xref: /aosp_15_r20/external/pytorch/torch/distributions/bernoulli.py (revision da0073e96a02ea20f0ac840b70461e3646d07c45)
1# mypy: allow-untyped-defs
2from numbers import Number
3
4import torch
5from torch import nan
6from torch.distributions import constraints
7from torch.distributions.exp_family import ExponentialFamily
8from torch.distributions.utils import (
9    broadcast_all,
10    lazy_property,
11    logits_to_probs,
12    probs_to_logits,
13)
14from torch.nn.functional import binary_cross_entropy_with_logits
15
16
17__all__ = ["Bernoulli"]
18
19
20class Bernoulli(ExponentialFamily):
21    r"""
22    Creates a Bernoulli distribution parameterized by :attr:`probs`
23    or :attr:`logits` (but not both).
24
25    Samples are binary (0 or 1). They take the value `1` with probability `p`
26    and `0` with probability `1 - p`.
27
28    Example::
29
30        >>> # xdoctest: +IGNORE_WANT("non-deterministic")
31        >>> m = Bernoulli(torch.tensor([0.3]))
32        >>> m.sample()  # 30% chance 1; 70% chance 0
33        tensor([ 0.])
34
35    Args:
36        probs (Number, Tensor): the probability of sampling `1`
37        logits (Number, Tensor): the log-odds of sampling `1`
38    """
39    arg_constraints = {"probs": constraints.unit_interval, "logits": constraints.real}
40    support = constraints.boolean
41    has_enumerate_support = True
42    _mean_carrier_measure = 0
43
44    def __init__(self, probs=None, logits=None, validate_args=None):
45        if (probs is None) == (logits is None):
46            raise ValueError(
47                "Either `probs` or `logits` must be specified, but not both."
48            )
49        if probs is not None:
50            is_scalar = isinstance(probs, Number)
51            (self.probs,) = broadcast_all(probs)
52        else:
53            is_scalar = isinstance(logits, Number)
54            (self.logits,) = broadcast_all(logits)
55        self._param = self.probs if probs is not None else self.logits
56        if is_scalar:
57            batch_shape = torch.Size()
58        else:
59            batch_shape = self._param.size()
60        super().__init__(batch_shape, validate_args=validate_args)
61
62    def expand(self, batch_shape, _instance=None):
63        new = self._get_checked_instance(Bernoulli, _instance)
64        batch_shape = torch.Size(batch_shape)
65        if "probs" in self.__dict__:
66            new.probs = self.probs.expand(batch_shape)
67            new._param = new.probs
68        if "logits" in self.__dict__:
69            new.logits = self.logits.expand(batch_shape)
70            new._param = new.logits
71        super(Bernoulli, new).__init__(batch_shape, validate_args=False)
72        new._validate_args = self._validate_args
73        return new
74
75    def _new(self, *args, **kwargs):
76        return self._param.new(*args, **kwargs)
77
78    @property
79    def mean(self):
80        return self.probs
81
82    @property
83    def mode(self):
84        mode = (self.probs >= 0.5).to(self.probs)
85        mode[self.probs == 0.5] = nan
86        return mode
87
88    @property
89    def variance(self):
90        return self.probs * (1 - self.probs)
91
92    @lazy_property
93    def logits(self):
94        return probs_to_logits(self.probs, is_binary=True)
95
96    @lazy_property
97    def probs(self):
98        return logits_to_probs(self.logits, is_binary=True)
99
100    @property
101    def param_shape(self):
102        return self._param.size()
103
104    def sample(self, sample_shape=torch.Size()):
105        shape = self._extended_shape(sample_shape)
106        with torch.no_grad():
107            return torch.bernoulli(self.probs.expand(shape))
108
109    def log_prob(self, value):
110        if self._validate_args:
111            self._validate_sample(value)
112        logits, value = broadcast_all(self.logits, value)
113        return -binary_cross_entropy_with_logits(logits, value, reduction="none")
114
115    def entropy(self):
116        return binary_cross_entropy_with_logits(
117            self.logits, self.probs, reduction="none"
118        )
119
120    def enumerate_support(self, expand=True):
121        values = torch.arange(2, dtype=self._param.dtype, device=self._param.device)
122        values = values.view((-1,) + (1,) * len(self._batch_shape))
123        if expand:
124            values = values.expand((-1,) + self._batch_shape)
125        return values
126
127    @property
128    def _natural_params(self):
129        return (torch.logit(self.probs),)
130
131    def _log_normalizer(self, x):
132        return torch.log1p(torch.exp(x))
133