xref: /aosp_15_r20/external/cronet/third_party/icu/source/common/utext.cpp (revision 6777b5387eb2ff775bb5750e3f5d96f37fb7352b)
1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 *******************************************************************************
5 *
6 *   Copyright (C) 2005-2016, International Business Machines
7 *   Corporation and others.  All Rights Reserved.
8 *
9 *******************************************************************************
10 *   file name:  utext.cpp
11 *   encoding:   UTF-8
12 *   tab size:   8 (not used)
13 *   indentation:4
14 *
15 *   created on: 2005apr12
16 *   created by: Markus W. Scherer
17 */
18 
19 #include <cstddef>
20 
21 #include "unicode/utypes.h"
22 #include "unicode/ustring.h"
23 #include "unicode/unistr.h"
24 #include "unicode/chariter.h"
25 #include "unicode/utext.h"
26 #include "unicode/utf.h"
27 #include "unicode/utf8.h"
28 #include "unicode/utf16.h"
29 #include "ustr_imp.h"
30 #include "cmemory.h"
31 #include "cstring.h"
32 #include "uassert.h"
33 #include "putilimp.h"
34 
35 U_NAMESPACE_USE
36 
37 #define I32_FLAG(bitIndex) ((int32_t)1<<(bitIndex))
38 
39 
40 static UBool
utext_access(UText * ut,int64_t index,UBool forward)41 utext_access(UText *ut, int64_t index, UBool forward) {
42     return ut->pFuncs->access(ut, index, forward);
43 }
44 
45 
46 
47 U_CAPI UBool U_EXPORT2
utext_moveIndex32(UText * ut,int32_t delta)48 utext_moveIndex32(UText *ut, int32_t delta) {
49     UChar32  c;
50     if (delta > 0) {
51         do {
52             if(ut->chunkOffset>=ut->chunkLength && !utext_access(ut, ut->chunkNativeLimit, true)) {
53                 return false;
54             }
55             c = ut->chunkContents[ut->chunkOffset];
56             if (U16_IS_SURROGATE(c)) {
57                 c = utext_next32(ut);
58                 if (c == U_SENTINEL) {
59                     return false;
60                 }
61             } else {
62                 ut->chunkOffset++;
63             }
64         } while(--delta>0);
65 
66     } else if (delta<0) {
67         do {
68             if(ut->chunkOffset<=0 && !utext_access(ut, ut->chunkNativeStart, false)) {
69                 return false;
70             }
71             c = ut->chunkContents[ut->chunkOffset-1];
72             if (U16_IS_SURROGATE(c)) {
73                 c = utext_previous32(ut);
74                 if (c == U_SENTINEL) {
75                     return false;
76                 }
77             } else {
78                 ut->chunkOffset--;
79             }
80         } while(++delta<0);
81     }
82 
83     return true;
84 }
85 
86 
87 U_CAPI int64_t U_EXPORT2
utext_nativeLength(UText * ut)88 utext_nativeLength(UText *ut) {
89     return ut->pFuncs->nativeLength(ut);
90 }
91 
92 
93 U_CAPI UBool U_EXPORT2
utext_isLengthExpensive(const UText * ut)94 utext_isLengthExpensive(const UText *ut) {
95     UBool r = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE)) != 0;
96     return r;
97 }
98 
99 
100 U_CAPI int64_t U_EXPORT2
utext_getNativeIndex(const UText * ut)101 utext_getNativeIndex(const UText *ut) {
102     if(ut->chunkOffset <= ut->nativeIndexingLimit) {
103         return ut->chunkNativeStart+ut->chunkOffset;
104     } else {
105         return ut->pFuncs->mapOffsetToNative(ut);
106     }
107 }
108 
109 
110 U_CAPI void U_EXPORT2
utext_setNativeIndex(UText * ut,int64_t index)111 utext_setNativeIndex(UText *ut, int64_t index) {
112     if(index<ut->chunkNativeStart || index>=ut->chunkNativeLimit) {
113         // The desired position is outside of the current chunk.
114         // Access the new position.  Assume a forward iteration from here,
115         // which will also be optimimum for a single random access.
116         // Reverse iterations may suffer slightly.
117         ut->pFuncs->access(ut, index, true);
118     } else if((int32_t)(index - ut->chunkNativeStart) <= ut->nativeIndexingLimit) {
119         // utf-16 indexing.
120         ut->chunkOffset=(int32_t)(index-ut->chunkNativeStart);
121     } else {
122          ut->chunkOffset=ut->pFuncs->mapNativeIndexToUTF16(ut, index);
123     }
124     // The convention is that the index must always be on a code point boundary.
125     // Adjust the index position if it is in the middle of a surrogate pair.
126     if (ut->chunkOffset<ut->chunkLength) {
127         char16_t c= ut->chunkContents[ut->chunkOffset];
128         if (U16_IS_TRAIL(c)) {
129             if (ut->chunkOffset==0) {
130                 ut->pFuncs->access(ut, ut->chunkNativeStart, false);
131             }
132             if (ut->chunkOffset>0) {
133                 char16_t lead = ut->chunkContents[ut->chunkOffset-1];
134                 if (U16_IS_LEAD(lead)) {
135                     ut->chunkOffset--;
136                 }
137             }
138         }
139     }
140 }
141 
142 
143 
144 U_CAPI int64_t U_EXPORT2
utext_getPreviousNativeIndex(UText * ut)145 utext_getPreviousNativeIndex(UText *ut) {
146     //
147     //  Fast-path the common case.
148     //     Common means current position is not at the beginning of a chunk
149     //     and the preceding character is not supplementary.
150     //
151     int32_t i = ut->chunkOffset - 1;
152     int64_t result;
153     if (i >= 0) {
154         char16_t c = ut->chunkContents[i];
155         if (U16_IS_TRAIL(c) == false) {
156             if (i <= ut->nativeIndexingLimit) {
157                 result = ut->chunkNativeStart + i;
158             } else {
159                 ut->chunkOffset = i;
160                 result = ut->pFuncs->mapOffsetToNative(ut);
161                 ut->chunkOffset++;
162             }
163             return result;
164         }
165     }
166 
167     // If at the start of text, simply return 0.
168     if (ut->chunkOffset==0 && ut->chunkNativeStart==0) {
169         return 0;
170     }
171 
172     // Harder, less common cases.  We are at a chunk boundary, or on a surrogate.
173     //    Keep it simple, use other functions to handle the edges.
174     //
175     utext_previous32(ut);
176     result = UTEXT_GETNATIVEINDEX(ut);
177     utext_next32(ut);
178     return result;
179 }
180 
181 
182 //
183 //  utext_current32.  Get the UChar32 at the current position.
184 //                    UText iteration position is always on a code point boundary,
185 //                    never on the trail half of a surrogate pair.
186 //
187 U_CAPI UChar32 U_EXPORT2
utext_current32(UText * ut)188 utext_current32(UText *ut) {
189     UChar32  c;
190     if (ut->chunkOffset==ut->chunkLength) {
191         // Current position is just off the end of the chunk.
192         if (ut->pFuncs->access(ut, ut->chunkNativeLimit, true) == false) {
193             // Off the end of the text.
194             return U_SENTINEL;
195         }
196     }
197 
198     c = ut->chunkContents[ut->chunkOffset];
199     if (U16_IS_LEAD(c) == false) {
200         // Normal, non-supplementary case.
201         return c;
202     }
203 
204     //
205     //  Possible supplementary char.
