xref: /aosp_15_r20/external/pytorch/torch/csrc/jit/passes/lower_grad_of.cpp (revision da0073e96a02ea20f0ac840b70461e3646d07c45)
1 #include <torch/csrc/jit/passes/lower_grad_of.h>
2 
3 #include <torch/csrc/jit/jit_log.h>
4 
5 namespace torch::jit {
6 
LowerGradOf(Graph & g)7 void LowerGradOf(Graph& g) {
8   for (auto it = g.nodes().begin(); it != g.nodes().end(); ++it) {
9     if (it->kind() == prim::GradOf) {
10       // if any_defined(inputs):
11       //  outputs = <original_computation>
12       // else:
13       //  outputs = autograd zero tensors
14       WithInsertPoint guard(*it);
15       auto cond = g.insertNode(g.create(prim::AutogradAnyNonZero, it->inputs()))
16                       ->output()
17                       ->setType(IntType::get());
18       auto if_stat =
19           g.insertNode(g.create(prim::If, {cond}, it->outputs().size()));
20       if_stat->addBlock()->cloneFrom(
21           it->blocks().at(0), [](Value* v) { return v; });
22       auto else_block = if_stat->addBlock();
23       auto undef = g.createAutogradZero()
24                        ->insertBefore(else_block->return_node())
25                        ->output();
26       for (size_t i = 0; i < it->outputs().size(); ++i) {
27         // the else block returns a tensor for each of the outputs of the GradOf
28         // i.e. assuming that all the outputs are tensors. This might not be
29         // true, e.g. backward for cat() returns a list of gradient tensors.
30         // This is fixed in DifferentiableGraphBackward, where the list sizes
31         // are stored during the forward pass, and then undefined tensors are
32         // turned into lists of undefined tensors where necessary.
33         else_block->registerOutput(undef);
34         if_stat->outputs().at(i)->copyMetadata(it->outputs().at(i));
35       }
36       GRAPH_UPDATE("Replacing ", getHeader(*it), " with ", getHeader(if_stat));
37       it->replaceAllUsesWith(if_stat);
38       it.destroyCurrent();
39     }
40   }
41 }
42 
43 } // namespace torch::jit
44