1 // Copyright 2008 The RE2 Authors. All Rights Reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 // A DFA (deterministic finite automaton)-based regular expression search.
6 //
7 // The DFA search has two main parts: the construction of the automaton,
8 // which is represented by a graph of State structures, and the execution
9 // of the automaton over a given input string.
10 //
11 // The basic idea is that the State graph is constructed so that the
12 // execution can simply start with a state s, and then for each byte c in
13 // the input string, execute "s = s->next[c]", checking at each point whether
14 // the current s represents a matching state.
15 //
16 // The simple explanation just given does convey the essence of this code,
17 // but it omits the details of how the State graph gets constructed as well
18 // as some performance-driven optimizations to the execution of the automaton.
19 // All these details are explained in the comments for the code following
20 // the definition of class DFA.
21 //
22 // See http://swtch.com/~rsc/regexp/ for a very bare-bones equivalent.
23
24 #include <stddef.h>
25 #include <stdint.h>
26 #include <stdio.h>
27 #include <string.h>
28 #include <algorithm>
29 #include <atomic>
30 #include <deque>
31 #include <new>
32 #include <string>
33 #include <utility>
34 #include <vector>
35
36 #include "absl/base/call_once.h"
37 #include "absl/base/macros.h"
38 #include "absl/base/thread_annotations.h"
39 #include "absl/container/flat_hash_map.h"
40 #include "absl/container/flat_hash_set.h"
41 #include "absl/strings/str_format.h"
42 #include "absl/synchronization/mutex.h"
43 #include "absl/types/span.h"
44 #include "util/logging.h"
45 #include "util/strutil.h"
46 #include "re2/pod_array.h"
47 #include "re2/prog.h"
48 #include "re2/re2.h"
49 #include "re2/sparse_set.h"
50
51 // Silence "zero-sized array in struct/union" warning for DFA::State::next_.
52 #ifdef _MSC_VER
53 #pragma warning(disable: 4200)
54 #endif
55
56 namespace re2 {
57
58 // Controls whether the DFA should bail out early if the NFA would be faster.
59 static bool dfa_should_bail_when_slow = true;
60
TESTING_ONLY_set_dfa_should_bail_when_slow(bool b)61 void Prog::TESTING_ONLY_set_dfa_should_bail_when_slow(bool b) {
62 dfa_should_bail_when_slow = b;
63 }
64
65 // Changing this to true compiles in prints that trace execution of the DFA.
66 // Generates a lot of output -- only useful for debugging.
67 static const bool ExtraDebug = false;
68
69 // A DFA implementation of a regular expression program.
70 // Since this is entirely a forward declaration mandated by C++,
71 // some of the comments here are better understood after reading
72 // the comments in the sections that follow the DFA definition.
73 class DFA {
74 public:
75 DFA(Prog* prog, Prog::MatchKind kind, int64_t max_mem);
76 ~DFA();
ok() const77 bool ok() const { return !init_failed_; }
kind()78 Prog::MatchKind kind() { return kind_; }
79
80 // Searches for the regular expression in text, which is considered
81 // as a subsection of context for the purposes of interpreting flags
82 // like ^ and $ and \A and \z.
83 // Returns whether a match was found.
84 // If a match is found, sets *ep to the end point of the best match in text.
85 // If "anchored", the match must begin at the start of text.
86 // If "want_earliest_match", the match that ends first is used, not
87 // necessarily the best one.
88 // If "run_forward" is true, the DFA runs from text.begin() to text.end().
89 // If it is false, the DFA runs from text.end() to text.begin(),
90 // returning the leftmost end of the match instead of the rightmost one.
91 // If the DFA cannot complete the search (for example, if it is out of
92 // memory), it sets *failed and returns false.
93 bool Search(absl::string_view text, absl::string_view context, bool anchored,
94 bool want_earliest_match, bool run_forward, bool* failed,
95 const char** ep, SparseSet* matches);
96
97 // Builds out all states for the entire DFA.
98 // If cb is not empty, it receives one callback per state built.
99 // Returns the number of states built.
100 // FOR TESTING OR EXPERIMENTAL PURPOSES ONLY.
101 int BuildAllStates(const Prog::DFAStateCallback& cb);
102
103 // Computes min and max for matching strings. Won't return strings
104 // bigger than maxlen.
105 bool PossibleMatchRange(std::string* min, std::string* max, int maxlen);
106
107 // These data structures are logically private, but C++ makes it too
108 // difficult to mark them as such.
109 class RWLocker;
110 class StateSaver;
111 class Workq;
112
113 // A single DFA state. The DFA is represented as a graph of these
114 // States, linked by the next_ pointers. If in state s and reading
115 // byte c, the next state should be s->next_[c].
116 struct State {
IsMatchre2::DFA::State117 inline bool IsMatch() const { return (flag_ & kFlagMatch) != 0; }
118
119 template <typename H>
AbslHashValue(H h,const State & a)120 friend H AbslHashValue(H h, const State& a) {
121 const absl::Span<const int> ainst(a.inst_, a.ninst_);
122 return H::combine(std::move(h), a.flag_, ainst);
123 }
124
operator ==(const State & a,const State & b)125 friend bool operator==(const State& a, const State& b) {
126 const absl::Span<const int> ainst(a.inst_, a.ninst_);
127 const absl::Span<const int> binst(b.inst_, b.ninst_);
128 return &a == &b || (a.flag_ == b.flag_ && ainst == binst);
129 }
130
131 int* inst_; // Instruction pointers in the state.
132 int ninst_; // # of inst_ pointers.
133 uint32_t flag_; // Empty string bitfield flags in effect on the way
134 // into this state, along with kFlagMatch if this
135 // is a matching state.
136
137 std::atomic<State*> next_[]; // Outgoing arrows from State,
138 // one per input byte class
139 };
140
141 enum {
142 kByteEndText = 256, // imaginary byte at end of text
143
144 kFlagEmptyMask = 0xFF, // State.flag_: bits holding kEmptyXXX flags
145 kFlagMatch = 0x0100, // State.flag_: this is a matching state
146 kFlagLastWord = 0x0200, // State.flag_: last byte was a word char
147 kFlagNeedShift = 16, // needed kEmpty bits are or'ed in shifted left
148 };
149
150 struct StateHash {
operator ()re2::DFA::StateHash151 size_t operator()(const State* a) const {
152 DCHECK(a != NULL);
153 return absl::Hash<State>()(*a);
154 }
155 };
156
157 struct StateEqual {
operator ()re2::DFA::StateEqual158 bool operator()(const State* a, const State* b) const {
159 DCHECK(a != NULL);
160 DCHECK(b != NULL);
161 return *a == *b;
162 }
163 };
164
165 typedef absl::flat_hash_set<State*, StateHash, StateEqual> StateSet;
166
167 private:
168 // Make it easier to swap in a scalable reader-writer mutex.
169 using CacheMutex = absl::Mutex;
170
171 enum {
172 // Indices into start_ for unanchored searches.
173 // Add kStartAnchored for anchored searches.
174 kStartBeginText = 0, // text at beginning of context
175 kStartBeginLine = 2, // text at beginning of line
176 kStartAfterWordChar = 4, // text follows a word character
177 kStartAfterNonWordChar = 6, // text follows non-word character
178 kMaxStart = 8,
179
180 kStartAnchored = 1,
181 };
182
183 // Resets the DFA State cache, flushing all saved State* information.
184 // Releases and reacquires cache_mutex_ via cache_lock, so any
185 // State* existing before the call are not valid after the call.
186 // Use a StateSaver to preserve important states across the call.
187 // cache_mutex_.r <= L < mutex_
188 // After: cache_mutex_.w <= L < mutex_
189 void ResetCache(RWLocker* cache_lock);
190
191 // Looks up and returns the State corresponding to a Workq.
192 // L >= mutex_
193 State* WorkqToCachedState(Workq* q, Workq* mq, uint32_t flag);
194
195 // Looks up and returns a State matching the inst, ninst, and flag.
196 // L >= mutex_
197 State* CachedState(int* inst, int ninst, uint32_t flag);
198
199 // Clear the cache entirely.
200 // Must hold cache_mutex_.w or be in destructor.
201 void ClearCache();
202
203 // Converts a State into a Workq: the opposite of WorkqToCachedState.
204 // L >= mutex_
205 void StateToWorkq(State* s, Workq* q);
206
207 // Runs a State on a given byte, returning the next state.
208 State* RunStateOnByteUnlocked(State*, int); // cache_mutex_.r <= L < mutex_
209 State* RunStateOnByte(State*, int); // L >= mutex_
210
211 // Runs a Workq on a given byte followed by a set of empty-string flags,
212 // producing a new Workq in nq. If a match instruction is encountered,
213 // sets *ismatch to true.
214 // L >= mutex_
215 void RunWorkqOnByte(Workq* q, Workq* nq,
216 int c, uint32_t flag, bool* ismatch);
217
218 // Runs a Workq on a set of empty-string flags, producing a new Workq in nq.
219 // L >= mutex_
220 void RunWorkqOnEmptyString(Workq* q, Workq* nq, uint32_t flag);
221
222 // Adds the instruction id to the Workq, following empty arrows
223 // according to flag.
224 // L >= mutex_
225 void AddToQueue(Workq* q, int id, uint32_t flag);
226
227 // For debugging, returns a text representation of State.
228 static std::string DumpState(State* state);
229
230 // For debugging, returns a text representation of a Workq.
231 static std::string DumpWorkq(Workq* q);
232
233 // Search parameters
234 struct SearchParams {
SearchParamsre2::DFA::SearchParams235 SearchParams(absl::string_view text, absl::string_view context,
236 RWLocker* cache_lock)
237 : text(text),
238 context(context),
239 anchored(false),
240 can_prefix_accel(false),
241 want_earliest_match(false),
242 run_forward(false),
243 start(NULL),
244 cache_lock(cache_lock),
245 failed(false),
246 ep(NULL),
247 matches(NULL) {}
248
249 absl::string_view text;
250 absl::string_view context;
251 bool anchored;
252 bool can_prefix_accel;
253 bool want_earliest_match;
254 bool run_forward;
255 State* start;
256 RWLocker* cache_lock;
257 bool failed; // "out" parameter: whether search gave up
258 const char* ep; // "out" parameter: end pointer for match
259 SparseSet* matches;
260
261 private:
262 SearchParams(const SearchParams&) = delete;
263 SearchParams& operator=(const SearchParams&) = delete;
264 };
265
266 // Before each search, the parameters to Search are analyzed by
267 // AnalyzeSearch to determine the state in which to start.
268 struct StartInfo {
StartInfore2::DFA::StartInfo269 StartInfo() : start(NULL) {}
270 std::atomic<State*> start;
271 };
272
273 // Fills in params->start and params->can_prefix_accel using
274 // the other search parameters. Returns true on success,
275 // false on failure.