206     //
207     UChar32   trail = 0;
208     UChar32   supplementaryC = c;
209     if ((ut->chunkOffset+1) < ut->chunkLength) {
210         // The trail surrogate is in the same chunk.
211         trail = ut->chunkContents[ut->chunkOffset+1];
212     } else {
213         //  The trail surrogate is in a different chunk.
214         //     Because we must maintain the iteration position, we need to switch forward
215         //     into the new chunk, get the trail surrogate, then revert the chunk back to the
216         //     original one.
217         //     An edge case to be careful of:  the entire text may end with an unpaired
218         //        leading surrogate.  The attempt to access the trail will fail, but
219         //        the original position before the unpaired lead still needs to be restored.
220         int64_t  nativePosition = ut->chunkNativeLimit;
221         if (ut->pFuncs->access(ut, nativePosition, true)) {
222             trail = ut->chunkContents[ut->chunkOffset];
223         }
224         UBool r = ut->pFuncs->access(ut, nativePosition, false);  // reverse iteration flag loads preceding chunk
225         U_ASSERT(r);
226         // Here we need to restore chunkOffset since the access functions were called with
227         // chunkNativeLimit but that is not where we were (we were 1 code unit before the
228         // limit). Restoring was originally added in ICU-4669 but did not support access
229         // functions that changed the chunk size, the following does.
230         ut->chunkOffset = ut->chunkLength - 1;
231         if(!r) {
232             return U_SENTINEL;
233         }
234     }
235 
236     if (U16_IS_TRAIL(trail)) {
237         supplementaryC = U16_GET_SUPPLEMENTARY(c, trail);
238     }
239     return supplementaryC;
240 
241 }
242 
243 
244 U_CAPI UChar32 U_EXPORT2
utext_char32At(UText * ut,int64_t nativeIndex)245 utext_char32At(UText *ut, int64_t nativeIndex) {
246     UChar32 c = U_SENTINEL;
247 
248     // Fast path the common case.
249     if (nativeIndex>=ut->chunkNativeStart && nativeIndex < ut->chunkNativeStart + ut->nativeIndexingLimit) {
250         ut->chunkOffset = (int32_t)(nativeIndex - ut->chunkNativeStart);
251         c = ut->chunkContents[ut->chunkOffset];
252         if (U16_IS_SURROGATE(c) == false) {
253             return c;
254         }
255     }
256 
257 
258     utext_setNativeIndex(ut, nativeIndex);
259     if (nativeIndex>=ut->chunkNativeStart && ut->chunkOffset<ut->chunkLength) {
260         c = ut->chunkContents[ut->chunkOffset];
261         if (U16_IS_SURROGATE(c)) {
262             // For surrogates, let current32() deal with the complications
263             //    of supplementaries that may span chunk boundaries.
264             c = utext_current32(ut);
265         }
266     }
267     return c;
268 }
269 
270 
271 U_CAPI UChar32 U_EXPORT2
utext_next32(UText * ut)272 utext_next32(UText *ut) {
273     UChar32       c;
274 
275     if (ut->chunkOffset >= ut->chunkLength) {
276         if (ut->pFuncs->access(ut, ut->chunkNativeLimit, true) == false) {
277             return U_SENTINEL;
278         }
279     }
280 
281     c = ut->chunkContents[ut->chunkOffset++];
282     if (U16_IS_LEAD(c) == false) {
283         // Normal case, not supplementary.
284         //   (A trail surrogate seen here is just returned as is, as a surrogate value.
285         //    It cannot be part of a pair.)
286         return c;
287     }
288 
289     if (ut->chunkOffset >= ut->chunkLength) {
290         if (ut->pFuncs->access(ut, ut->chunkNativeLimit, true) == false) {
291             // c is an unpaired lead surrogate at the end of the text.
292             // return it as it is.
293             return c;
294         }
295     }
296     UChar32 trail = ut->chunkContents[ut->chunkOffset];
297     if (U16_IS_TRAIL(trail) == false) {
298         // c was an unpaired lead surrogate, not at the end of the text.
299         // return it as it is (unpaired).  Iteration position is on the
300         // following character, possibly in the next chunk, where the
301         //  trail surrogate would have been if it had existed.
302         return c;
303     }
304 
305     UChar32 supplementary = U16_GET_SUPPLEMENTARY(c, trail);
306     ut->chunkOffset++;   // move iteration position over the trail surrogate.
307     return supplementary;
308     }
309 
310 
311 U_CAPI UChar32 U_EXPORT2
utext_previous32(UText * ut)312 utext_previous32(UText *ut) {
313     UChar32       c;
314 
315     if (ut->chunkOffset <= 0) {
316         if (ut->pFuncs->access(ut, ut->chunkNativeStart, false) == false) {
317             return U_SENTINEL;
318         }
319     }
320     ut->chunkOffset--;
321     c = ut->chunkContents[ut->chunkOffset];
322     if (U16_IS_TRAIL(c) == false) {
323         // Normal case, not supplementary.
324         //   (A lead surrogate seen here is just returned as is, as a surrogate value.
325         //    It cannot be part of a pair.)
326         return c;
327     }
328 
329     if (ut->chunkOffset <= 0) {
330         if (ut->pFuncs->access(ut, ut->chunkNativeStart, false) == false) {
331             // c is an unpaired trail surrogate at the start of the text.
332             // return it as it is.
333             return c;
334         }
335     }
336 
337     UChar32 lead = ut->chunkContents[ut->chunkOffset-1];
338     if (U16_IS_LEAD(lead) == false) {
339         // c was an unpaired trail surrogate, not at the end of the text.
340         // return it as it is (unpaired).  Iteration position is at c
341         return c;
342     }
343 
344     UChar32 supplementary = U16_GET_SUPPLEMENTARY(lead, c);
345     ut->chunkOffset--;   // move iteration position over the lead surrogate.
346     return supplementary;
347 }
348 
349 
350 
351 U_CAPI UChar32 U_EXPORT2
utext_next32From(UText * ut,int64_t index)352 utext_next32From(UText *ut, int64_t index) {
353     UChar32       c      = U_SENTINEL;
354 
355     if(index<ut->chunkNativeStart || index>=ut->chunkNativeLimit) {
356         // Desired position is outside of the current chunk.
357         if(!ut->pFuncs->access(ut, index, true)) {
358             // no chunk available here
359             return U_SENTINEL;
360         }
361     } else if (index - ut->chunkNativeStart  <= (int64_t)ut->nativeIndexingLimit) {
362         // Desired position is in chunk, with direct 1:1 native to UTF16 indexing
363         ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart);
364     } else {
365         // Desired position is in chunk, with non-UTF16 indexing.
366         ut->chunkOffset = ut->pFuncs->mapNativeIndexToUTF16(ut, index);
367     }
368 
369     c = ut->chunkContents[ut->chunkOffset++];
370     if (U16_IS_SURROGATE(c)) {
371         // Surrogates.  Many edge cases.  Use other functions that already
372         //              deal with the problems.
373         utext_setNativeIndex(ut, index);
374         c = utext_next32(ut);
375     }
376     return c;
377 }
378 
379 
380 U_CAPI UChar32 U_EXPORT2
utext_previous32From(UText * ut,int64_t index)381 utext_previous32From(UText *ut, int64_t index) {
382     //
383     //  Return the character preceding the specified index.
384     //  Leave the iteration position at the start of the character that was returned.
385     //
386     UChar32     cPrev;    // The character preceding cCurr, which is what we will return.
387 
388     // Address the chunk containing the position preceding the incoming index
389     // A tricky edge case:
390     //   We try to test the requested native index against the chunkNativeStart to determine
391     //    whether the character preceding the one at the index is in the current chunk.
