dev/issue/51339, go.dev/issue/51343).
166				// TODO(gri) find a better solution
167				got := measure(len(tparams), "type parameter")
168				check.errorf(recvPar, BadRecv, "got %s, but receiver base type declares %d", got, len(recvTParams))
169			}
170		}
171	}
172
173	if ftyp.TypeParams != nil {
174		check.collectTypeParams(&sig.tparams, ftyp.TypeParams)
175		// Always type-check method type parameters but complain that they are not allowed.
176		// (A separate check is needed when type-checking interface method signatures because
177		// they don't have a receiver specification.)
178		if recvPar != nil {
179			check.error(ftyp.TypeParams, InvalidMethodTypeParams, "methods cannot have type parameters")
180		}
181	}
182
183	// Use a temporary scope for all parameter declarations and then
184	// squash that scope into the parent scope (and report any
185	// redeclarations at that time).
186	//
187	// TODO(adonovan): now that each declaration has the correct
188	// scopePos, there should be no need for scope squashing.
189	// Audit to ensure all lookups honor scopePos and simplify.
190	scope := NewScope(check.scope, nopos, nopos, "function body (temp. scope)")
191	scopePos := ftyp.End() // all parameters' scopes start after the signature
192	recvList, _ := check.collectParams(scope, recvPar, false, scopePos)
193	params, variadic := check.collectParams(scope, ftyp.Params, true, scopePos)
194	results, _ := check.collectParams(scope, ftyp.Results, false, scopePos)
195	scope.squash(func(obj, alt Object) {
196		err := check.newError(DuplicateDecl)
197		err.addf(obj, "%s redeclared in this block", obj.Name())
198		err.addAltDecl(alt)
199		err.report()
200	})
201
202	if recvPar != nil {
203		// recv parameter list present (may be empty)
204		// spec: "The receiver is specified via an extra parameter section preceding the
205		// method name. That parameter section must declare a single parameter, the receiver."
206		var recv *Var
207		switch len(recvList) {
208		case 0:
209			// error reported by resolver
210			recv = NewParam(nopos, nil, "", Typ[Invalid]) // ignore recv below
211		default:
212			// more than one receiver
213			check.error(recvList[len(recvList)-1], InvalidRecv, "method has multiple receivers")
214			fallthrough // continue with first receiver
215		case 1:
216			recv = recvList[0]
217		}
218		sig.recv = recv
219
220		// Delay validation of receiver type as it may cause premature expansion
221		// of types the receiver type is dependent on (see issues go.dev/issue/51232, go.dev/issue/51233).
222		check.later(func() {
223			// spec: "The receiver type must be of the form T or *T where T is a type name."
224			rtyp, _ := deref(recv.typ)
225			atyp := Unalias(rtyp)
226			if !isValid(atyp) {
227				return // error was reported before
228			}
229			// spec: "The type denoted by T is called the receiver base type; it must not
230			// be a pointer or interface type and it must be declared in the same package
231			// as the method."
232			switch T := atyp.(type) {
233			case *Named:
234				// The receiver type may be an instantiated type referred to
235				// by an alias (which cannot have receiver parameters for now).
236				if T.TypeArgs() != nil && sig.RecvTypeParams() == nil {
237					check.errorf(recv, InvalidRecv, "cannot define new methods on instantiated type %s", rtyp)
238					break
239				}
240				if T.obj.pkg != check.pkg {
241					check.errorf(recv, InvalidRecv, "cannot define new methods on non-local type %s", rtyp)
242					break
243				}
244				var cause string
245				switch u := T.under().(type) {
246				case *Basic:
247					// unsafe.Pointer is treated like a regular pointer
248					if u.kind == UnsafePointer {
249						cause = "unsafe.Pointer"
250					}
251				case *Pointer, *Interface:
252					cause = "pointer or interface type"
253				case *TypeParam:
254					// The underlying type of a receiver base type cannot be a
255					// type parameter: "type T[P any] P" is not a valid declaration.
256					panic("unreachable")
257				}
258				if cause != "" {
259					check.errorf(recv, InvalidRecv, "invalid receiver type %s (%s)", rtyp, cause)
260				}
261			case *Basic:
262				check.errorf(recv, InvalidRecv, "cannot define new methods on non-local type %s", rtyp)
263			default:
264				check.errorf(recv, InvalidRecv, "invalid receiver type %s", recv.typ)
265			}
266		}).describef(recv, "validate receiver %s", recv)
267	}
268
269	sig.params = NewTuple(params...)
270	sig.results = NewTuple(results...)
271	sig.variadic = variadic
272}
273
274// collectParams declares the parameters of list in scope and returns the corresponding
275// variable list.
276func (check *Checker) collectParams(scope *Scope, list *ast.FieldList, variadicOk bool, scopePos token.Pos) (params []*Var, variadic bool) {
277	if list == nil {
278		return
279	}
280
281	var named, anonymous bool
282	for i, field := range list.List {
283		ftype := field.Type
284		if t, _ := ftype.(*ast.Ellipsis); t != nil {
285			ftype = t.Elt
286			if variadicOk && i == len(list.List)-1 && len(field.Names) <= 1 {
287				variadic = true
288			} else {
289				check.softErrorf(t, MisplacedDotDotDot, "can only use ... with final parameter in list")
290				// ignore ... and continue
291			}
292		}
293		typ := check.varType(ftype)
294		// The parser ensures that f.Tag is nil and we don't
295		// care if a constructed AST contains a non-nil tag.
296		if len(field.Names) > 0 {
297			// named parameter
298			for _, name := range field.Names {
299				if name.Name == "" {
300					check.error(name, InvalidSyntaxTree, "anonymous parameter")
301					// ok to continue
302				}
303				par := NewParam(name.Pos(), check.pkg, name.Name, typ)
304				check.declare(scope, name, par, scopePos)
305				params = append(params, par)
306			}
307			named = true
308		} else {
309			// anonymous parameter
310			par := NewParam(ftype.Pos(), check.pkg, "", typ)
311			check.recordImplicit(field, par)
312			params = append(params, par)
313			anonymous = true
314		}
315	}
316
317	if named && anonymous {
318		check.error(list, InvalidSyntaxTree, "list contains both named and anonymous parameters")
319		// ok to continue
320	}
321
322	// For a variadic function, change the last parameter's type from T to []T.
323	// Since we type-checked T rather than ...T, we also need to retro-actively
324	// record the type for ...T.
325	if variadic {
326		last := params[len(params)-1]
327		last.typ = &Slice{elem: last.typ}
328		check.recordTypeAndValue(list.List[len(list.List)-1].Type, typexpr, last.typ, nil)
329	}
330
331	return
332}
333