276 // cache_mutex_.r <= L < mutex_
277 bool AnalyzeSearch(SearchParams* params);
278 bool AnalyzeSearchHelper(SearchParams* params, StartInfo* info,
279 uint32_t flags);
280
281 // The generic search loop, inlined to create specialized versions.
282 // cache_mutex_.r <= L < mutex_
283 // Might unlock and relock cache_mutex_ via params->cache_lock.
284 template <bool can_prefix_accel,
285 bool want_earliest_match,
286 bool run_forward>
287 inline bool InlinedSearchLoop(SearchParams* params);
288
289 // The specialized versions of InlinedSearchLoop. The three letters
290 // at the ends of the name denote the true/false values used as the
291 // last three parameters of InlinedSearchLoop.
292 // cache_mutex_.r <= L < mutex_
293 // Might unlock and relock cache_mutex_ via params->cache_lock.
294 bool SearchFFF(SearchParams* params);
295 bool SearchFFT(SearchParams* params);
296 bool SearchFTF(SearchParams* params);
297 bool SearchFTT(SearchParams* params);
298 bool SearchTFF(SearchParams* params);
299 bool SearchTFT(SearchParams* params);
300 bool SearchTTF(SearchParams* params);
301 bool SearchTTT(SearchParams* params);
302
303 // The main search loop: calls an appropriate specialized version of
304 // InlinedSearchLoop.
305 // cache_mutex_.r <= L < mutex_
306 // Might unlock and relock cache_mutex_ via params->cache_lock.
307 bool FastSearchLoop(SearchParams* params);
308
309
310 // Looks up bytes in bytemap_ but handles case c == kByteEndText too.
ByteMap(int c)311 int ByteMap(int c) {
312 if (c == kByteEndText)
313 return prog_->bytemap_range();
314 return prog_->bytemap()[c];
315 }
316
317 // Constant after initialization.
318 Prog* prog_; // The regular expression program to run.
319 Prog::MatchKind kind_; // The kind of DFA.
320 bool init_failed_; // initialization failed (out of memory)
321
322 absl::Mutex mutex_; // mutex_ >= cache_mutex_.r
323
324 // Scratch areas, protected by mutex_.
325 Workq* q0_; // Two pre-allocated work queues.
326 Workq* q1_;
327 PODArray<int> stack_; // Pre-allocated stack for AddToQueue
328
329 // State* cache. Many threads use and add to the cache simultaneously,
330 // holding cache_mutex_ for reading and mutex_ (above) when adding.
331 // If the cache fills and needs to be discarded, the discarding is done
332 // while holding cache_mutex_ for writing, to avoid interrupting other
333 // readers. Any State* pointers are only valid while cache_mutex_
334 // is held.
335 CacheMutex cache_mutex_;
336 int64_t mem_budget_; // Total memory budget for all States.
337 int64_t state_budget_; // Amount of memory remaining for new States.
338 StateSet state_cache_; // All States computed so far.
339 StartInfo start_[kMaxStart];
340
341 DFA(const DFA&) = delete;
342 DFA& operator=(const DFA&) = delete;
343 };
344
345 // Shorthand for casting to uint8_t*.
BytePtr(const void * v)346 static inline const uint8_t* BytePtr(const void* v) {
347 return reinterpret_cast<const uint8_t*>(v);
348 }
349
350 // Work queues
351
352 // Marks separate thread groups of different priority
353 // in the work queue when in leftmost-longest matching mode.
354 #define Mark (-1)
355
356 // Separates the match IDs from the instructions in inst_.
357 // Used only for "many match" DFA states.
358 #define MatchSep (-2)
359
360 // Internally, the DFA uses a sparse array of
361 // program instruction pointers as a work queue.
362 // In leftmost longest mode, marks separate sections
363 // of workq that started executing at different
364 // locations in the string (earlier locations first).
365 class DFA::Workq : public SparseSet {
366 public:
367 // Constructor: n is number of normal slots, maxmark number of mark slots.
Workq(int n,int maxmark)368 Workq(int n, int maxmark) :
369 SparseSet(n+maxmark),
370 n_(n),
371 maxmark_(maxmark),
372 nextmark_(n),
373 last_was_mark_(true) {
374 }
375
is_mark(int i)376 bool is_mark(int i) { return i >= n_; }
377
maxmark()378 int maxmark() { return maxmark_; }
379
clear()380 void clear() {
381 SparseSet::clear();
382 nextmark_ = n_;
383 }
384
mark()385 void mark() {
386 if (last_was_mark_)
387 return;
388 last_was_mark_ = false;
389 SparseSet::insert_new(nextmark_++);
390 }
391
size()392 int size() {
393 return n_ + maxmark_;
394 }
395
insert(int id)396 void insert(int id) {
397 if (contains(id))
398 return;
399 insert_new(id);
400 }
401
insert_new(int id)402 void insert_new(int id) {
403 last_was_mark_ = false;
404 SparseSet::insert_new(id);
405 }
406
407 private:
408 int n_; // size excluding marks
409 int maxmark_; // maximum number of marks
410 int nextmark_; // id of next mark
411 bool last_was_mark_; // last inserted was mark
412
413 Workq(const Workq&) = delete;
414 Workq& operator=(const Workq&) = delete;
415 };
416
DFA(Prog * prog,Prog::MatchKind kind,int64_t max_mem)417 DFA::DFA(Prog* prog, Prog::MatchKind kind, int64_t max_mem)
418 : prog_(prog),
419 kind_(kind),
420 init_failed_(false),
421 q0_(NULL),
422 q1_(NULL),
423 mem_budget_(max_mem) {
424 if (ExtraDebug)
425 absl::FPrintF(stderr, "\nkind %d\n%s\n", kind_, prog_->DumpUnanchored());
426 int nmark = 0;
427 if (kind_ == Prog::kLongestMatch)
428 nmark = prog_->size();
429 // See DFA::AddToQueue() for why this is so.
430 int nstack = prog_->inst_count(kInstCapture) +
431 prog_->inst_count(kInstEmptyWidth) +
432 prog_->inst_count(kInstNop) +
433 nmark + 1; // + 1 for start inst
434
435 // Account for space needed for DFA, q0, q1, stack.
436 mem_budget_ -= sizeof(DFA);
437 mem_budget_ -= (prog_->size() + nmark) *
438 (sizeof(int)+sizeof(int)) * 2; // q0, q1
439 mem_budget_ -= nstack * sizeof(int); // stack
440 if (mem_budget_ < 0) {
441 init_failed_ = true;
442 return;
443 }
444
445 state_budget_ = mem_budget_;
446
447 // Make sure there is a reasonable amount of working room left.
448 // At minimum, the search requires room for two states in order
449 // to limp along, restarting frequently. We'll get better performance
450 // if there is room for a larger number of states, say 20.
451 // Note that a state stores list heads only, so we use the program
452 // list count for the upper bound, not the program size.
453 int nnext = prog_->bytemap_range() + 1; // + 1 for kByteEndText slot
454 int64_t one_state = sizeof(State) + nnext*sizeof(std::atomic<State*>) +
455 (prog_->list_count()+nmark)*sizeof(int);
456 if (state_budget_ < 20*one_state) {
457 init_failed_ = true;
458 return;
459 }
460
461 q0_ = new Workq(prog_->size(), nmark);
462 q1_ = new Workq(prog_->size(), nmark);
463 stack_ = PODArray<int>(nstack);
464 }
465
~DFA()466 DFA::~DFA() {
467 delete q0_;
468 delete q1_;
469 ClearCache();
470 }
471
472 // In the DFA state graph, s->next[c] == NULL means that the
473 // state has not yet been computed and needs to be. We need
474 // a different special value to signal that s->next[c] is a
475 // state that can never lead to a match (and thus the search
476 // can be called off). Hence DeadState.
477 #define DeadState reinterpret_cast<State*>(1)
478
479 // Signals that the rest of the string matches no matter what it is.
480 #define FullMatchState reinterpret_cast<State*>(2)
481
482 #define SpecialStateMax FullMatchState
483
484 // Debugging printouts
485
486 // For debugging, returns a string representation of the work queue.
DumpWorkq(Workq * q)487 std::string DFA::DumpWorkq(Workq* q) {
488 std::string s;
489 const char* sep = "";
490 for (Workq::iterator it = q->begin(); it != q->end(); ++it) {
491 if (q->is_mark(*it)) {
492 s += "|";
493 sep = "";
494 } else {
495 s += absl::StrFormat("%s%d", sep, *it);
496 sep = ",";
497 }
498 }
499 return s;
500 }
501
502 // For debugging, returns a string representation of the state.
DumpState(State * state)503 std::string DFA::DumpState(State* state) {
504 if (state == NULL)
505 return "_";
506 if (state == DeadState)
507 return "X";
508 if (state == FullMatchState)
509 return "*";
510 std::string s;
511 const char* sep = "";
512 s += absl::StrFormat("(%p)", state);
513 for (int i = 0; i < state->ninst_; i++) {
514 if (state->inst_[i] == Mark) {
515 s += "|";
516 sep = "";
517 } else if (state->inst_[i] == MatchSep) {
518 s += "||";
519 sep = "";
520 } else {
521 s += absl::StrFormat("%s%d", sep, state->inst_[i]);
522 sep = ",";
523 }
524 }
525 s += absl::StrFormat(" flag=%#x", state->flag_);
526 return s;
527 }
528
529 //////////////////////////////////////////////////////////////////////
530 //
531 // DFA state graph construction.
532 //
533 // The DFA state graph is a heavily-linked collection of State* structures.
534 // The state_cache_ is a set of all the State structures ever allocated,
535 // so that if the same state is reached by two different paths,
536 // the same State structure can be used. This reduces allocation
537 // requirements and also avoids duplication of effort across the two
538 // identical states.
539 //
540 // A State is defined by an ordered list of instruction ids and a flag word.
541 //
542 // The choice of an ordered list of instructions differs from a typical
543 // textbook DFA implementation, which would use an unordered set.
544 // Textbook descriptions, however, only care about whether
545 // the DFA matches, not where it matches in the text. To decide where the
546 // DFA matches, we need to mimic the behavior of the dominant backtracking
547 // implementations like PCRE, which try one possible regular expression
548 // execution, then another, then another, stopping when one of them succeeds.
549 // The DFA execution tries these many executions in parallel, representing
550 // each by an instruction id. These pointers are ordered in the State.inst_
551 // list in the same order that the executions would happen in a backtracking
552 // search: if a match is found during execution of inst_[2], inst_[i] for i>=3
553 // can be discarded.
554 //
555 // Textbooks also typically do not consider context-aware empty string operators
556 // like ^ or $. These are handled by the flag word, which specifies the set
557 // of empty-string operators that should be matched when executing at the
558 // current text position. These flag bits are defined in prog.h.