392     //    BUT, this test can fail with UTF-8 (or any other multibyte encoding), when the
393     //    requested index is on something other than the first position of the first char.
394     //
395     if(index<=ut->chunkNativeStart || index>ut->chunkNativeLimit) {
396         // Requested native index is outside of the current chunk.
397         if(!ut->pFuncs->access(ut, index, false)) {
398             // no chunk available here
399             return U_SENTINEL;
400         }
401     } else if(index - ut->chunkNativeStart <= (int64_t)ut->nativeIndexingLimit) {
402         // Direct UTF-16 indexing.
403         ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart);
404     } else {
405         ut->chunkOffset=ut->pFuncs->mapNativeIndexToUTF16(ut, index);
406         if (ut->chunkOffset==0 && !ut->pFuncs->access(ut, index, false)) {
407             // no chunk available here
408             return U_SENTINEL;
409         }
410     }
411 
412     //
413     // Simple case with no surrogates.
414     //
415     ut->chunkOffset--;
416     cPrev = ut->chunkContents[ut->chunkOffset];
417 
418     if (U16_IS_SURROGATE(cPrev)) {
419         // Possible supplementary.  Many edge cases.
420         // Let other functions do the heavy lifting.
421         utext_setNativeIndex(ut, index);
422         cPrev = utext_previous32(ut);
423     }
424     return cPrev;
425 }
426 
427 
428 U_CAPI int32_t U_EXPORT2
utext_extract(UText * ut,int64_t start,int64_t limit,char16_t * dest,int32_t destCapacity,UErrorCode * status)429 utext_extract(UText *ut,
430              int64_t start, int64_t limit,
431              char16_t *dest, int32_t destCapacity,
432              UErrorCode *status) {
433                  return ut->pFuncs->extract(ut, start, limit, dest, destCapacity, status);
434              }
435 
436 
437 
438 U_CAPI UBool U_EXPORT2
utext_equals(const UText * a,const UText * b)439 utext_equals(const UText *a, const UText *b) {
440     if (a==nullptr || b==nullptr ||
441         a->magic != UTEXT_MAGIC ||
442         b->magic != UTEXT_MAGIC) {
443             // Null or invalid arguments don't compare equal to anything.
444             return false;
445     }
446 
447     if (a->pFuncs != b->pFuncs) {
448         // Different types of text providers.
449         return false;
450     }
451 
452     if (a->context != b->context) {
453         // Different sources (different strings)
454         return false;
455     }
456     if (utext_getNativeIndex(a) != utext_getNativeIndex(b)) {
457         // Different current position in the string.
458         return false;
459     }
460 
461     return true;
462 }
463 
464 U_CAPI UBool U_EXPORT2
utext_isWritable(const UText * ut)465 utext_isWritable(const UText *ut)
466 {
467     UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) != 0;
468     return b;
469 }
470 
471 
472 U_CAPI void U_EXPORT2
utext_freeze(UText * ut)473 utext_freeze(UText *ut) {
474     // Zero out the WRITABLE flag.
475     ut->providerProperties &= ~(I32_FLAG(UTEXT_PROVIDER_WRITABLE));
476 }
477 
478 
479 U_CAPI UBool U_EXPORT2
utext_hasMetaData(const UText * ut)480 utext_hasMetaData(const UText *ut)
481 {
482     UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA)) != 0;
483     return b;
484 }
485 
486 
487 
488 U_CAPI int32_t U_EXPORT2
utext_replace(UText * ut,int64_t nativeStart,int64_t nativeLimit,const char16_t * replacementText,int32_t replacementLength,UErrorCode * status)489 utext_replace(UText *ut,
490              int64_t nativeStart, int64_t nativeLimit,
491              const char16_t *replacementText, int32_t replacementLength,
492              UErrorCode *status)
493 {
494     if (U_FAILURE(*status)) {
495         return 0;
496     }
497     if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) {
498         *status = U_NO_WRITE_PERMISSION;
499         return 0;
500     }
501     int32_t i = ut->pFuncs->replace(ut, nativeStart, nativeLimit, replacementText, replacementLength, status);
502     return i;
503 }
504 
505 U_CAPI void U_EXPORT2
utext_copy(UText * ut,int64_t nativeStart,int64_t nativeLimit,int64_t destIndex,UBool move,UErrorCode * status)506 utext_copy(UText *ut,
507           int64_t nativeStart, int64_t nativeLimit,
508           int64_t destIndex,
509           UBool move,
510           UErrorCode *status)
511 {
512     if (U_FAILURE(*status)) {
513         return;
514     }
515     if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) {
516         *status = U_NO_WRITE_PERMISSION;
517         return;
518     }
519     ut->pFuncs->copy(ut, nativeStart, nativeLimit, destIndex, move, status);
520 }
521 
522 
523 
524 U_CAPI UText * U_EXPORT2
utext_clone(UText * dest,const UText * src,UBool deep,UBool readOnly,UErrorCode * status)525 utext_clone(UText *dest, const UText *src, UBool deep, UBool readOnly, UErrorCode *status) {
526     if (U_FAILURE(*status)) {
527         return dest;
528     }
529     UText *result = src->pFuncs->clone(dest, src, deep, status);
530     if (U_FAILURE(*status)) {
531         return result;
532     }
533     if (result == nullptr) {
534         *status = U_MEMORY_ALLOCATION_ERROR;
535         return result;
536     }
537     if (readOnly) {
538         utext_freeze(result);
539     }
540     return result;
541 }
542 
543 
544 
545 //------------------------------------------------------------------------------
546 //
547 //   UText common functions implementation
548 //
549 //------------------------------------------------------------------------------
550 
551 //
552 //  UText.flags bit definitions
553 //
554 enum {
555     UTEXT_HEAP_ALLOCATED  = 1,      //  1 if ICU has allocated this UText struct on the heap.
556                                     //  0 if caller provided storage for the UText.
557 
558     UTEXT_EXTRA_HEAP_ALLOCATED = 2, //  1 if ICU has allocated extra storage as a separate
559                                     //     heap block.
560                                     //  0 if there is no separate allocation.  Either no extra
561                                     //     storage was requested, or it is appended to the end
562                                     //     of the main UText storage.
563 
564     UTEXT_OPEN = 4                  //  1 if this UText is currently open
565                                     //  0 if this UText is not open.
566 };
567 
568 
569 //
570 //  Extended form of a UText.  The purpose is to aid in computing the total size required
571 //    when a provider asks for a UText to be allocated with extra storage.
572 
573 struct ExtendedUText {
574     UText               ut;
575     std::max_align_t    extension;
576 };
577 
578 static const UText emptyText = UTEXT_INITIALIZER;
579 
580 U_CAPI UText * U_EXPORT2
utext_setup(UText * ut,int32_t extraSpace,UErrorCode * status)581 utext_setup(UText *ut, int32_t extraSpace, UErrorCode *status) {
582     if (U_FAILURE(*status)) {
583         return ut;
584     }
585 
586     if (ut == nullptr) {
587         // We need to heap-allocate storage for the new UText
588         int32_t spaceRequired = sizeof(UText);
589         if (extraSpace > 0) {
590             spaceRequired = sizeof(ExtendedUText) + extraSpace - sizeof(std::max_align_t);
591         }
592         ut = (UText *)uprv_malloc(spaceRequired);
593         if (ut == nullptr) {
594             *status = U_MEMORY_ALLOCATION_ERROR;
595             return nullptr;
596         } else {
597             *ut = emptyText;
598             ut->flags |= UTEXT_HEAP_ALLOCATED;
599             if (spaceRequired>0) {
600                 ut->extraSize = extraSpace;
601                 ut->pExtra    = &((ExtendedUText *)ut)->extension;
602             }
603         }
604     } else {
605         // We have been supplied with an already existing UText.
