1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 **********************************************************************
5 * Copyright (c) 2003-2008, International Business Machines
6 * Corporation and others. All Rights Reserved.
7 **********************************************************************
8 * Author: Alan Liu
9 * Created: September 2 2003
10 * Since: ICU 2.8
11 **********************************************************************
12 */
13
14 #include "gregoimp.h"
15
16 #if !UCONFIG_NO_FORMATTING
17
18 #include "unicode/ucal.h"
19 #include "uresimp.h"
20 #include "cstring.h"
21 #include "uassert.h"
22
23 U_NAMESPACE_BEGIN
24
floorDivide(int32_t numerator,int32_t denominator)25 int32_t ClockMath::floorDivide(int32_t numerator, int32_t denominator) {
26 return (numerator >= 0) ?
27 numerator / denominator : ((numerator + 1) / denominator) - 1;
28 }
29
floorDivide(int64_t numerator,int64_t denominator)30 int64_t ClockMath::floorDivide(int64_t numerator, int64_t denominator) {
31 return (numerator >= 0) ?
32 numerator / denominator : ((numerator + 1) / denominator) - 1;
33 }
34
floorDivide(double numerator,int32_t denominator,int32_t * remainder)35 int32_t ClockMath::floorDivide(double numerator, int32_t denominator,
36 int32_t* remainder) {
37 // For an integer n and representable ⌊x/n⌋, ⌊RN(x/n)⌋=⌊x/n⌋, where RN is
38 // rounding to nearest.
39 double quotient = uprv_floor(numerator / denominator);
40 if (remainder != nullptr) {
41 // For doubles x and n, where n is an integer and ⌊x+n⌋ < 2³¹, the
42 // expression `(int32_t) (x + n)` evaluated with rounding to nearest
43 // differs from ⌊x+n⌋ if 0 < ⌈x⌉−x ≪ x+n, as `x + n` is rounded up to
44 // n+⌈x⌉ = ⌊x+n⌋ + 1. Rewriting it as ⌊x⌋+n makes the addition exact.
45 *remainder = (int32_t) (uprv_floor(numerator) - (quotient * denominator));
46 }
47 return (int32_t) quotient;
48 }
49
floorDivide(double dividend,double divisor,double * remainder)50 double ClockMath::floorDivide(double dividend, double divisor,
51 double* remainder) {
52 // Only designed to work for positive divisors
53 U_ASSERT(divisor > 0);
54 double quotient = floorDivide(dividend, divisor);
55 double r = dividend - (quotient * divisor);
56 // N.B. For certain large dividends, on certain platforms, there
57 // is a bug such that the quotient is off by one. If you doubt
58 // this to be true, set a breakpoint below and run cintltst.
59 if (r < 0 || r >= divisor) {
60 // E.g. 6.7317038241449352e+022 / 86400000.0 is wrong on my
61 // machine (too high by one). 4.1792057231752762e+024 /
62 // 86400000.0 is wrong the other way (too low).
63 double q = quotient;
64 quotient += (r < 0) ? -1 : +1;
65 if (q == quotient) {
66 // For quotients > ~2^53, we won't be able to add or
67 // subtract one, since the LSB of the mantissa will be >
68 // 2^0; that is, the exponent (base 2) will be larger than
69 // the length, in bits, of the mantissa. In that case, we
70 // can't give a correct answer, so we set the remainder to
71 // zero. This has the desired effect of making extreme
72 // values give back an approximate answer rather than
73 // crashing. For example, UDate values above a ~10^25
74 // might all have a time of midnight.