559 // The flag word also contains two DFA-specific bits: kFlagMatch if the state
560 // is a matching state (one that reached a kInstMatch in the program)
561 // and kFlagLastWord if the last processed byte was a word character, for the
562 // implementation of \B and \b.
563 //
564 // The flag word also contains, shifted up 16 bits, the bits looked for by
565 // any kInstEmptyWidth instructions in the state. These provide a useful
566 // summary indicating when new flags might be useful.
567 //
568 // The permanent representation of a State's instruction ids is just an array,
569 // but while a state is being analyzed, these instruction ids are represented
570 // as a Workq, which is an array that allows iteration in insertion order.
571
572 // NOTE(rsc): The choice of State construction determines whether the DFA
573 // mimics backtracking implementations (so-called leftmost first matching) or
574 // traditional DFA implementations (so-called leftmost longest matching as
575 // prescribed by POSIX). This implementation chooses to mimic the
576 // backtracking implementations, because we want to replace PCRE. To get
577 // POSIX behavior, the states would need to be considered not as a simple
578 // ordered list of instruction ids, but as a list of unordered sets of instruction
579 // ids. A match by a state in one set would inhibit the running of sets
580 // farther down the list but not other instruction ids in the same set. Each
581 // set would correspond to matches beginning at a given point in the string.
582 // This is implemented by separating different sets with Mark pointers.
583
584 // Looks in the State cache for a State matching q, flag.
585 // If one is found, returns it. If one is not found, allocates one,
586 // inserts it in the cache, and returns it.
587 // If mq is not null, MatchSep and the match IDs in mq will be appended
588 // to the State.
WorkqToCachedState(Workq * q,Workq * mq,uint32_t flag)589 DFA::State* DFA::WorkqToCachedState(Workq* q, Workq* mq, uint32_t flag) {
590 //mutex_.AssertHeld();
591
592 // Construct array of instruction ids for the new state.
593 // In some cases, kInstAltMatch may trigger an upgrade to FullMatchState.
594 // Otherwise, "compress" q down to list heads for storage; StateToWorkq()
595 // will "decompress" it for computation by exploring from each list head.
596 //
597 // Historically, only kInstByteRange, kInstEmptyWidth and kInstMatch were
598 // useful to keep, but it turned out that kInstAlt was necessary to keep:
599 //
600 // > [*] kInstAlt would seem useless to record in a state, since
601 // > we've already followed both its arrows and saved all the
602 // > interesting states we can reach from there. The problem
603 // > is that one of the empty-width instructions might lead
604 // > back to the same kInstAlt (if an empty-width operator is starred),
605 // > producing a different evaluation order depending on whether
606 // > we keep the kInstAlt to begin with. Sigh.
607 // > A specific case that this affects is /(^|a)+/ matching "a".
608 // > If we don't save the kInstAlt, we will match the whole "a" (0,1)
609 // > but in fact the correct leftmost-first match is the leading "" (0,0).
610 //
611 // Recall that flattening transformed the Prog from "tree" form to "list"
612 // form: in the former, kInstAlt existed explicitly... and abundantly; in
613 // the latter, it's implied between the instructions that compose a list.
614 // Thus, because the information wasn't lost, the bug doesn't remanifest.
615 PODArray<int> inst(q->size());
616 int n = 0;
617 uint32_t needflags = 0; // flags needed by kInstEmptyWidth instructions
618 bool sawmatch = false; // whether queue contains guaranteed kInstMatch
619 bool sawmark = false; // whether queue contains a Mark
620 if (ExtraDebug)
621 absl::FPrintF(stderr, "WorkqToCachedState %s [%#x]", DumpWorkq(q), flag);
622 for (Workq::iterator it = q->begin(); it != q->end(); ++it) {
623 int id = *it;
624 if (sawmatch && (kind_ == Prog::kFirstMatch || q->is_mark(id)))
625 break;
626 if (q->is_mark(id)) {
627 if (n > 0 && inst[n-1] != Mark) {
628 sawmark = true;
629 inst[n++] = Mark;
630 }
631 continue;
632 }
633 Prog::Inst* ip = prog_->inst(id);
634 switch (ip->opcode()) {
635 case kInstAltMatch:
636 // This state will continue to a match no matter what
637 // the rest of the input is. If it is the highest priority match
638 // being considered, return the special FullMatchState
639 // to indicate that it's all matches from here out.
640 if (kind_ != Prog::kManyMatch &&
641 (kind_ != Prog::kFirstMatch ||
642 (it == q->begin() && ip->greedy(prog_))) &&
643 (kind_ != Prog::kLongestMatch || !sawmark) &&
644 (flag & kFlagMatch)) {
645 if (ExtraDebug)
646 absl::FPrintF(stderr, " -> FullMatchState\n");
647 return FullMatchState;
648 }
649 ABSL_FALLTHROUGH_INTENDED;
650 default:
651 // Record iff id is the head of its list, which must
652 // be the case if id-1 is the last of *its* list. :)
653 if (prog_->inst(id-1)->last())
654 inst[n++] = *it;
655 if (ip->opcode() == kInstEmptyWidth)
656 needflags |= ip->empty();
657 if (ip->opcode() == kInstMatch && !prog_->anchor_end())
658 sawmatch = true;
659 break;
660 }
661 }
662 DCHECK_LE(n, q->size());
663 if (n > 0 && inst[n-1] == Mark)
664 n--;
665
666 // If there are no empty-width instructions waiting to execute,
667 // then the extra flag bits will not be used, so there is no
668 // point in saving them. (Discarding them reduces the number
669 // of distinct states.)
670 if (needflags == 0)
671 flag &= kFlagMatch;
672
673 // NOTE(rsc): The code above cannot do flag &= needflags,
674 // because if the right flags were present to pass the current
675 // kInstEmptyWidth instructions, new kInstEmptyWidth instructions
676 // might be reached that in turn need different flags.
677 // The only sure thing is that if there are no kInstEmptyWidth
678 // instructions at all, no flags will be needed.
679 // We could do the extra work to figure out the full set of
680 // possibly needed flags by exploring past the kInstEmptyWidth
681 // instructions, but the check above -- are any flags needed
682 // at all? -- handles the most common case. More fine-grained
683 // analysis can only be justified by measurements showing that
684 // too many redundant states are being allocated.
685
686 // If there are no Insts in the list, it's a dead state,
687 // which is useful to signal with a special pointer so that
688 // the execution loop can stop early. This is only okay
689 // if the state is *not* a matching state.
690 if (n == 0 && flag == 0) {
691 if (ExtraDebug)
692 absl::FPrintF(stderr, " -> DeadState\n");
693 return DeadState;
694 }
695
696 // If we're in longest match mode, the state is a sequence of
697 // unordered state sets separated by Marks. Sort each set
698 // to canonicalize, to reduce the number of distinct sets stored.
699 if (kind_ == Prog::kLongestMatch) {
700 int* ip = inst.data();
701 int* ep = ip + n;
702 while (ip < ep) {
703 int* markp = ip;
704 while (markp < ep && *markp != Mark)
705 markp++;
706 std::sort(ip, markp);
707 if (markp < ep)
708 markp++;
709 ip = markp;
710 }
711 }
712
713 // If we're in many match mode, canonicalize for similar reasons:
714 // we have an unordered set of states (i.e. we don't have Marks)
715 // and sorting will reduce the number of distinct sets stored.
716 if (kind_ == Prog::kManyMatch) {
717 int* ip = inst.data();
718 int* ep = ip + n;
719 std::sort(ip, ep);
720 }
721
722 // Append MatchSep and the match IDs in mq if necessary.
723 if (mq != NULL) {
724 inst[n++] = MatchSep;
725 for (Workq::iterator i = mq->begin(); i != mq->end(); ++i) {
726 int id = *i;
727 Prog::Inst* ip = prog_->inst(id);
728 if (ip->opcode() == kInstMatch)
729 inst[n++] = ip->match_id();
730 }
731 }
732
733 // Save the needed empty-width flags in the top bits for use later.
734 flag |= needflags << kFlagNeedShift;
735
736 State* state = CachedState(inst.data(), n, flag);
737 return state;
738 }
739
740 // Looks in the State cache for a State matching inst, ninst, flag.
741 // If one is found, returns it. If one is not found, allocates one,
742 // inserts it in the cache, and returns it.
CachedState(int * inst,int ninst,uint32_t flag)743 DFA::State* DFA::CachedState(int* inst, int ninst, uint32_t flag) {
744 //mutex_.AssertHeld();
745
746 // Look in the cache for a pre-existing state.
747 // We have to initialise the struct like this because otherwise
748 // MSVC will complain about the flexible array member. :(
749 State state;
750 state.inst_ = inst;
751 state.ninst_ = ninst;
752 state.flag_ = flag;
753 StateSet::iterator it = state_cache_.find(&state);
754 if (it != state_cache_.end()) {
755 if (ExtraDebug)
756 absl::FPrintF(stderr, " -cached-> %s\n", DumpState(*it));
757 return *it;
758 }
759
760 // Must have enough memory for new state.
761 // In addition to what we're going to allocate,
762 // the state cache hash table seems to incur about 18 bytes per
763 // State*. Worst case for non-small sets is it being half full, where each
764 // value present takes up 1 byte hash sample plus the pointer itself.
765 const int kStateCacheOverhead = 18;
766 int nnext = prog_->bytemap_range() + 1; // + 1 for kByteEndText slot
767 int mem = sizeof(State) + nnext*sizeof(std::atomic<State*>);
768 int instmem = ninst*sizeof(int);
769 if (mem_budget_ < mem + instmem + kStateCacheOverhead) {
770 mem_budget_ = -1;
771 return NULL;
772 }
773 mem_budget_ -= mem + instmem + kStateCacheOverhead;
774
775 // Allocate new state along with room for next_ and inst_.
776 // inst_ is stored separately since it's colder; this also
777 // means that the States for a given DFA are the same size
778 // class, so the allocator can hopefully pack them better.
779 char* space = std::allocator<char>().allocate(mem);
780 State* s = new (space) State;
781 (void) new (s->next_) std::atomic<State*>[nnext];
782 // Work around a unfortunate bug in older versions of libstdc++.
783 // (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=64658)
784 for (int i = 0; i < nnext; i++)
785 (void) new (s->next_ + i) std::atomic<State*>(NULL);
786 s->inst_ = std::allocator<int>().allocate(ninst);
787 (void) new (s->inst_) int[ninst];
788 memmove(s->inst_, inst, instmem);
789 s->ninst_ = ninst;
790 s->flag_ = flag;
791 if (ExtraDebug)
792 absl::FPrintF(stderr, " -> %s\n", DumpState(s));
793
794 // Put state in cache and return it.
795 state_cache_.insert(s);
796 return s;
797 }
798
799 // Clear the cache. Must hold cache_mutex_.w or be in destructor.