606         // Verify that it really appears to be a UText.
607         if (ut->magic != UTEXT_MAGIC) {
608             *status = U_ILLEGAL_ARGUMENT_ERROR;
609             return ut;
610         }
611         // If the ut is already open and there's a provider supplied close
612         //   function, call it.
613         if ((ut->flags & UTEXT_OPEN) && ut->pFuncs->close != nullptr)  {
614             ut->pFuncs->close(ut);
615         }
616         ut->flags &= ~UTEXT_OPEN;
617 
618         // If extra space was requested by our caller, check whether
619         //   sufficient already exists, and allocate new if needed.
620         if (extraSpace > ut->extraSize) {
621             // Need more space.  If there is existing separately allocated space,
622             //   delete it first, then allocate new space.
623             if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) {
624                 uprv_free(ut->pExtra);
625                 ut->extraSize = 0;
626             }
627             ut->pExtra = uprv_malloc(extraSpace);
628             if (ut->pExtra == nullptr) {
629                 *status = U_MEMORY_ALLOCATION_ERROR;
630             } else {
631                 ut->extraSize = extraSpace;
632                 ut->flags |= UTEXT_EXTRA_HEAP_ALLOCATED;
633             }
634         }
635     }
636     if (U_SUCCESS(*status)) {
637         ut->flags |= UTEXT_OPEN;
638 
639         // Initialize all remaining fields of the UText.
640         //
641         ut->context             = nullptr;
642         ut->chunkContents       = nullptr;
643         ut->p                   = nullptr;
644         ut->q                   = nullptr;
645         ut->r                   = nullptr;
646         ut->a                   = 0;
647         ut->b                   = 0;
648         ut->c                   = 0;
649         ut->chunkOffset         = 0;
650         ut->chunkLength         = 0;
651         ut->chunkNativeStart    = 0;
652         ut->chunkNativeLimit    = 0;
653         ut->nativeIndexingLimit = 0;
654         ut->providerProperties  = 0;
655         ut->privA               = 0;
656         ut->privB               = 0;
657         ut->privC               = 0;
658         ut->privP               = nullptr;
659         if (ut->pExtra!=nullptr && ut->extraSize>0)
660             uprv_memset(ut->pExtra, 0, ut->extraSize);
661 
662     }
663     return ut;
664 }
665 
666 
667 U_CAPI UText * U_EXPORT2
utext_close(UText * ut)668 utext_close(UText *ut) {
669     if (ut==nullptr ||
670         ut->magic != UTEXT_MAGIC ||
671         (ut->flags & UTEXT_OPEN) == 0)
672     {
673         // The supplied ut is not an open UText.
674         // Do nothing.
675         return ut;
676     }
677 
678     // If the provider gave us a close function, call it now.
679     // This will clean up anything allocated specifically by the provider.
680     if (ut->pFuncs->close != nullptr) {
681         ut->pFuncs->close(ut);
682     }
683     ut->flags &= ~UTEXT_OPEN;
684 
685     // If we (the framework) allocated the UText or subsidiary storage,
686     //   delete it.
687     if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) {
688         uprv_free(ut->pExtra);
689         ut->pExtra = nullptr;
690         ut->flags &= ~UTEXT_EXTRA_HEAP_ALLOCATED;
691         ut->extraSize = 0;
692     }
693 
694     // Zero out function table of the closed UText.  This is a defensive move,
695     //   intended to cause applications that inadvertently use a closed
696     //   utext to crash with null pointer errors.
697     ut->pFuncs        = nullptr;
698 
699     if (ut->flags & UTEXT_HEAP_ALLOCATED) {
700         // This UText was allocated by UText setup.  We need to free it.
701         // Clear magic, so we can detect if the user messes up and immediately
702         //  tries to reopen another UText using the deleted storage.
703         ut->magic = 0;
704         uprv_free(ut);
705         ut = nullptr;
706     }
707     return ut;
708 }
709 
710 
711 
712 
713 //
714 // invalidateChunk   Reset a chunk to have no contents, so that the next call
715 //                   to access will cause new data to load.
716 //                   This is needed when copy/move/replace operate directly on the
717 //                   backing text, potentially putting it out of sync with the
718 //                   contents in the chunk.
719 //
720 static void
invalidateChunk(UText * ut)721 invalidateChunk(UText *ut) {
722     ut->chunkLength = 0;
723     ut->chunkNativeLimit = 0;
724     ut->chunkNativeStart = 0;
725     ut->chunkOffset = 0;
726     ut->nativeIndexingLimit = 0;
727 }
728 
729 //
730 // pinIndex        Do range pinning on a native index parameter.
731 //                 64 bit pinning is done in place.
732 //                 32 bit truncated result is returned as a convenience for
733 //                        use in providers that don't need 64 bits.
734 static int32_t
pinIndex(int64_t & index,int64_t limit)735 pinIndex(int64_t &index, int64_t limit) {
736     if (index<0) {
737         index = 0;
738     } else if (index > limit) {
739         index = limit;
740     }
741     return (int32_t)index;
742 }
743 
744 
745 U_CDECL_BEGIN
746 
747 //
748 // Pointer relocation function,
749 //   a utility used by shallow clone.
750 //   Adjust a pointer that refers to something within one UText (the source)
751 //   to refer to the same relative offset within a another UText (the target)
752 //
adjustPointer(UText * dest,const void ** destPtr,const UText * src)753 static void adjustPointer(UText *dest, const void **destPtr, const UText *src) {
754     // convert all pointers to (char *) so that byte address arithmetic will work.
755     char  *dptr = (char *)*destPtr;
756     char  *dUText = (char *)dest;
757     char  *sUText = (char *)src;
758 
759     if (dptr >= (char *)src->pExtra && dptr < ((char*)src->pExtra)+src->extraSize) {
760         // target ptr was to something within the src UText's pExtra storage.
761         //   relocate it into the target UText's pExtra region.
762         *destPtr = ((char *)dest->pExtra) + (dptr - (char *)src->pExtra);
763     } else if (dptr>=sUText && dptr < sUText+src->sizeOfStruct) {
764         // target ptr was pointing to somewhere within the source UText itself.
765         //   Move it to the same offset within the target UText.
766         *destPtr = dUText + (dptr-sUText);
767     }
768 }
769 
770 
771 //
772 //  Clone.  This is a generic copy-the-utext-by-value clone function that can be
773 //          used as-is with some utext types, and as a helper by other clones.
774 //
775 static UText * U_CALLCONV
shallowTextClone(UText * dest,const UText * src,UErrorCode * status)776 shallowTextClone(UText * dest, const UText * src, UErrorCode * status) {
777     if (U_FAILURE(*status)) {
778         return nullptr;
779     }
780     int32_t  srcExtraSize = src->extraSize;
781 
782     //
783     // Use the generic text_setup to allocate storage if required.
784     //
785     dest = utext_setup(dest, srcExtraSize, status);
786     if (U_FAILURE(*status)) {
787         return dest;
788     }
789 
790     //
791     //  flags (how the UText was allocated) and the pointer to the
792     //   extra storage must retain the values in the cloned utext that
793     //   were set up by utext_setup.  Save them separately before
794     //   copying the whole struct.
