xref: /aosp_15_r20/external/pytorch/torch/csrc/autograd/functions/utils.h (revision da0073e96a02ea20f0ac840b70461e3646d07c45)
1 #pragma once
2 
3 #include <torch/csrc/Export.h>
4 #include <torch/csrc/autograd/InferenceMode.h>
5 #include <torch/csrc/autograd/autograd.h>
6 #include <torch/csrc/autograd/function.h>
7 #include <torch/csrc/autograd/variable.h>
8 #include <torch/csrc/utils/variadic.h>
9 
10 #include <ATen/core/Tensor.h>
11 
12 #include <functional>
13 #include <memory>
14 #include <vector>
15 
16 namespace torch::autograd {
17 
18 using function_constructor = std::function<std::shared_ptr<Node>(edge_list&&)>;
19 
20 /**
21  * Wraps the tensor outputs in variables and creates the grad_fn and sets the
22  * grad_fn if necessary.
23  */
24 TORCH_API variable_list wrap_outputs(
25     const variable_list& inputs,
26     tensor_list&& outputs,
27     const function_constructor& ctr);
28 
29 ///  Checks that inputs contains exactly `args` items and that the first
30 ///  `required_args`
31 /// items are not nullptr. If not specified, `required_args` defaults to `args`.
32 TORCH_API void check_input_variables(
33     const char* name,
34     const variable_list& inputs,
35     int args,
36     int required_args = -1,
37     bool allow_undefined = false);
38 
39 struct ComputeRequiresGrad : IterArgs<ComputeRequiresGrad> {
40   bool out = false;
41   using IterArgs<ComputeRequiresGrad>::operator();
operatorComputeRequiresGrad42   void operator()(const at::Tensor& tensor) {
43     const auto& var = static_cast<const Variable&>(tensor);
44     if (var.defined() && var.requires_grad()) {
45       out = true;
46     }
47   }
operatorComputeRequiresGrad48   void operator()(const std::optional<at::Tensor>& tensor) {
49     if (tensor.has_value()) {
50       (*this)(*tensor);
51     }
52   }
short_circuitComputeRequiresGrad53   bool short_circuit() {
54     return out;
55   }
56 };
57 
58 template <typename... Args>
compute_requires_grad(Args &&...args)59 inline bool compute_requires_grad(Args&&... args) {
60   if (!GradMode::is_enabled()) {
61     return false;
62   }
63   return ComputeRequiresGrad().apply(std::forward<Args>(args)...).out;
64 }
65 
set_history(const at::Tensor & variable,const std::shared_ptr<Node> & grad_fn)66 inline void set_history(
67     const at::Tensor& variable,
68     const std::shared_ptr<Node>& grad_fn) {
69   TORCH_CHECK(grad_fn != nullptr);
70   if (variable.defined()) {
71     // If the codegen triggers this, you most likely want to add your newly
72     // added function to the DONT_REQUIRE_DERIVATIVE list in
73     // tools/autograd/gen_variable_type.py
74     TORCH_INTERNAL_ASSERT(isDifferentiableType(variable.scalar_type()));
75     auto output_nr = grad_fn->add_input_metadata(variable);
76     impl::set_gradient_edge(variable, {grad_fn, output_nr});
77   } else {
78     grad_fn->add_input_metadata(Node::undefined_input());
79   }
80 }
81 
set_history(const std::vector<Variable> & variables,const std::shared_ptr<Node> & grad_fn)82 inline void set_history(
83     const std::vector<Variable>& variables,
84     const std::shared_ptr<Node>& grad_fn) {
85   for (auto& variable : variables) {
86     set_history(variable, grad_fn);
87   }
88 }
89 
isFwGradDefined(const std::optional<at::Tensor> & t)90 inline bool isFwGradDefined(const std::optional<at::Tensor>& t) {
91   return t.has_value() && t->defined() && t->_fw_grad(/*level */ 0).defined();
92 }
93 
isFwGradDefinedTensorList(const at::ITensorListRef & variables)94 inline bool isFwGradDefinedTensorList(const at::ITensorListRef& variables) {
95   bool ret = false;
96   for (auto& variable : variables) {
97     ret |= isFwGradDefined(variable);
98   }
99   return ret;
100 }
101 
isFwGradDefinedTensorList(const c10::List<std::optional<at::Tensor>> & li)102 inline bool isFwGradDefinedTensorList(
103     const c10::List<std::optional<at::Tensor>>& li) {
104   bool ret = false;
105   for (auto i : c10::irange(li.size())) {
106     auto t = li.get(i);
107     ret |= isFwGradDefined(t);
108   }
109   return ret;
110 }
111 
112 } // namespace torch::autograd
113