ClearCache()800 void DFA::ClearCache() {
801 StateSet::iterator begin = state_cache_.begin();
802 StateSet::iterator end = state_cache_.end();
803 while (begin != end) {
804 StateSet::iterator tmp = begin;
805 ++begin;
806 // Deallocate the instruction array, which is stored separately as above.
807 std::allocator<int>().deallocate((*tmp)->inst_, (*tmp)->ninst_);
808 // Deallocate the blob of memory that we allocated in DFA::CachedState().
809 // We recompute mem in order to benefit from sized delete where possible.
810 int nnext = prog_->bytemap_range() + 1; // + 1 for kByteEndText slot
811 int mem = sizeof(State) + nnext*sizeof(std::atomic<State*>);
812 std::allocator<char>().deallocate(reinterpret_cast<char*>(*tmp), mem);
813 }
814 state_cache_.clear();
815 }
816
817 // Copies insts in state s to the work queue q.
StateToWorkq(State * s,Workq * q)818 void DFA::StateToWorkq(State* s, Workq* q) {
819 q->clear();
820 for (int i = 0; i < s->ninst_; i++) {
821 if (s->inst_[i] == Mark) {
822 q->mark();
823 } else if (s->inst_[i] == MatchSep) {
824 // Nothing after this is an instruction!
825 break;
826 } else {
827 // Explore from the head of the list.
828 AddToQueue(q, s->inst_[i], s->flag_ & kFlagEmptyMask);
829 }
830 }
831 }
832
833 // Adds ip to the work queue, following empty arrows according to flag.
AddToQueue(Workq * q,int id,uint32_t flag)834 void DFA::AddToQueue(Workq* q, int id, uint32_t flag) {
835
836 // Use stack_ to hold our stack of instructions yet to process.
837 // It was preallocated as follows:
838 // one entry per Capture;
839 // one entry per EmptyWidth; and
840 // one entry per Nop.
841 // This reflects the maximum number of stack pushes that each can
842 // perform. (Each instruction can be processed at most once.)
843 // When using marks, we also added nmark == prog_->size().
844 // (Otherwise, nmark == 0.)
845 int* stk = stack_.data();
846 int nstk = 0;
847
848 stk[nstk++] = id;
849 while (nstk > 0) {
850 DCHECK_LE(nstk, stack_.size());
851 id = stk[--nstk];
852
853 Loop:
854 if (id == Mark) {
855 q->mark();
856 continue;
857 }
858
859 if (id == 0)
860 continue;
861
862 // If ip is already on the queue, nothing to do.
863 // Otherwise add it. We don't actually keep all the
864 // ones that get added, but adding all of them here
865 // increases the likelihood of q->contains(id),
866 // reducing the amount of duplicated work.
867 if (q->contains(id))
868 continue;
869 q->insert_new(id);
870
871 // Process instruction.
872 Prog::Inst* ip = prog_->inst(id);
873 switch (ip->opcode()) {
874 default:
875 LOG(DFATAL) << "unhandled opcode: " << ip->opcode();
876 break;
877
878 case kInstByteRange: // just save these on the queue
879 case kInstMatch:
880 if (ip->last())
881 break;
882 id = id+1;
883 goto Loop;
884
885 case kInstCapture: // DFA treats captures as no-ops.
886 case kInstNop:
887 if (!ip->last())
888 stk[nstk++] = id+1;
889
890 // If this instruction is the [00-FF]* loop at the beginning of
891 // a leftmost-longest unanchored search, separate with a Mark so
892 // that future threads (which will start farther to the right in
893 // the input string) are lower priority than current threads.
894 if (ip->opcode() == kInstNop && q->maxmark() > 0 &&
895 id == prog_->start_unanchored() && id != prog_->start())
896 stk[nstk++] = Mark;
897 id = ip->out();
898 goto Loop;
899
900 case kInstAltMatch:
901 DCHECK(!ip->last());
902 id = id+1;
903 goto Loop;
904
905 case kInstEmptyWidth:
906 if (!ip->last())
907 stk[nstk++] = id+1;
908
909 // Continue on if we have all the right flag bits.
910 if (ip->empty() & ~flag)
911 break;
912 id = ip->out();
913 goto Loop;
914 }
915 }
916 }
917
918 // Running of work queues. In the work queue, order matters:
919 // the queue is sorted in priority order. If instruction i comes before j,
920 // then the instructions that i produces during the run must come before
921 // the ones that j produces. In order to keep this invariant, all the
922 // work queue runners have to take an old queue to process and then
923 // also a new queue to fill in. It's not acceptable to add to the end of
924 // an existing queue, because new instructions will not end up in the
925 // correct position.
926
927 // Runs the work queue, processing the empty strings indicated by flag.
928 // For example, flag == kEmptyBeginLine|kEmptyEndLine means to match
929 // both ^ and $. It is important that callers pass all flags at once:
930 // processing both ^ and $ is not the same as first processing only ^
931 // and then processing only $. Doing the two-step sequence won't match
932 // ^$^$^$ but processing ^ and $ simultaneously will (and is the behavior
933 // exhibited by existing implementations).
RunWorkqOnEmptyString(Workq * oldq,Workq * newq,uint32_t flag)934 void DFA::RunWorkqOnEmptyString(Workq* oldq, Workq* newq, uint32_t flag) {
935 newq->clear();
936 for (Workq::iterator i = oldq->begin(); i != oldq->end(); ++i) {
937 if (oldq->is_mark(*i))
938 AddToQueue(newq, Mark, flag);
939 else
940 AddToQueue(newq, *i, flag);
941 }
942 }
943
944 // Runs the work queue, processing the single byte c followed by any empty
945 // strings indicated by flag. For example, c == 'a' and flag == kEmptyEndLine,
946 // means to match c$. Sets the bool *ismatch to true if the end of the
947 // regular expression program has been reached (the regexp has matched).
RunWorkqOnByte(Workq * oldq,Workq * newq,int c,uint32_t flag,bool * ismatch)948 void DFA::RunWorkqOnByte(Workq* oldq, Workq* newq,
949 int c, uint32_t flag, bool* ismatch) {
950 //mutex_.AssertHeld();
951
952 newq->clear();
953 for (Workq::iterator i = oldq->begin(); i != oldq->end(); ++i) {
954 if (oldq->is_mark(*i)) {
955 if (*ismatch)
956 return;
957 newq->mark();
958 continue;
959 }
960 int id = *i;
961 Prog::Inst* ip = prog_->inst(id);
962 switch (ip->opcode()) {
963 default:
964 LOG(DFATAL) << "unhandled opcode: " << ip->opcode();
965 break;
966
967 case kInstFail: // never succeeds
968 case kInstCapture: // already followed
969 case kInstNop: // already followed
970 case kInstAltMatch: // already followed
971 case kInstEmptyWidth: // already followed
972 break;
973
974 case kInstByteRange: // can follow if c is in range
975 if (!ip->Matches(c))
976 break;
977 AddToQueue(newq, ip->out(), flag);
978 if (ip->hint() != 0) {
979 // We have a hint, but we must cancel out the
980 // increment that will occur after the break.
981 i += ip->hint() - 1;
982 } else {
983 // We have no hint, so we must find the end
984 // of the current list and then skip to it.
985 Prog::Inst* ip0 = ip;
986 while (!ip->last())
987 ++ip;
988 i += ip - ip0;
989 }
990 break;
991
992 case kInstMatch:
993 if (prog_->anchor_end() && c != kByteEndText &&
994 kind_ != Prog::kManyMatch)
995 break;
996 *ismatch = true;
997 if (kind_ == Prog::kFirstMatch) {
998 // Can stop processing work queue since we found a match.
999 return;
1000 }
1001 break;
1002 }
1003 }
1004
1005 if (ExtraDebug)
1006 absl::FPrintF(stderr, "%s on %d[%#x] -> %s [%d]\n",
1007 DumpWorkq(oldq), c, flag, DumpWorkq(newq), *ismatch);
1008 }
1009
1010 // Processes input byte c in state, returning new state.
1011 // Caller does not hold mutex.
RunStateOnByteUnlocked(State * state,int c)1012 DFA::State* DFA::RunStateOnByteUnlocked(State* state, int c) {
1013 // Keep only one RunStateOnByte going
1014 // even if the DFA is being run by multiple threads.
1015 absl::MutexLock l(&mutex_);
1016 return RunStateOnByte(state, c);
1017 }
1018
1019 // Processes input byte c in state, returning new state.
RunStateOnByte(State * state,int c)1020 DFA::State* DFA::RunStateOnByte(State* state, int c) {
1021 //mutex_.AssertHeld();
1022
1023 if (state <= SpecialStateMax) {
1024 if (state == FullMatchState) {
1025 // It is convenient for routines like PossibleMatchRange
1026 // if we implement RunStateOnByte for FullMatchState:
1027 // once you get into this state you never get out,
1028 // so it's pretty easy.
1029 return FullMatchState;
1030 }
1031 if (state == DeadState) {
1032 LOG(DFATAL) << "DeadState in RunStateOnByte";
1033 return NULL;
1034 }
1035 if (state == NULL) {
1036 LOG(DFATAL) << "NULL state in RunStateOnByte";
1037 return NULL;
1038 }
1039 LOG(DFATAL) << "Unexpected special state in RunStateOnByte";
1040 return NULL;
1041 }
1042
1043 // If someone else already computed this, return it.
1044 State* ns = state->next_[ByteMap(c)].load(std::memory_order_relaxed);
1045 if (ns != NULL)
1046 return ns;
1047
1048 // Convert state into Workq.
1049 StateToWorkq(state, q0_);
1050
1051 // Flags marking the kinds of empty-width things (^ $ etc)
1052 // around this byte. Before the byte we have the flags recorded
1053 // in the State structure itself. After the byte we have
1054 // nothing yet (but that will change: read on).
1055 uint32_t needflag = state->flag_ >> kFlagNeedShift;
1056 uint32_t beforeflag = state->flag_ & kFlagEmptyMask;
1057 uint32_t oldbeforeflag = beforeflag;
1058 uint32_t afterflag = 0;
1059
1060 if (c == '\n') {
1061 // Insert implicit $ and ^ around \n
1062 beforeflag |= kEmptyEndLine;
1063 afterflag |= kEmptyBeginLine;
1064 }
1065
1066 if (c == kByteEndText) {
1067 // Insert implicit $ and \z before the fake "end text" byte.
1068 beforeflag |= kEmptyEndLine | kEmptyEndText;
1069 }
1070
1071 // The state flag kFlagLastWord says whether the last
1072 // byte processed was a word character. Use that info to
1073 // insert empty-width (non-)word boundaries.
1074 bool islastword = (state->flag_ & kFlagLastWord) != 0;
1075 bool isword = c != kByteEndText && Prog::IsWordChar(static_cast<uint8_t>(c));
1076 if (isword == islastword)
1077 beforeflag |= kEmptyNonWordBoundary;
1078 else
1079 beforeflag |= kEmptyWordBoundary;
1080
1081 // Okay, finally ready to run.