795     //
796     void *destExtra = dest->pExtra;
797     int32_t flags   = dest->flags;
798 
799 
800     //
801     //  Copy the whole UText struct by value.
802     //  Any "Extra" storage is copied also.
803     //
804     int sizeToCopy = src->sizeOfStruct;
805     if (sizeToCopy > dest->sizeOfStruct) {
806         sizeToCopy = dest->sizeOfStruct;
807     }
808     uprv_memcpy(dest, src, sizeToCopy);
809     dest->pExtra = destExtra;
810     dest->flags  = flags;
811     if (srcExtraSize > 0) {
812         uprv_memcpy(dest->pExtra, src->pExtra, srcExtraSize);
813     }
814 
815     //
816     // Relocate any pointers in the target that refer to the UText itself
817     //   to point to the cloned copy rather than the original source.
818     //
819     adjustPointer(dest, &dest->context, src);
820     adjustPointer(dest, &dest->p, src);
821     adjustPointer(dest, &dest->q, src);
822     adjustPointer(dest, &dest->r, src);
823     adjustPointer(dest, (const void **)&dest->chunkContents, src);
824 
825     // The newly shallow-cloned UText does _not_ own the underlying storage for the text.
826     // (The source for the clone may or may not have owned the text.)
827 
828     dest->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
829 
830     return dest;
831 }
832 
833 
834 U_CDECL_END
835 
836 
837 
838 //------------------------------------------------------------------------------
839 //
840 //     UText implementation for UTF-8 char * strings (read-only)
841 //     Limitation:  string length must be <= 0x7fffffff in length.
842 //                  (length must for in an int32_t variable)
843 //
844 //         Use of UText data members:
845 //              context    pointer to UTF-8 string
846 //              utext.b    is the input string length (bytes).
847 //              utext.c    Length scanned so far in string
848 //                           (for optimizing finding length of zero terminated strings.)
849 //              utext.p    pointer to the current buffer
850 //              utext.q    pointer to the other buffer.
851 //
852 //------------------------------------------------------------------------------
853 
854 // Chunk size.
855 //     Must be less than 85 (256/3), because of byte mapping from char16_t indexes to native indexes.
856 //     Worst case is three native bytes to one char16_t.  (Supplemenaries are 4 native bytes
857 //     to two UChars.)
858 //     The longest illegal byte sequence treated as a single error (and converted to U+FFFD)
859 //     is a three-byte sequence (truncated four-byte sequence).
860 //
861 enum { UTF8_TEXT_CHUNK_SIZE=32 };
862 
863 //
864 // UTF8Buf  Two of these structs will be set up in the UText's extra allocated space.
865 //          Each contains the char16_t chunk buffer, the to and from native maps, and
866 //          header info.
867 //
868 //     because backwards iteration fills the buffers starting at the end and
869 //     working towards the front, the filled part of the buffers may not begin
870 //     at the start of the available storage for the buffers.
871 //
872 //     Buffer size is one bigger than the specified UTF8_TEXT_CHUNK_SIZE to allow for
873 //     the last character added being a supplementary, and thus requiring a surrogate
874 //     pair.  Doing this is simpler than checking for the edge case.
875 //
876 
877 struct UTF8Buf {
878     int32_t   bufNativeStart;                        // Native index of first char in char16_t buf
879     int32_t   bufNativeLimit;                        // Native index following last char in buf.
880     int32_t   bufStartIdx;                           // First filled position in buf.
881     int32_t   bufLimitIdx;                           // Limit of filled range in buf.
882     int32_t   bufNILimit;                            // Limit of native indexing part of buf
883     int32_t   toUCharsMapStart;                      // Native index corresponding to
884                                                      //   mapToUChars[0].
885                                                      //   Set to bufNativeStart when filling forwards.
886                                                      //   Set to computed value when filling backwards.
887 
888     char16_t  buf[UTF8_TEXT_CHUNK_SIZE+4];           // The char16_t buffer.  Requires one extra position beyond the
889                                                      //   the chunk size, to allow for surrogate at the end.
890                                                      //   Length must be identical to mapToNative array, below,
891                                                      //   because of the way indexing works when the array is
892                                                      //   filled backwards during a reverse iteration.  Thus,
893                                                      //   the additional extra size.
894     uint8_t   mapToNative[UTF8_TEXT_CHUNK_SIZE+4];   // map char16_t index in buf to
895                                                      //  native offset from bufNativeStart.
896                                                      //  Requires two extra slots,
897                                                      //    one for a supplementary starting in the last normal position,
898                                                      //    and one for an entry for the buffer limit position.
899     uint8_t   mapToUChars[UTF8_TEXT_CHUNK_SIZE*3+6]; // Map native offset from bufNativeStart to
900                                                      //   corresponding offset in filled part of buf.
901     int32_t   align;
902 };
903 
904 U_CDECL_BEGIN
905 
906 //
907 //   utf8TextLength
908 //
909 //        Get the length of the string.  If we don't already know it,
910 //              we'll need to scan for the trailing  nul.
911 //
912 static int64_t U_CALLCONV
utf8TextLength(UText * ut)913 utf8TextLength(UText *ut) {
914     if (ut->b < 0) {
915         // Zero terminated string, and we haven't scanned to the end yet.
916         // Scan it now.
917         const char *r = (const char *)ut->context + ut->c;
918         while (*r != 0) {
919             r++;
920         }
921         if ((r - (const char *)ut->context) < 0x7fffffff) {
922             ut->b = (int32_t)(r - (const char *)ut->context);
923         } else {
924             // Actual string was bigger (more than 2 gig) than we
925             //   can handle.  Clip it to 2 GB.
926             ut->b = 0x7fffffff;
927         }
928         ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
929     }
930     return ut->b;
931 }
932 
933 
934 
935 
936 
937 
938 static UBool U_CALLCONV
utf8TextAccess(UText * ut,int64_t index,UBool forward)939 utf8TextAccess(UText *ut, int64_t index, UBool forward) {
940     //
941     //  Apologies to those who are allergic to goto statements.
942     //    Consider each goto to a labelled block to be the equivalent of
943     //         call the named block as if it were a function();
944     //         return;
945     //
946     const uint8_t *s8=(const uint8_t *)ut->context;
947     UTF8Buf *u8b = nullptr;
948     int32_t  length = ut->b;         // Length of original utf-8
949     int32_t  ix= (int32_t)index;     // Requested index, trimmed to 32 bits.
950     int32_t  mapIndex = 0;
951     if (index<0) {
952         ix=0;
953     } else if (index > 0x7fffffff) {
954         // Strings with 64 bit lengths not supported by this UTF-8 provider.
955         ix = 0x7fffffff;
956     }
957 
958     // Pin requested index to the string length.
959     if (ix>length) {
960         if (length>=0) {
961             ix=length;
962         } else if (ix>=ut->c) {
963             // Zero terminated string, and requested index is beyond
964             //   the region that has already been scanned.
965             //   Scan up to either the end of the string or to the
966             //   requested position, whichever comes first.
967             while (ut->c<ix && s8[ut->c]!=0) {
968                 ut->c++;
969             }
970             //  TODO:  support for null terminated string length > 32 bits.
971             if (s8[ut->c] == 0) {
972                 // We just found the actual length of the string.
973                 //  Trim the requested index back to that.
