1import numpy as np 2import torch 3from torch import nn 4import torch.nn.functional as F 5import tqdm 6from scipy.signal import lfilter 7import os 8import lossgen 9 10class LossDataset(torch.utils.data.Dataset): 11 def __init__(self, 12 loss_file, 13 sequence_length=997): 14 15 self.sequence_length = sequence_length 16 17 self.loss = np.loadtxt(loss_file, dtype='float32') 18 19 self.nb_sequences = self.loss.shape[0]//self.sequence_length 20 self.loss = self.loss[:self.nb_sequences*self.sequence_length] 21 self.perc = lfilter(np.array([.001], dtype='float32'), np.array([1., -.999], dtype='float32'), self.loss) 22 23 self.loss = np.reshape(self.loss, (self.nb_sequences, self.sequence_length, 1)) 24 self.perc = np.reshape(self.perc, (self.nb_sequences, self.sequence_length, 1)) 25 26 def __len__(self): 27 return self.nb_sequences 28 29 def __getitem__(self, index): 30 r0 = np.random.normal(scale=.1, size=(1,1)).astype('float32') 31 r1 = np.random.normal(scale=.1, size=(self.sequence_length,1)).astype('float32') 32 perc = self.perc[index, :, :] 33 perc = perc + (r0+r1)*perc*(1-perc) 34 return [self.loss[index, :, :], perc] 35 36 37adam_betas = [0.8, 0.98] 38adam_eps = 1e-8 39batch_size=256 40lr_decay = 0.001 41lr = 0.003 42epsilon = 1e-5 43epochs = 2000 44checkpoint_dir='checkpoint' 45os.makedirs(checkpoint_dir, exist_ok=True) 46checkpoint = dict() 47 48device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") 49 50checkpoint['model_args'] = () 51checkpoint['model_kwargs'] = {'gru1_size': 16, 'gru2_size': 32} 52model = lossgen.LossGen(*checkpoint['model_args'], **checkpoint['model_kwargs']) 53dataset = LossDataset('loss_sorted.txt') 54dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=4) 55 56 57optimizer = torch.optim.AdamW(model.parameters(), lr=lr, betas=adam_betas, eps=adam_eps) 58 59 60# learning rate scheduler 61scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer=optimizer, lr_lambda=lambda x : 1 / (1 + lr_decay * x)) 62 63 64if __name__ == '__main__': 65 model.to(device) 66 states = None 67 for epoch in range(1, epochs + 1): 68 69 running_loss = 0 70 71 print(f"training epoch {epoch}...") 72 with tqdm.tqdm(dataloader, unit='batch') as tepoch: 73 for i, (loss, perc) in enumerate(tepoch): 74 optimizer.zero_grad() 75 loss = loss.to(device) 76 perc = perc.to(device) 77 78 out, states = model(loss, perc, states=states) 79 states = [state.detach() for state in states] 80 out = torch.sigmoid(out[:,:-1,:]) 81 target = loss[:,1:,:] 82 83 loss = torch.mean(-target*torch.log(out+epsilon) - (1-target)*torch.log(1-out+epsilon)) 84 85 loss.backward() 86 optimizer.step() 87 88 scheduler.step() 89 90 running_loss += loss.detach().cpu().item() 91 tepoch.set_postfix(loss=f"{running_loss/(i+1):8.5f}", 92 ) 93 94 # save checkpoint 95 checkpoint_path = os.path.join(checkpoint_dir, f'lossgen_{epoch}.pth') 96 checkpoint['state_dict'] = model.state_dict() 97 checkpoint['loss'] = running_loss / len(dataloader) 98 checkpoint['epoch'] = epoch 99 torch.save(checkpoint, checkpoint_path) 100