1082 // Only useful to rerun on empty string if there are new, useful flags.
1083 if (beforeflag & ~oldbeforeflag & needflag) {
1084 RunWorkqOnEmptyString(q0_, q1_, beforeflag);
1085 using std::swap;
1086 swap(q0_, q1_);
1087 }
1088 bool ismatch = false;
1089 RunWorkqOnByte(q0_, q1_, c, afterflag, &ismatch);
1090 using std::swap;
1091 swap(q0_, q1_);
1092
1093 // Save afterflag along with ismatch and isword in new state.
1094 uint32_t flag = afterflag;
1095 if (ismatch)
1096 flag |= kFlagMatch;
1097 if (isword)
1098 flag |= kFlagLastWord;
1099
1100 if (ismatch && kind_ == Prog::kManyMatch)
1101 ns = WorkqToCachedState(q0_, q1_, flag);
1102 else
1103 ns = WorkqToCachedState(q0_, NULL, flag);
1104
1105 // Flush ns before linking to it.
1106 // Write barrier before updating state->next_ so that the
1107 // main search loop can proceed without any locking, for speed.
1108 // (Otherwise it would need one mutex operation per input byte.)
1109 state->next_[ByteMap(c)].store(ns, std::memory_order_release);
1110 return ns;
1111 }
1112
1113
1114 //////////////////////////////////////////////////////////////////////
1115 // DFA cache reset.
1116
1117 // Reader-writer lock helper.
1118 //
1119 // The DFA uses a reader-writer mutex to protect the state graph itself.
1120 // Traversing the state graph requires holding the mutex for reading,
1121 // and discarding the state graph and starting over requires holding the
1122 // lock for writing. If a search needs to expand the graph but is out
1123 // of memory, it will need to drop its read lock and then acquire the
1124 // write lock. Since it cannot then atomically downgrade from write lock
1125 // to read lock, it runs the rest of the search holding the write lock.
1126 // (This probably helps avoid repeated contention, but really the decision
1127 // is forced by the Mutex interface.) It's a bit complicated to keep
1128 // track of whether the lock is held for reading or writing and thread
1129 // that through the search, so instead we encapsulate it in the RWLocker
1130 // and pass that around.
1131
1132 class DFA::RWLocker {
1133 public:
1134 explicit RWLocker(CacheMutex* mu);
1135 ~RWLocker();
1136
1137 // If the lock is only held for reading right now,
1138 // drop the read lock and re-acquire for writing.
1139 // Subsequent calls to LockForWriting are no-ops.
1140 // Notice that the lock is *released* temporarily.
1141 void LockForWriting();
1142
1143 private:
1144 CacheMutex* mu_;
1145 bool writing_;
1146
1147 RWLocker(const RWLocker&) = delete;
1148 RWLocker& operator=(const RWLocker&) = delete;
1149 };
1150
RWLocker(CacheMutex * mu)1151 DFA::RWLocker::RWLocker(CacheMutex* mu) : mu_(mu), writing_(false) {
1152 mu_->ReaderLock();
1153 }
1154
1155 // This function is marked as ABSL_NO_THREAD_SAFETY_ANALYSIS because
1156 // the annotations don't support lock upgrade.
LockForWriting()1157 void DFA::RWLocker::LockForWriting() ABSL_NO_THREAD_SAFETY_ANALYSIS {
1158 if (!writing_) {
1159 mu_->ReaderUnlock();
1160 mu_->WriterLock();
1161 writing_ = true;
1162 }
1163 }
1164
~RWLocker()1165 DFA::RWLocker::~RWLocker() {
1166 if (!writing_)
1167 mu_->ReaderUnlock();
1168 else
1169 mu_->WriterUnlock();
1170 }
1171
1172
1173 // When the DFA's State cache fills, we discard all the states in the
1174 // cache and start over. Many threads can be using and adding to the
1175 // cache at the same time, so we synchronize using the cache_mutex_
1176 // to keep from stepping on other threads. Specifically, all the
1177 // threads using the current cache hold cache_mutex_ for reading.
1178 // When a thread decides to flush the cache, it drops cache_mutex_
1179 // and then re-acquires it for writing. That ensures there are no
1180 // other threads accessing the cache anymore. The rest of the search
1181 // runs holding cache_mutex_ for writing, avoiding any contention
1182 // with or cache pollution caused by other threads.
1183
ResetCache(RWLocker * cache_lock)1184 void DFA::ResetCache(RWLocker* cache_lock) {
1185 // Re-acquire the cache_mutex_ for writing (exclusive use).
1186 cache_lock->LockForWriting();
1187
1188 hooks::GetDFAStateCacheResetHook()({
1189 state_budget_,
1190 state_cache_.size(),
1191 });
1192
1193 // Clear the cache, reset the memory budget.
1194 for (int i = 0; i < kMaxStart; i++)
1195 start_[i].start.store(NULL, std::memory_order_relaxed);
1196 ClearCache();
1197 mem_budget_ = state_budget_;
1198 }
1199
1200 // Typically, a couple States do need to be preserved across a cache
1201 // reset, like the State at the current point in the search.
1202 // The StateSaver class helps keep States across cache resets.
1203 // It makes a copy of the state's guts outside the cache (before the reset)
1204 // and then can be asked, after the reset, to recreate the State
1205 // in the new cache. For example, in a DFA method ("this" is a DFA):
1206 //
1207 // StateSaver saver(this, s);
1208 // ResetCache(cache_lock);
1209 // s = saver.Restore();
1210 //
1211 // The saver should always have room in the cache to re-create the state,
1212 // because resetting the cache locks out all other threads, and the cache
1213 // is known to have room for at least a couple states (otherwise the DFA
1214 // constructor fails).
1215
1216 class DFA::StateSaver {
1217 public:
1218 explicit StateSaver(DFA* dfa, State* state);
1219 ~StateSaver();
1220
1221 // Recreates and returns a state equivalent to the
1222 // original state passed to the constructor.
1223 // Returns NULL if the cache has filled, but
1224 // since the DFA guarantees to have room in the cache
1225 // for a couple states, should never return NULL
1226 // if used right after ResetCache.
1227 State* Restore();
1228
1229 private:
1230 DFA* dfa_; // the DFA to use
1231 int* inst_; // saved info from State
1232 int ninst_;
1233 uint32_t flag_;
1234 bool is_special_; // whether original state was special
1235 State* special_; // if is_special_, the original state
1236
1237 StateSaver(const StateSaver&) = delete;
1238 StateSaver& operator=(const StateSaver&) = delete;
1239 };
1240
StateSaver(DFA * dfa,State * state)1241 DFA::StateSaver::StateSaver(DFA* dfa, State* state) {
1242 dfa_ = dfa;
1243 if (state <= SpecialStateMax) {
1244 inst_ = NULL;
1245 ninst_ = 0;
1246 flag_ = 0;
1247 is_special_ = true;
1248 special_ = state;
1249 return;
1250 }
1251 is_special_ = false;
1252 special_ = NULL;
1253 flag_ = state->flag_;
1254 ninst_ = state->ninst_;
1255 inst_ = new int[ninst_];
1256 memmove(inst_, state->inst_, ninst_*sizeof inst_[0]);
1257 }
1258
~StateSaver()1259 DFA::StateSaver::~StateSaver() {
1260 if (!is_special_)
1261 delete[] inst_;
1262 }
1263
Restore()1264 DFA::State* DFA::StateSaver::Restore() {
1265 if (is_special_)
1266 return special_;
1267 absl::MutexLock l(&dfa_->mutex_);
1268 State* s = dfa_->CachedState(inst_, ninst_, flag_);
1269 if (s == NULL)
1270 LOG(DFATAL) << "StateSaver failed to restore state.";
1271 return s;
1272 }
1273
1274
1275 //////////////////////////////////////////////////////////////////////
1276 //
1277 // DFA execution.
1278 //
1279 // The basic search loop is easy: start in a state s and then for each
1280 // byte c in the input, s = s->next[c].
1281 //
1282 // This simple description omits a few efficiency-driven complications.
1283 //
1284 // First, the State graph is constructed incrementally: it is possible
1285 // that s->next[c] is null, indicating that that state has not been
1286 // fully explored. In this case, RunStateOnByte must be invoked to
1287 // determine the next state, which is cached in s->next[c] to save
1288 // future effort. An alternative reason for s->next[c] to be null is
1289 // that the DFA has reached a so-called "dead state", in which any match
1290 // is no longer possible. In this case RunStateOnByte will return NULL
1291 // and the processing of the string can stop early.
1292 //
1293 // Second, a 256-element pointer array for s->next_ makes each State
1294 // quite large (2kB on 64-bit machines). Instead, dfa->bytemap_[]
1295 // maps from bytes to "byte classes" and then next_ only needs to have
1296 // as many pointers as there are byte classes. A byte class is simply a
1297 // range of bytes that the regexp never distinguishes between.
1298 // A regexp looking for a[abc] would have four byte ranges -- 0 to 'a'-1,
1299 // 'a', 'b' to 'c', and 'c' to 0xFF. The bytemap slows us a little bit
1300 // but in exchange we typically cut the size of a State (and thus our
1301 // memory footprint) by about 5-10x. The comments still refer to
1302 // s->next[c] for simplicity, but code should refer to s->next_[bytemap_[c]].
1303 //
1304 // Third, it is common for a DFA for an unanchored match to begin in a
1305 // state in which only one particular byte value can take the DFA to a
1306 // different state. That is, s->next[c] != s for only one c. In this
1307 // situation, the DFA can do better than executing the simple loop.
1308 // Instead, it can call memchr to search very quickly for the byte c.
1309 // Whether the start state has this property is determined during a
1310 // pre-compilation pass and the "can_prefix_accel" argument is set.
1311 //
1312 // Fourth, the desired behavior is to search for the leftmost-best match
1313 // (approximately, the same one that Perl would find), which is not
1314 // necessarily the match ending earliest in the string. Each time a
1315 // match is found, it must be noted, but the DFA must continue on in
1316 // hope of finding a higher-priority match. In some cases, the caller only
1317 // cares whether there is any match at all, not which one is found.
1318 // The "want_earliest_match" flag causes the search to stop at the first
1319 // match found.
1320 //
1321 // Fifth, one algorithm that uses the DFA needs it to run over the
1322 // input string backward, beginning at the end and ending at the beginning.
1323 // Passing false for the "run_forward" flag causes the DFA to run backward.
1324 //
1325 // The checks for these last three cases, which in a naive implementation
1326 // would be performed once per input byte, slow the general loop enough
1327 // to merit specialized versions of the search loop for each of the
1328 // eight possible settings of the three booleans. Rather than write
1329 // eight different functions, we write one general implementation and then
1330 // inline it to create the specialized ones.