974                 ix     = ut->c;
975                 ut->b  = ut->c;
976                 length = ut->c;
977                 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
978             }
979         }
980     }
981 
982     //
983     // Dispatch to the appropriate action for a forward iteration request.
984     //
985     if (forward) {
986         if (ix==ut->chunkNativeLimit) {
987             // Check for normal sequential iteration cases first.
988             if (ix==length) {
989                 // Just reached end of string
990                 // Don't swap buffers, but do set the
991                 //   current buffer position.
992                 ut->chunkOffset = ut->chunkLength;
993                 return false;
994             } else {
995                 // End of current buffer.
996                 //   check whether other buffer already has what we need.
997                 UTF8Buf *altB = (UTF8Buf *)ut->q;
998                 if (ix>=altB->bufNativeStart && ix<altB->bufNativeLimit) {
999                     goto swapBuffers;
1000                 }
1001             }
1002         }
1003 
1004         // A random access.  Desired index could be in either or niether buf.
1005         // For optimizing the order of testing, first check for the index
1006         //    being in the other buffer.  This will be the case for uses that
1007         //    move back and forth over a fairly limited range
1008         {
1009             u8b = (UTF8Buf *)ut->q;   // the alternate buffer
1010             if (ix>=u8b->bufNativeStart && ix<u8b->bufNativeLimit) {
1011                 // Requested index is in the other buffer.
1012                 goto swapBuffers;
1013             }
1014             if (ix == length) {
1015                 // Requested index is end-of-string.
1016                 //   (this is the case of randomly seeking to the end.
1017                 //    The case of iterating off the end is handled earlier.)
1018                 if (ix == ut->chunkNativeLimit) {
1019                     // Current buffer extends up to the end of the string.
1020                     //   Leave it as the current buffer.
1021                     ut->chunkOffset = ut->chunkLength;
1022                     return false;
1023                 }
1024                 if (ix == u8b->bufNativeLimit) {
1025                     // Alternate buffer extends to the end of string.
1026                     //   Swap it in as the current buffer.
1027                     goto swapBuffersAndFail;
1028                 }
1029 
1030                 // Neither existing buffer extends to the end of the string.
1031                 goto makeStubBuffer;
1032             }
1033 
1034             if (ix<ut->chunkNativeStart || ix>=ut->chunkNativeLimit) {
1035                 // Requested index is in neither buffer.
1036                 goto fillForward;
1037             }
1038 
1039             // Requested index is in this buffer.
1040             u8b = (UTF8Buf *)ut->p;   // the current buffer
1041             mapIndex = ix - u8b->toUCharsMapStart;
1042             U_ASSERT(mapIndex < (int32_t)sizeof(UTF8Buf::mapToUChars));
1043             ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
1044             return true;
1045 
1046         }
1047     }
1048 
1049 
1050     //
1051     // Dispatch to the appropriate action for a
1052     //   Backwards Direction iteration request.
1053     //
1054     if (ix==ut->chunkNativeStart) {
1055         // Check for normal sequential iteration cases first.
1056         if (ix==0) {
1057             // Just reached the start of string
1058             // Don't swap buffers, but do set the
1059             //   current buffer position.
1060             ut->chunkOffset = 0;
1061             return false;
1062         } else {
1063             // Start of current buffer.
1064             //   check whether other buffer already has what we need.
1065             UTF8Buf *altB = (UTF8Buf *)ut->q;
1066             if (ix>altB->bufNativeStart && ix<=altB->bufNativeLimit) {
1067                 goto swapBuffers;
1068             }
1069         }
1070     }
1071 
1072     // A random access.  Desired index could be in either or niether buf.
1073     // For optimizing the order of testing,
1074     //    Most likely case:  in the other buffer.
1075     //    Second most likely: in neither buffer.
1076     //    Unlikely, but must work:  in the current buffer.
1077     u8b = (UTF8Buf *)ut->q;   // the alternate buffer
1078     if (ix>u8b->bufNativeStart && ix<=u8b->bufNativeLimit) {
1079         // Requested index is in the other buffer.
1080         goto swapBuffers;
1081     }
1082     // Requested index is start-of-string.
1083     //   (this is the case of randomly seeking to the start.
1084     //    The case of iterating off the start is handled earlier.)
1085     if (ix==0) {
1086         if (u8b->bufNativeStart==0) {
1087             // Alternate buffer contains the data for the start string.
1088             // Make it be the current buffer.
1089             goto swapBuffersAndFail;
1090         } else {
1091             // Request for data before the start of string,
1092             //   neither buffer is usable.
1093             //   set up a zero-length buffer.
1094             goto makeStubBuffer;
1095         }
1096     }
1097 
1098     if (ix<=ut->chunkNativeStart || ix>ut->chunkNativeLimit) {
1099         // Requested index is in neither buffer.
1100         goto fillReverse;
1101     }
1102 
1103     // Requested index is in this buffer.
1104     //   Set the utf16 buffer index.
1105     u8b = (UTF8Buf *)ut->p;
1106     mapIndex = ix - u8b->toUCharsMapStart;
1107     ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
1108     if (ut->chunkOffset==0) {
1109         // This occurs when the first character in the text is
1110         //   a multi-byte UTF-8 char, and the requested index is to
1111         //   one of the trailing bytes.  Because there is no preceding ,
1112         //   character, this access fails.  We can't pick up on the
1113         //   situation sooner because the requested index is not zero.
1114         return false;
1115     } else {
1116         return true;
1117     }
1118 
1119 
1120 
1121 swapBuffers:
1122     //  The alternate buffer (ut->q) has the string data that was requested.
1123     //  Swap the primary and alternate buffers, and set the
1124     //   chunk index into the new primary buffer.
1125     {
1126         u8b   = (UTF8Buf *)ut->q;
1127         ut->q = ut->p;
1128         ut->p = u8b;
1129         ut->chunkContents       = &u8b->buf[u8b->bufStartIdx];
1130         ut->chunkLength         = u8b->bufLimitIdx - u8b->bufStartIdx;
1131         ut->chunkNativeStart    = u8b->bufNativeStart;
1132         ut->chunkNativeLimit    = u8b->bufNativeLimit;
1133         ut->nativeIndexingLimit = u8b->bufNILimit;
1134 
1135         // Index into the (now current) chunk
1136         // Use the map to set the chunk index.  It's more trouble than it's worth
1137         //    to check whether native indexing can be used.
1138         U_ASSERT(ix>=u8b->bufNativeStart);
1139         U_ASSERT(ix<=u8b->bufNativeLimit);
1140         mapIndex = ix - u8b->toUCharsMapStart;
1141         U_ASSERT(mapIndex>=0);
1142         U_ASSERT(mapIndex<(int32_t)sizeof(u8b->mapToUChars));
1143         ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
1144 
1145         return true;
1146     }
1147 
1148 
1149  swapBuffersAndFail:
1150     // We got a request for either the start or end of the string,
1151     //  with iteration continuing in the out-of-bounds direction.
1152     // The alternate buffer already contains the data up to the
1153     //  start/end.
1154     // Swap the buffers, then return failure, indicating that we couldn't
1155     //  make things correct for continuing the iteration in the requested
1156     //  direction.  The position & buffer are correct should the
1157     //  user decide to iterate in the opposite direction.