75 r = 0;
76 } else {
77 r = dividend - (quotient * divisor);
78 }
79 }
80 U_ASSERT(0 <= r && r < divisor);
81 if (remainder != nullptr) {
82 *remainder = r;
83 }
84 return quotient;
85 }
86
87 const int32_t JULIAN_1_CE = 1721426; // January 1, 1 CE Gregorian
88 const int32_t JULIAN_1970_CE = 2440588; // January 1, 1970 CE Gregorian
89
90 const int16_t Grego::DAYS_BEFORE[24] =
91 {0,31,59,90,120,151,181,212,243,273,304,334,
92 0,31,60,91,121,152,182,213,244,274,305,335};
93
94 const int8_t Grego::MONTH_LENGTH[24] =
95 {31,28,31,30,31,30,31,31,30,31,30,31,
96 31,29,31,30,31,30,31,31,30,31,30,31};
97
fieldsToDay(int32_t year,int32_t month,int32_t dom)98 double Grego::fieldsToDay(int32_t year, int32_t month, int32_t dom) {
99
100 int32_t y = year - 1;
101
102 double julian = 365 * y + ClockMath::floorDivide(y, 4) + (JULIAN_1_CE - 3) + // Julian cal
103 ClockMath::floorDivide(y, 400) - ClockMath::floorDivide(y, 100) + 2 + // => Gregorian cal
104 DAYS_BEFORE[month + (isLeapYear(year) ? 12 : 0)] + dom; // => month/dom
105
106 return julian - JULIAN_1970_CE; // JD => epoch day
107 }
108
dayToFields(double day,int32_t & year,int32_t & month,int32_t & dom,int32_t & dow,int32_t & doy)109 void Grego::dayToFields(double day, int32_t& year, int32_t& month,
110 int32_t& dom, int32_t& dow, int32_t& doy) {
111
112 // Convert from 1970 CE epoch to 1 CE epoch (Gregorian calendar)
113 day += JULIAN_1970_CE - JULIAN_1_CE;
114
115 // Convert from the day number to the multiple radix
116 // representation. We use 400-year, 100-year, and 4-year cycles.
117 // For example, the 4-year cycle has 4 years + 1 leap day; giving
118 // 1461 == 365*4 + 1 days.
119 int32_t n400 = ClockMath::floorDivide(day, 146097, &doy); // 400-year cycle length
120 int32_t n100 = ClockMath::floorDivide(doy, 36524, &doy); // 100-year cycle length
121 int32_t n4 = ClockMath::floorDivide(doy, 1461, &doy); // 4-year cycle length
122 int32_t n1 = ClockMath::floorDivide(doy, 365, &doy);
123 year = 400*n400 + 100*n100 + 4*n4 + n1;
124 if (n100 == 4 || n1 == 4) {
125 doy = 365; // Dec 31 at end of 4- or 400-year cycle
126 } else {
127 ++year;
128 }
129
130 UBool isLeap = isLeapYear(year);
131
132 // Gregorian day zero is a Monday.
133 dow = (int32_t) uprv_fmod(day + 1, 7);
134 dow += (dow < 0) ? (UCAL_SUNDAY + 7) : UCAL_SUNDAY;
135
136 // Common Julian/Gregorian calculation
137 int32_t correction = 0;
138 int32_t march1 = isLeap ? 60 : 59; // zero-based DOY for March 1
139 if (doy >= march1) {
140 correction = isLeap ? 1 : 2;
141 }
142 month = (12 * (doy + correction) + 6) / 367; // zero-based month
143 dom = doy - DAYS_BEFORE[month + (isLeap ? 12 : 0)] + 1; // one-based DOM
144 doy++; // one-based doy
145 }
146
timeToFields(UDate time,int32_t & year,int32_t & month,int32_t & dom,int32_t & dow,int32_t & doy,int32_t & mid)147 void Grego::timeToFields(UDate time, int32_t& year, int32_t& month,
148 int32_t& dom, int32_t& dow, int32_t& doy, int32_t& mid) {
149 double millisInDay;
150 double day = ClockMath::floorDivide((double)time, (double)U_MILLIS_PER_DAY, &millisInDay);
151 mid = (int32_t)millisInDay;
152 dayToFields(day, year, month, dom, dow, doy);
153 }
154
dayOfWeek(double day)155 int32_t Grego::dayOfWeek(double day) {
156 int32_t dow;
157 ClockMath::floorDivide(day + int{UCAL_THURSDAY}, 7, &dow);
158 return (dow == 0) ? UCAL_SATURDAY : dow;
159 }
160
dayOfWeekInMonth(int32_t year,int32_t month,int32_t dom)161 int32_t Grego::dayOfWeekInMonth(int32_t year, int32_t month, int32_t dom) {
162 int32_t weekInMonth = (dom + 6)/7;
163 if (weekInMonth == 4) {
164 if (dom + 7 > monthLength(year, month)) {
165 weekInMonth = -1;
166 }
167 } else if (weekInMonth == 5) {
168 weekInMonth = -1;
169 }
170 return weekInMonth;
171 }
172
173 U_NAMESPACE_END
174
175 #endif
176 //eof
177