1331 //
1332 // Note that matches are delayed by one byte, to make it easier to
1333 // accomodate match conditions depending on the next input byte (like $ and \b).
1334 // When s->next[c]->IsMatch(), it means that there is a match ending just
1335 // *before* byte c.
1336
1337 // The generic search loop. Searches text for a match, returning
1338 // the pointer to the end of the chosen match, or NULL if no match.
1339 // The bools are equal to the same-named variables in params, but
1340 // making them function arguments lets the inliner specialize
1341 // this function to each combination (see two paragraphs above).
1342 template <bool can_prefix_accel,
1343 bool want_earliest_match,
1344 bool run_forward>
InlinedSearchLoop(SearchParams * params)1345 inline bool DFA::InlinedSearchLoop(SearchParams* params) {
1346 State* start = params->start;
1347 const uint8_t* bp = BytePtr(params->text.data()); // start of text
1348 const uint8_t* p = bp; // text scanning point
1349 const uint8_t* ep = BytePtr(params->text.data() +
1350 params->text.size()); // end of text
1351 const uint8_t* resetp = NULL; // p at last cache reset
1352 if (!run_forward) {
1353 using std::swap;
1354 swap(p, ep);
1355 }
1356
1357 const uint8_t* bytemap = prog_->bytemap();
1358 const uint8_t* lastmatch = NULL; // most recent matching position in text
1359 bool matched = false;
1360
1361 State* s = start;
1362 if (ExtraDebug)
1363 absl::FPrintF(stderr, "@stx: %s\n", DumpState(s));
1364
1365 if (s->IsMatch()) {
1366 matched = true;
1367 lastmatch = p;
1368 if (ExtraDebug)
1369 absl::FPrintF(stderr, "match @stx! [%s]\n", DumpState(s));
1370 if (params->matches != NULL) {
1371 for (int i = s->ninst_ - 1; i >= 0; i--) {
1372 int id = s->inst_[i];
1373 if (id == MatchSep)
1374 break;
1375 params->matches->insert(id);
1376 }
1377 }
1378 if (want_earliest_match) {
1379 params->ep = reinterpret_cast<const char*>(lastmatch);
1380 return true;
1381 }
1382 }
1383
1384 while (p != ep) {
1385 if (ExtraDebug)
1386 absl::FPrintF(stderr, "@%d: %s\n", p - bp, DumpState(s));
1387
1388 if (can_prefix_accel && s == start) {
1389 // In start state, only way out is to find the prefix,
1390 // so we use prefix accel (e.g. memchr) to skip ahead.
1391 // If not found, we can skip to the end of the string.
1392 p = BytePtr(prog_->PrefixAccel(p, ep - p));
1393 if (p == NULL) {
1394 p = ep;
1395 break;
1396 }
1397 }
1398
1399 int c;
1400 if (run_forward)
1401 c = *p++;
1402 else
1403 c = *--p;
1404
1405 // Note that multiple threads might be consulting
1406 // s->next_[bytemap[c]] simultaneously.
1407 // RunStateOnByte takes care of the appropriate locking,
1408 // including a memory barrier so that the unlocked access
1409 // (sometimes known as "double-checked locking") is safe.
1410 // The alternative would be either one DFA per thread
1411 // or one mutex operation per input byte.
1412 //
1413 // ns == DeadState means the state is known to be dead
1414 // (no more matches are possible).
1415 // ns == NULL means the state has not yet been computed
1416 // (need to call RunStateOnByteUnlocked).
1417 // RunStateOnByte returns ns == NULL if it is out of memory.
1418 // ns == FullMatchState means the rest of the string matches.
1419 //
1420 // Okay to use bytemap[] not ByteMap() here, because
1421 // c is known to be an actual byte and not kByteEndText.
1422
1423 State* ns = s->next_[bytemap[c]].load(std::memory_order_acquire);
1424 if (ns == NULL) {
1425 ns = RunStateOnByteUnlocked(s, c);
1426 if (ns == NULL) {
1427 // After we reset the cache, we hold cache_mutex exclusively,
1428 // so if resetp != NULL, it means we filled the DFA state
1429 // cache with this search alone (without any other threads).
1430 // Benchmarks show that doing a state computation on every
1431 // byte runs at about 0.2 MB/s, while the NFA (nfa.cc) can do the
1432 // same at about 2 MB/s. Unless we're processing an average
1433 // of 10 bytes per state computation, fail so that RE2 can
1434 // fall back to the NFA. However, RE2::Set cannot fall back,
1435 // so we just have to keep on keeping on in that case.
1436 if (dfa_should_bail_when_slow && resetp != NULL &&
1437 static_cast<size_t>(p - resetp) < 10*state_cache_.size() &&
1438 kind_ != Prog::kManyMatch) {
1439 params->failed = true;
1440 return false;
1441 }
1442 resetp = p;
1443
1444 // Prepare to save start and s across the reset.
1445 StateSaver save_start(this, start);
1446 StateSaver save_s(this, s);
1447
1448 // Discard all the States in the cache.
1449 ResetCache(params->cache_lock);
1450
1451 // Restore start and s so we can continue.
1452 if ((start = save_start.Restore()) == NULL ||
1453 (s = save_s.Restore()) == NULL) {
1454 // Restore already did LOG(DFATAL).
1455 params->failed = true;
1456 return false;
1457 }
1458 ns = RunStateOnByteUnlocked(s, c);
1459 if (ns == NULL) {
1460 LOG(DFATAL) << "RunStateOnByteUnlocked failed after ResetCache";
1461 params->failed = true;
1462 return false;
1463 }
1464 }
1465 }
1466 if (ns <= SpecialStateMax) {
1467 if (ns == DeadState) {
1468 params->ep = reinterpret_cast<const char*>(lastmatch);
1469 return matched;
1470 }
1471 // FullMatchState
1472 params->ep = reinterpret_cast<const char*>(ep);
1473 return true;
1474 }
1475
1476 s = ns;
1477 if (s->IsMatch()) {
1478 matched = true;
1479 // The DFA notices the match one byte late,
1480 // so adjust p before using it in the match.
1481 if (run_forward)
1482 lastmatch = p - 1;
1483 else
1484 lastmatch = p + 1;
1485 if (ExtraDebug)
1486 absl::FPrintF(stderr, "match @%d! [%s]\n", lastmatch - bp, DumpState(s));
1487 if (params->matches != NULL) {
1488 for (int i = s->ninst_ - 1; i >= 0; i--) {
1489 int id = s->inst_[i];
1490 if (id == MatchSep)
1491 break;
1492 params->matches->insert(id);
1493 }
1494 }
1495 if (want_earliest_match) {
1496 params->ep = reinterpret_cast<const char*>(lastmatch);
1497 return true;
1498 }
1499 }
1500 }
1501
1502 // Process one more byte to see if it triggers a match.
1503 // (Remember, matches are delayed one byte.)
1504 if (ExtraDebug)
1505 absl::FPrintF(stderr, "@etx: %s\n", DumpState(s));
1506
1507 int lastbyte;
1508 if (run_forward) {
1509 if (EndPtr(params->text) == EndPtr(params->context))
1510 lastbyte = kByteEndText;
1511 else
1512 lastbyte = EndPtr(params->text)[0] & 0xFF;
1513 } else {
1514 if (BeginPtr(params->text) == BeginPtr(params->context))
1515 lastbyte = kByteEndText;
1516 else
1517 lastbyte = BeginPtr(params->text)[-1] & 0xFF;
1518 }
1519
1520 State* ns = s->next_[ByteMap(lastbyte)].load(std::memory_order_acquire);
1521 if (ns == NULL) {
1522 ns = RunStateOnByteUnlocked(s, lastbyte);
1523 if (ns == NULL) {
1524 StateSaver save_s(this, s);
1525 ResetCache(params->cache_lock);
1526 if ((s = save_s.Restore()) == NULL) {
1527 params->failed = true;
1528 return false;
1529 }
1530 ns = RunStateOnByteUnlocked(s, lastbyte);
1531 if (ns == NULL) {
1532 LOG(DFATAL) << "RunStateOnByteUnlocked failed after Reset";
1533 params->failed = true;
1534 return false;
1535 }
1536 }
1537 }
1538 if (ns <= SpecialStateMax) {
1539 if (ns == DeadState) {
1540 params->ep = reinterpret_cast<const char*>(lastmatch);
1541 return matched;
1542 }
1543 // FullMatchState
1544 params->ep = reinterpret_cast<const char*>(ep);
1545 return true;
1546 }
1547
1548 s = ns;
1549 if (s->IsMatch()) {
1550 matched = true;
1551 lastmatch = p;
1552 if (ExtraDebug)
1553 absl::FPrintF(stderr, "match @etx! [%s]\n", DumpState(s));
1554 if (params->matches != NULL) {
1555 for (int i = s->ninst_ - 1; i >= 0; i--) {
1556 int id = s->inst_[i];
1557 if (id == MatchSep)
1558 break;
1559 params->matches->insert(id);
1560 }
1561 }
1562 }
1563
1564 params->ep = reinterpret_cast<const char*>(lastmatch);
1565 return matched;
1566 }
1567
1568 // Inline specializations of the general loop.
SearchFFF(SearchParams * params)1569 bool DFA::SearchFFF(SearchParams* params) {
1570 return InlinedSearchLoop<false, false, false>(params);
1571 }
SearchFFT(SearchParams * params)1572 bool DFA::SearchFFT(SearchParams* params) {
1573 return InlinedSearchLoop<false, false, true>(params);
1574 }
SearchFTF(SearchParams * params)1575 bool DFA::SearchFTF(SearchParams* params) {
1576 return InlinedSearchLoop<false, true, false>(params);
1577 }
SearchFTT(SearchParams * params)1578 bool DFA::SearchFTT(SearchParams* params) {
1579 return InlinedSearchLoop<false, true, true>(params);
1580 }
SearchTFF(SearchParams * params)1581 bool DFA::SearchTFF(SearchParams* params) {
1582 return InlinedSearchLoop<true, false, false>(params);
1583 }
SearchTFT(SearchParams * params)1584 bool DFA::SearchTFT(SearchParams* params) {
1585 return InlinedSearchLoop<true, false, true>(params);
1586 }
SearchTTF(SearchParams * params)1587 bool DFA::SearchTTF(SearchParams* params) {
1588 return InlinedSearchLoop<true, true, false>(params);
1589 }
SearchTTT(SearchParams * params)1590 bool DFA::SearchTTT(SearchParams* params) {
1591 return InlinedSearchLoop<true, true, true>(params);
1592 }
1593
1594 // For performance, calls the appropriate specialized version
1595 // of InlinedSearchLoop.
FastSearchLoop(SearchParams * params)1596 bool DFA::FastSearchLoop(SearchParams* params) {
1597 // Because the methods are private, the Searches array
1598 // cannot be declared at top level.