1158     u8b   = (UTF8Buf *)ut->q;
1159     ut->q = ut->p;
1160     ut->p = u8b;
1161     ut->chunkContents       = &u8b->buf[u8b->bufStartIdx];
1162     ut->chunkLength         = u8b->bufLimitIdx - u8b->bufStartIdx;
1163     ut->chunkNativeStart    = u8b->bufNativeStart;
1164     ut->chunkNativeLimit    = u8b->bufNativeLimit;
1165     ut->nativeIndexingLimit = u8b->bufNILimit;
1166 
1167     // Index into the (now current) chunk
1168     //  For this function  (swapBuffersAndFail), the requested index
1169     //    will always be at either the start or end of the chunk.
1170     if (ix==u8b->bufNativeLimit) {
1171         ut->chunkOffset = ut->chunkLength;
1172     } else  {
1173         ut->chunkOffset = 0;
1174         U_ASSERT(ix == u8b->bufNativeStart);
1175     }
1176     return false;
1177 
1178 makeStubBuffer:
1179     //   The user has done a seek/access past the start or end
1180     //   of the string.  Rather than loading data that is likely
1181     //   to never be used, just set up a zero-length buffer at
1182     //   the position.
1183     u8b = (UTF8Buf *)ut->q;
1184     u8b->bufNativeStart   = ix;
1185     u8b->bufNativeLimit   = ix;
1186     u8b->bufStartIdx      = 0;
1187     u8b->bufLimitIdx      = 0;
1188     u8b->bufNILimit       = 0;
1189     u8b->toUCharsMapStart = ix;
1190     u8b->mapToNative[0]   = 0;
1191     u8b->mapToUChars[0]   = 0;
1192     goto swapBuffersAndFail;
1193 
1194 
1195 
1196 fillForward:
1197     {
1198         // Move the incoming index to a code point boundary.
1199         U8_SET_CP_START(s8, 0, ix);
1200 
1201         // Swap the UText buffers.
1202         //  We want to fill what was previously the alternate buffer,
1203         //  and make what was the current buffer be the new alternate.
1204         UTF8Buf *u8b_swap = (UTF8Buf *)ut->q;
1205         ut->q = ut->p;
1206         ut->p = u8b_swap;
1207 
1208         int32_t strLen = ut->b;
1209         UBool   nulTerminated = false;
1210         if (strLen < 0) {
1211             strLen = 0x7fffffff;
1212             nulTerminated = true;
1213         }
1214 
1215         char16_t   *buf = u8b_swap->buf;
1216         uint8_t *mapToNative  = u8b_swap->mapToNative;
1217         uint8_t *mapToUChars  = u8b_swap->mapToUChars;
1218         int32_t  destIx       = 0;
1219         int32_t  srcIx        = ix;
1220         UBool    seenNonAscii = false;
1221         UChar32  c = 0;
1222 
1223         // Fill the chunk buffer and mapping arrays.
1224         while (destIx<UTF8_TEXT_CHUNK_SIZE) {
1225             c = s8[srcIx];
1226             if (c>0 && c<0x80) {
1227                 // Special case ASCII range for speed.
1228                 //   zero is excluded to simplify bounds checking.
1229                 buf[destIx] = (char16_t)c;
1230                 mapToNative[destIx]    = (uint8_t)(srcIx - ix);
1231                 mapToUChars[srcIx-ix]  = (uint8_t)destIx;
1232                 srcIx++;
1233                 destIx++;
1234             } else {
1235                 // General case, handle everything.
1236                 if (seenNonAscii == false) {
1237                     seenNonAscii = true;
1238                     u8b_swap->bufNILimit = destIx;
1239                 }
1240 
1241                 int32_t  cIx      = srcIx;
1242                 int32_t  dIx      = destIx;
1243                 int32_t  dIxSaved = destIx;
1244                 U8_NEXT_OR_FFFD(s8, srcIx, strLen, c);
1245                 if (c==0 && nulTerminated) {
1246                     srcIx--;
1247                     break;
1248                 }
1249 
1250                 U16_APPEND_UNSAFE(buf, destIx, c);
1251                 do {
1252                     mapToNative[dIx++] = (uint8_t)(cIx - ix);
1253                 } while (dIx < destIx);
1254 
1255                 do {
1256                     mapToUChars[cIx++ - ix] = (uint8_t)dIxSaved;
1257                 } while (cIx < srcIx);
1258             }
1259             if (srcIx>=strLen) {
1260                 break;
1261             }
1262 
1263         }
1264 
1265         //  store Native <--> Chunk Map entries for the end of the buffer.
1266         //    There is no actual character here, but the index position is valid.
1267         mapToNative[destIx]     = (uint8_t)(srcIx - ix);
1268         mapToUChars[srcIx - ix] = (uint8_t)destIx;
1269 
1270         //  fill in Buffer descriptor
1271         u8b_swap->bufNativeStart     = ix;
1272         u8b_swap->bufNativeLimit     = srcIx;
1273         u8b_swap->bufStartIdx        = 0;
1274         u8b_swap->bufLimitIdx        = destIx;
1275         if (seenNonAscii == false) {
1276             u8b_swap->bufNILimit     = destIx;
1277         }
1278         u8b_swap->toUCharsMapStart   = u8b_swap->bufNativeStart;
1279 
1280         // Set UText chunk to refer to this buffer.
1281         ut->chunkContents       = buf;
1282         ut->chunkOffset         = 0;
1283         ut->chunkLength         = u8b_swap->bufLimitIdx;
1284         ut->chunkNativeStart    = u8b_swap->bufNativeStart;
1285         ut->chunkNativeLimit    = u8b_swap->bufNativeLimit;
1286         ut->nativeIndexingLimit = u8b_swap->bufNILimit;
1287 
1288         // For zero terminated strings, keep track of the maximum point
1289         //   scanned so far.
1290         if (nulTerminated && srcIx>ut->c) {
1291             ut->c = srcIx;
1292             if (c==0) {
1293                 // We scanned to the end.
1294                 //   Remember the actual length.
1295                 ut->b = srcIx;
1296                 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
1297             }
1298         }
1299         return true;
1300     }
1301 
1302 
1303 fillReverse:
1304     {
1305         // Move the incoming index to a code point boundary.
1306         // Can only do this if the incoming index is somewhere in the interior of the string.
1307         //   If index is at the end, there is no character there to look at.
1308         if (ix != ut->b) {
1309             // Note: this function will only move the index back if it is on a trail byte
1310             //       and there is a preceding lead byte and the sequence from the lead
1311             //       through this trail could be part of a valid UTF-8 sequence
1312             //       Otherwise the index remains unchanged.
1313             U8_SET_CP_START(s8, 0, ix);
1314         }
1315 
1316         // Swap the UText buffers.
1317         //  We want to fill what was previously the alternate buffer,
1318         //  and make what was the current buffer be the new alternate.
1319         UTF8Buf *u8b_swap = (UTF8Buf *)ut->q;
1320         ut->q = ut->p;
1321         ut->p = u8b_swap;
1322 
1323         char16_t   *buf = u8b_swap->buf;
1324         uint8_t *mapToNative = u8b_swap->mapToNative;
1325         uint8_t *mapToUChars = u8b_swap->mapToUChars;
1326         int32_t  toUCharsMapStart = ix - sizeof(UTF8Buf::mapToUChars) + 1;
1327         // Note that toUCharsMapStart can be negative. Happens when the remaining
1328         // text from current position to the beginning is less than the buffer size.
1329         // + 1 because mapToUChars must have a slot at the end for the bufNativeLimit entry.
1330         int32_t  destIx = UTF8_TEXT_CHUNK_SIZE+2;   // Start in the overflow region
1331                                                     //   at end of buffer to leave room
1332                                                     //   for a surrogate pair at the
1333                                                     //   buffer start.