1599 static bool (DFA::*Searches[])(SearchParams*) = {
1600 &DFA::SearchFFF,
1601 &DFA::SearchFFT,
1602 &DFA::SearchFTF,
1603 &DFA::SearchFTT,
1604 &DFA::SearchTFF,
1605 &DFA::SearchTFT,
1606 &DFA::SearchTTF,
1607 &DFA::SearchTTT,
1608 };
1609
1610 int index = 4 * params->can_prefix_accel +
1611 2 * params->want_earliest_match +
1612 1 * params->run_forward;
1613 return (this->*Searches[index])(params);
1614 }
1615
1616
1617 // The discussion of DFA execution above ignored the question of how
1618 // to determine the initial state for the search loop. There are two
1619 // factors that influence the choice of start state.
1620 //
1621 // The first factor is whether the search is anchored or not.
1622 // The regexp program (Prog*) itself has
1623 // two different entry points: one for anchored searches and one for
1624 // unanchored searches. (The unanchored version starts with a leading ".*?"
1625 // and then jumps to the anchored one.)
1626 //
1627 // The second factor is where text appears in the larger context, which
1628 // determines which empty-string operators can be matched at the beginning
1629 // of execution. If text is at the very beginning of context, \A and ^ match.
1630 // Otherwise if text is at the beginning of a line, then ^ matches.
1631 // Otherwise it matters whether the character before text is a word character
1632 // or a non-word character.
1633 //
1634 // The two cases (unanchored vs not) and four cases (empty-string flags)
1635 // combine to make the eight cases recorded in the DFA's begin_text_[2],
1636 // begin_line_[2], after_wordchar_[2], and after_nonwordchar_[2] cached
1637 // StartInfos. The start state for each is filled in the first time it
1638 // is used for an actual search.
1639
1640 // Examines text, context, and anchored to determine the right start
1641 // state for the DFA search loop. Fills in params and returns true on success.
1642 // Returns false on failure.
AnalyzeSearch(SearchParams * params)1643 bool DFA::AnalyzeSearch(SearchParams* params) {
1644 absl::string_view text = params->text;
1645 absl::string_view context = params->context;
1646
1647 // Sanity check: make sure that text lies within context.
1648 if (BeginPtr(text) < BeginPtr(context) || EndPtr(text) > EndPtr(context)) {
1649 LOG(DFATAL) << "context does not contain text";
1650 params->start = DeadState;
1651 return true;
1652 }
1653
1654 // Determine correct search type.
1655 int start;
1656 uint32_t flags;
1657 if (params->run_forward) {
1658 if (BeginPtr(text) == BeginPtr(context)) {
1659 start = kStartBeginText;
1660 flags = kEmptyBeginText|kEmptyBeginLine;
1661 } else if (BeginPtr(text)[-1] == '\n') {
1662 start = kStartBeginLine;
1663 flags = kEmptyBeginLine;
1664 } else if (Prog::IsWordChar(BeginPtr(text)[-1] & 0xFF)) {
1665 start = kStartAfterWordChar;
1666 flags = kFlagLastWord;
1667 } else {
1668 start = kStartAfterNonWordChar;
1669 flags = 0;
1670 }
1671 } else {
1672 if (EndPtr(text) == EndPtr(context)) {
1673 start = kStartBeginText;
1674 flags = kEmptyBeginText|kEmptyBeginLine;
1675 } else if (EndPtr(text)[0] == '\n') {
1676 start = kStartBeginLine;
1677 flags = kEmptyBeginLine;
1678 } else if (Prog::IsWordChar(EndPtr(text)[0] & 0xFF)) {
1679 start = kStartAfterWordChar;
1680 flags = kFlagLastWord;
1681 } else {
1682 start = kStartAfterNonWordChar;
1683 flags = 0;
1684 }
1685 }
1686 if (params->anchored)
1687 start |= kStartAnchored;
1688 StartInfo* info = &start_[start];
1689
1690 // Try once without cache_lock for writing.
1691 // Try again after resetting the cache
1692 // (ResetCache will relock cache_lock for writing).
1693 if (!AnalyzeSearchHelper(params, info, flags)) {
1694 ResetCache(params->cache_lock);
1695 if (!AnalyzeSearchHelper(params, info, flags)) {
1696 params->failed = true;
1697 LOG(DFATAL) << "Failed to analyze start state.";
1698 return false;
1699 }
1700 }
1701
1702 params->start = info->start.load(std::memory_order_acquire);
1703
1704 // Even if we could prefix accel, we cannot do so when anchored and,
1705 // less obviously, we cannot do so when we are going to need flags.
1706 // This trick works only when there is a single byte that leads to a
1707 // different state!
1708 if (prog_->can_prefix_accel() &&
1709 !params->anchored &&
1710 params->start > SpecialStateMax &&
1711 params->start->flag_ >> kFlagNeedShift == 0)
1712 params->can_prefix_accel = true;
1713
1714 if (ExtraDebug)
1715 absl::FPrintF(stderr, "anchored=%d fwd=%d flags=%#x state=%s can_prefix_accel=%d\n",
1716 params->anchored, params->run_forward, flags,
1717 DumpState(params->start), params->can_prefix_accel);
1718
1719 return true;
1720 }
1721
1722 // Fills in info if needed. Returns true on success, false on failure.
AnalyzeSearchHelper(SearchParams * params,StartInfo * info,uint32_t flags)1723 bool DFA::AnalyzeSearchHelper(SearchParams* params, StartInfo* info,
1724 uint32_t flags) {
1725 // Quick check.
1726 State* start = info->start.load(std::memory_order_acquire);
1727 if (start != NULL)
1728 return true;
1729
1730 absl::MutexLock l(&mutex_);
1731 start = info->start.load(std::memory_order_relaxed);
1732 if (start != NULL)
1733 return true;
1734
1735 q0_->clear();
1736 AddToQueue(q0_,
1737 params->anchored ? prog_->start() : prog_->start_unanchored(),
1738 flags);
1739 start = WorkqToCachedState(q0_, NULL, flags);
1740 if (start == NULL)
1741 return false;
1742
1743 // Synchronize with "quick check" above.
1744 info->start.store(start, std::memory_order_release);
1745 return true;
1746 }
1747
1748 // The actual DFA search: calls AnalyzeSearch and then FastSearchLoop.
Search(absl::string_view text,absl::string_view context,bool anchored,bool want_earliest_match,bool run_forward,bool * failed,const char ** epp,SparseSet * matches)1749 bool DFA::Search(absl::string_view text, absl::string_view context,
1750 bool anchored, bool want_earliest_match, bool run_forward,
1751 bool* failed, const char** epp, SparseSet* matches) {
1752 *epp = NULL;
1753 if (!ok()) {
1754 *failed = true;
1755 return false;
1756 }
1757 *failed = false;
1758
1759 if (ExtraDebug) {
1760 absl::FPrintF(stderr, "\nprogram:\n%s\n", prog_->DumpUnanchored());
1761 absl::FPrintF(stderr, "text %s anchored=%d earliest=%d fwd=%d kind %d\n",
1762 text, anchored, want_earliest_match, run_forward, kind_);
1763 }
1764
1765 RWLocker l(&cache_mutex_);
1766 SearchParams params(text, context, &l);
1767 params.anchored = anchored;
1768 params.want_earliest_match = want_earliest_match;
1769 params.run_forward = run_forward;
1770 // matches should be null except when using RE2::Set.
1771 DCHECK(matches == NULL || kind_ == Prog::kManyMatch);
1772 params.matches = matches;
1773
1774 if (!AnalyzeSearch(¶ms)) {
1775 *failed = true;
1776 return false;
1777 }
1778 if (params.start == DeadState)
1779 return false;
1780 if (params.start == FullMatchState) {
1781 if (run_forward == want_earliest_match)
1782 *epp = text.data();
1783 else
1784 *epp = text.data() + text.size();
1785 return true;
1786 }
1787 if (ExtraDebug)
1788 absl::FPrintF(stderr, "start %s\n", DumpState(params.start));
1789 bool ret = FastSearchLoop(¶ms);
1790 if (params.failed) {
1791 *failed = true;
1792 return false;
1793 }
1794 *epp = params.ep;
1795 return ret;
1796 }
1797
GetDFA(MatchKind kind)1798 DFA* Prog::GetDFA(MatchKind kind) {
1799 // For a forward DFA, half the memory goes to each DFA.
1800 // However, if it is a "many match" DFA, then there is
1801 // no counterpart with which the memory must be shared.
1802 //
1803 // For a reverse DFA, all the memory goes to the
1804 // "longest match" DFA, because RE2 never does reverse
1805 // "first match" searches.
1806 if (kind == kFirstMatch) {
1807 absl::call_once(dfa_first_once_, [](Prog* prog) {
1808 prog->dfa_first_ = new DFA(prog, kFirstMatch, prog->dfa_mem_ / 2);
1809 }, this);
1810 return dfa_first_;
1811 } else if (kind == kManyMatch) {
1812 absl::call_once(dfa_first_once_, [](Prog* prog) {
1813 prog->dfa_first_ = new DFA(prog, kManyMatch, prog->dfa_mem_);
1814 }, this);
1815 return dfa_first_;
1816 } else {
1817 absl::call_once(dfa_longest_once_, [](Prog* prog) {
1818 if (!prog->reversed_)
1819 prog->dfa_longest_ = new DFA(prog, kLongestMatch, prog->dfa_mem_ / 2);
1820 else
1821 prog->dfa_longest_ = new DFA(prog, kLongestMatch, prog->dfa_mem_);
1822 }, this);
1823 return dfa_longest_;
1824 }
1825 }
1826
DeleteDFA(DFA * dfa)1827 void Prog::DeleteDFA(DFA* dfa) {
1828 delete dfa;
1829 }
1830
1831 // Executes the regexp program to search in text,
1832 // which itself is inside the larger context. (As a convenience,
1833 // passing a NULL context is equivalent to passing text.)
1834 // Returns true if a match is found, false if not.
1835 // If a match is found, fills in match0->end() to point at the end of the match
1836 // and sets match0->begin() to text.begin(), since the DFA can't track
1837 // where the match actually began.
1838 //
1839 // This is the only external interface (class DFA only exists in this file).
1840 //
SearchDFA(absl::string_view text,absl::string_view context,Anchor anchor,MatchKind kind,absl::string_view * match0,bool * failed,SparseSet * matches)1841 bool Prog::SearchDFA(absl::string_view text, absl::string_view context,
1842 Anchor anchor, MatchKind kind, absl::string_view* match0,
1843 bool* failed, SparseSet* matches) {
1844 *failed = false;
1845
1846 if (context.data() == NULL)
1847 context = text;
1848 bool caret = anchor_start();
1849 bool dollar = anchor_end();
1850 if (reversed_) {
1851 using std::swap;
1852 swap(caret, dollar);
1853 }
1854 if (caret && BeginPtr(context) != BeginPtr(text))
1855 return false;
1856 if (dollar && EndPtr(context) != EndPtr(text))
1857 return false;
1858
1859 // Handle full match by running an anchored longest match
1860 // and then checking if it covers all of text.
1861 bool anchored = anchor == kAnchored || anchor_start() || kind == kFullMatch;
1862 bool endmatch = false;
1863 if (kind == kManyMatch) {
1864 // This is split out in order to avoid clobbering kind.
1865 } else if (kind == kFullMatch || anchor_end()) {
1866 endmatch = true;
1867 kind = kLongestMatch;
1868 }
1869
1870 // If the caller doesn't care where the match is (just whether one exists),
1871 // then we can stop at the very first match we find, the so-called
1872 // "earliest match".
1873 bool want_earliest_match = false;
1874 if (kind == kManyMatch) {
1875 // This is split out in order to avoid clobbering kind.
1876 if (matches == NULL) {
1877 want_earliest_match = true;
1878 }
1879 } else if (match0 == NULL && !endmatch) {
1880 want_earliest_match = true;
1881 kind = kLongestMatch;
1882 }
1883
1884 DFA* dfa = GetDFA(kind);
1885 const char* ep;
1886 bool matched = dfa->Search(text, context, anchored,
1887 want_earliest_match, !reversed_,
1888 failed, &ep, matches);
1889 if (*failed) {
1890 hooks::GetDFASearchFailureHook()({
1891 // Nothing yet...
1892 });
1893 return false;
1894 }
1895 if (!matched)
1896 return false;
1897 if (endmatch && ep != (reversed_ ? text.data() : text.data() + text.size()))
1898 return false;
1899
1900 // If caller cares, record the boundary of the match.
1901 // We only know where it ends, so use the boundary of text
1902 // as the beginning.
1903 if (match0) {
1904 if (reversed_)
1905 *match0 =
1906 absl::string_view(ep, static_cast<size_t>(text.data() + text.size() - ep));
1907 else
1908 *match0 =
1909 absl::string_view(text.data(), static_cast<size_t>(ep - text.data()));
1910 }
1911 return true;
1912 }
1913
1914 // Build out all states in DFA. Returns number of states.
BuildAllStates(const Prog::DFAStateCallback & cb)1915 int DFA::BuildAllStates(const Prog::DFAStateCallback& cb) {
1916 if (!ok())
1917 return 0;
1918
1919 // Pick out start state for unanchored search
1920 // at beginning of text.
1921 RWLocker l(&cache_mutex_);
1922 SearchParams params(absl::string_view(), absl::string_view(), &l);
1923 params.anchored = false;
1924 if (!AnalyzeSearch(¶ms) ||
1925 params.start == NULL ||
1926 params.start == DeadState)
1927 return 0;
1928
1929 // Add start state to work queue.
1930 // Note that any State* that we handle here must point into the cache,
1931 // so we can simply depend on pointer-as-a-number hashing and equality.
1932 absl::flat_hash_map<State*, int> m;
1933 std::deque<State*> q;
1934 m.emplace(params.start, static_cast<int>(m.size()));
1935 q.push_back(params.start);
1936
1937 // Compute the input bytes needed to cover all of the next pointers.
1938 int nnext = prog_->bytemap_range() + 1; // + 1 for kByteEndText slot
1939 std::vector<int> input(nnext);
1940 for (int c = 0; c < 256; c++) {
1941 int b = prog_->bytemap()[c];
1942 while (c < 256-1 && prog_->bytemap()[c+1] == b)
1943 c++;
1944 input[b] = c;
1945 }
1946 input[prog_->bytemap_range()] = kByteEndText;
1947
1948 // Scratch space for the output.
1949 std::vector<int> output(nnext);
1950
1951 // Flood to expand every state.
1952 bool oom = false;
1953 while (!q.empty()) {
1954 State* s = q.front();
1955 q.pop_front();
1956 for (int c : input) {
1957 State* ns = RunStateOnByteUnlocked(s, c);
1958 if (ns == NULL) {
1959 oom = true;
1960 break;
1961 }
1962 if (ns == DeadState) {
1963 output[ByteMap(c)] = -1;
1964 continue;
1965 }
1966 if (m.find(ns) == m.end()) {
1967 m.emplace(ns, static_cast<int>(m.size()));
1968 q.push_back(ns);
1969 }
1970 output[ByteMap(c)] = m[ns];
1971 }
1972 if (cb)
1973 cb(oom ? NULL : output.data(),
1974 s == FullMatchState || s->IsMatch());
1975 if (oom)
1976 break;
1977 }
1978
1979 return static_cast<int>(m.size());
1980 }
1981
1982 // Build out all states in DFA for kind. Returns number of states.
BuildEntireDFA(MatchKind kind,const DFAStateCallback & cb)1983 int Prog::BuildEntireDFA(MatchKind kind, const DFAStateCallback& cb) {
1984 return GetDFA(kind)->BuildAllStates(cb);
1985 }
1986
1987 // Computes min and max for matching string.
1988 // Won't return strings bigger than maxlen.
PossibleMatchRange(std::string * min,std::string * max,int maxlen)1989 bool DFA::PossibleMatchRange(std::string* min, std::string* max, int maxlen) {
1990 if (!ok())
1991 return false;
1992
1993 // NOTE: if future users of PossibleMatchRange want more precision when
1994 // presented with infinitely repeated elements, consider making this a
1995 // parameter to PossibleMatchRange.
1996 static int kMaxEltRepetitions = 0;
1997
1998 // Keep track of the number of times we've visited states previously. We only
1999 // revisit a given state if it's part of a repeated group, so if the value
2000 // portion of the map tuple exceeds kMaxEltRepetitions we bail out and set
2001 // |*max| to |PrefixSuccessor(*max)|.
2002 //
2003 // Also note that previously_visited_states[UnseenStatePtr] will, in the STL
2004 // tradition, implicitly insert a '0' value at first use. We take advantage
2005 // of that property below.
2006 absl::flat_hash_map<State*, int> previously_visited_states;
2007
2008 // Pick out start state for anchored search at beginning of text.
2009 RWLocker l(&cache_mutex_);
2010 SearchParams params(absl::string_view(), absl::string_view(), &l);
2011 params.anchored = true;
2012 if (!AnalyzeSearch(¶ms))
2013 return false;
2014 if (params.start == DeadState) { // No matching strings
2015 *min = "";
2016 *max = "";
2017 return true;
2018 }
2019 if (params.start == FullMatchState) // Every string matches: no max
2020 return false;
2021
2022 // The DFA is essentially a big graph rooted at params.start,
2023 // and paths in the graph correspond to accepted strings.
2024 // Each node in the graph has potentially 256+1 arrows
2025 // coming out, one for each byte plus the magic end of
2026 // text character kByteEndText.
2027
2028 // To find the smallest possible prefix of an accepted
2029 // string, we just walk the graph preferring to follow
2030 // arrows with the lowest bytes possible. To find the
2031 // largest possible prefix, we follow the largest bytes
2032 // possible.
2033
2034 // The test for whether there is an arrow from s on byte j is
2035 // ns = RunStateOnByteUnlocked(s, j);
2036 // if (ns == NULL)
2037 // return false;
2038 // if (ns != DeadState && ns->ninst > 0)
2039 // The RunStateOnByteUnlocked call asks the DFA to build out the graph.
2040 // It returns NULL only if the DFA has run out of memory,
2041 // in which case we can't be sure of anything.
2042 // The second check sees whether there was graph built
2043 // and whether it is interesting graph. Nodes might have
2044 // ns->ninst == 0 if they exist only to represent the fact
2045 // that a match was found on the previous byte.
2046
2047 // Build minimum prefix.
2048 State* s = params.start;
2049 min->clear();
2050 absl::MutexLock lock(&mutex_);
2051 for (int i = 0; i < maxlen; i++) {
2052 if (previously_visited_states[s] > kMaxEltRepetitions)
2053 break;
2054 previously_visited_states[s]++;
2055
2056 // Stop if min is a match.
2057 State* ns = RunStateOnByte(s, kByteEndText);
2058 if (ns == NULL) // DFA out of memory
2059 return false;
2060 if (ns != DeadState && (ns == FullMatchState || ns->IsMatch()))
2061 break;
2062
2063 // Try to extend the string with low bytes.
2064 bool extended = false;
2065 for (int j = 0; j < 256; j++) {
2066 ns = RunStateOnByte(s, j);
2067 if (ns == NULL) // DFA out of memory
2068 return false;
2069 if (ns == FullMatchState ||
2070 (ns > SpecialStateMax && ns->ninst_ > 0)) {
2071 extended = true;
2072 min->append(1, static_cast<char>(j));
2073 s = ns;
2074 break;
2075 }
2076 }
2077 if (!extended)
2078 break;
2079 }
2080
2081 // Build maximum prefix.
2082 previously_visited_states.clear();
2083 s = params.start;
2084 max->clear();
2085 for (int i = 0; i < maxlen; i++) {
2086 if (previously_visited_states[s] > kMaxEltRepetitions)
2087 break;
2088 previously_visited_states[s] += 1;
2089
2090 // Try to extend the string with high bytes.
2091 bool extended = false;
2092 for (int j = 255; j >= 0; j--) {
2093 State* ns = RunStateOnByte(s, j);
2094 if (ns == NULL)
2095 return false;
2096 if (ns == FullMatchState ||
2097 (ns > SpecialStateMax && ns->ninst_ > 0)) {
2098 extended = true;
2099 max->append(1, static_cast<char>(j));
2100 s = ns;
2101 break;
2102 }
2103 }
2104 if (!extended) {
2105 // Done, no need for PrefixSuccessor.
2106 return true;
2107 }
2108 }
2109
2110 // Stopped while still adding to *max - round aaaaaaaaaa... to aaaa...b
2111 PrefixSuccessor(max);
2112
2113 // If there are no bytes left, we have no way to say "there is no maximum
2114 // string". We could make the interface more complicated and be able to
2115 // return "there is no maximum but here is a minimum", but that seems like
2116 // overkill -- the most common no-max case is all possible strings, so not
2117 // telling the caller that the empty string is the minimum match isn't a
2118 // great loss.
2119 if (max->empty())
2120 return false;
2121
2122 return true;
2123 }
2124
2125 // PossibleMatchRange for a Prog.
PossibleMatchRange(std::string * min,std::string * max,int maxlen)2126 bool Prog::PossibleMatchRange(std::string* min, std::string* max, int maxlen) {
2127 // Have to use dfa_longest_ to get all strings for full matches.
2128 // For example, (a|aa) never matches aa in first-match mode.
2129 return GetDFA(kLongestMatch)->PossibleMatchRange(min, max, maxlen);
2130 }
2131
2132 } // namespace re2
2133