1334         int32_t  srcIx  = ix;
1335         int32_t  bufNILimit = destIx;
1336         UChar32   c;
1337 
1338         // Map to/from Native Indexes, fill in for the position at the end of
1339         //   the buffer.
1340         //
1341         mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1342         mapToUChars[srcIx - toUCharsMapStart] = (uint8_t)destIx;
1343 
1344         // Fill the chunk buffer
1345         // Work backwards, filling from the end of the buffer towards the front.
1346         //
1347         while (destIx>2 && (srcIx - toUCharsMapStart > 5) && (srcIx > 0)) {
1348             srcIx--;
1349             destIx--;
1350 
1351             // Get last byte of the UTF-8 character
1352             c = s8[srcIx];
1353             if (c<0x80) {
1354                 // Special case ASCII range for speed.
1355                 buf[destIx] = (char16_t)c;
1356                 U_ASSERT(toUCharsMapStart <= srcIx);
1357                 mapToUChars[srcIx - toUCharsMapStart] = (uint8_t)destIx;
1358                 mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1359             } else {
1360                 // General case, handle everything non-ASCII.
1361 
1362                 int32_t  sIx      = srcIx;  // ix of last byte of multi-byte u8 char
1363 
1364                 // Get the full character from the UTF8 string.
1365                 //   use code derived from the macros in utf8.h
1366                 //   Leaves srcIx pointing at the first byte of the UTF-8 char.
1367                 //
1368                 c=utf8_prevCharSafeBody(s8, 0, &srcIx, c, -3);
1369                 // leaves srcIx at first byte of the multi-byte char.
1370 
1371                 // Store the character in UTF-16 buffer.
1372                 if (c<0x10000) {
1373                     buf[destIx] = (char16_t)c;
1374                     mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1375                 } else {
1376                     buf[destIx]         = U16_TRAIL(c);
1377                     mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1378                     buf[--destIx]       = U16_LEAD(c);
1379                     mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1380                 }
1381 
1382                 // Fill in the map from native indexes to UChars buf index.
1383                 do {
1384                     mapToUChars[sIx-- - toUCharsMapStart] = (uint8_t)destIx;
1385                 } while (sIx >= srcIx);
1386                 U_ASSERT(toUCharsMapStart <= (srcIx+1));
1387 
1388                 // Set native indexing limit to be the current position.
1389                 //   We are processing a non-ascii, non-native-indexing char now;
1390                 //     the limit will be here if the rest of the chars to be
1391                 //     added to this buffer are ascii.
1392                 bufNILimit = destIx;
1393             }
1394         }
1395         u8b_swap->bufNativeStart     = srcIx;
1396         u8b_swap->bufNativeLimit     = ix;
1397         u8b_swap->bufStartIdx        = destIx;
1398         u8b_swap->bufLimitIdx        = UTF8_TEXT_CHUNK_SIZE+2;
1399         u8b_swap->bufNILimit         = bufNILimit - u8b_swap->bufStartIdx;
1400         u8b_swap->toUCharsMapStart   = toUCharsMapStart;
1401 
1402         ut->chunkContents       = &buf[u8b_swap->bufStartIdx];
1403         ut->chunkLength         = u8b_swap->bufLimitIdx - u8b_swap->bufStartIdx;
1404         ut->chunkOffset         = ut->chunkLength;
1405         ut->chunkNativeStart    = u8b_swap->bufNativeStart;
1406         ut->chunkNativeLimit    = u8b_swap->bufNativeLimit;
1407         ut->nativeIndexingLimit = u8b_swap->bufNILimit;
1408         return true;
1409     }
1410 
1411 }
1412 
1413 
1414 
1415 //
1416 //  This is a slightly modified copy of u_strFromUTF8,
1417 //     Inserts a Replacement Char rather than failing on invalid UTF-8
1418 //     Removes unnecessary features.
1419 //
1420 static char16_t*
utext_strFromUTF8(char16_t * dest,int32_t destCapacity,int32_t * pDestLength,const char * src,int32_t srcLength,UErrorCode * pErrorCode)1421 utext_strFromUTF8(char16_t *dest,
1422               int32_t destCapacity,
1423               int32_t *pDestLength,
1424               const char* src,
1425               int32_t srcLength,        // required.  NUL terminated not supported.
1426               UErrorCode *pErrorCode
1427               )
1428 {
1429 
1430     char16_t *pDest = dest;
1431     char16_t *pDestLimit = (dest!=nullptr)?(dest+destCapacity):nullptr;
1432     UChar32 ch=0;
1433     int32_t index = 0;
1434     int32_t reqLength = 0;
1435     uint8_t* pSrc = (uint8_t*) src;
1436 
1437 
1438     while((index < srcLength)&&(pDest<pDestLimit)){
1439         ch = pSrc[index++];
1440         if(ch <=0x7f){
1441             *pDest++=(char16_t)ch;
1442         }else{
1443             ch=utf8_nextCharSafeBody(pSrc, &index, srcLength, ch, -3);
1444             if(U_IS_BMP(ch)){
1445                 *(pDest++)=(char16_t)ch;
1446             }else{
1447                 *(pDest++)=U16_LEAD(ch);
1448                 if(pDest<pDestLimit){
1449                     *(pDest++)=U16_TRAIL(ch);
1450                 }else{
1451                     reqLength++;
1452                     break;
1453                 }
1454             }
1455         }
1456     }
1457     /* donot fill the dest buffer just count the UChars needed */
1458     while(index < srcLength){
1459         ch = pSrc[index++];
1460         if(ch <= 0x7f){
1461             reqLength++;
1462         }else{
1463             ch=utf8_nextCharSafeBody(pSrc, &index, srcLength, ch, -3);
1464             reqLength+=U16_LENGTH(ch);
1465         }
1466     }
1467 
1468     reqLength+=(int32_t)(pDest - dest);
1469 
1470     if(pDestLength){
1471         *pDestLength = reqLength;
1472     }
1473 
1474     /* Terminate the buffer */
1475     u_terminateUChars(dest,destCapacity,reqLength,pErrorCode);
1476 
1477     return dest;
1478 }
1479 
1480 
1481 
1482 static int32_t U_CALLCONV
utf8TextExtract(UText * ut,int64_t start,int64_t limit,char16_t * dest,int32_t destCapacity,UErrorCode * pErrorCode)1483 utf8TextExtract(UText *ut,
1484                 int64_t start, int64_t limit,
1485                 char16_t *dest, int32_t destCapacity,
1486                 UErrorCode *pErrorCode) {
1487     if(U_FAILURE(*pErrorCode)) {
1488         return 0;
1489     }
1490     if(destCapacity<0 || (dest==nullptr && destCapacity>0)) {
1491         *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
1492         return 0;
1493     }
1494     int32_t  length  = ut->b;
1495     int32_t  start32 = pinIndex(start, length);
1496     int32_t  limit32 = pinIndex(limit, length);
1497 
1498     if(start32>limit32) {
1499         *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
1500         return 0;
1501     }
1502 
1503 
1504     // adjust the incoming indexes to land on code point boundaries if needed.
1505     //    adjust by no more than three, because that is the largest number of trail bytes
1506     //    in a well formed UTF8 character.
1507     const uint8_t *buf = (const uint8_t *)ut->context;
1508     int i;
1509     if (start32 < ut->chunkNativeLimit) {
1510         for (i=0; i<3; i++) {
1511             if (U8_IS_SINGLE(buf[start32]) || U8_IS_LEAD(buf[start32]) || start32==0) {
1512                 break;
1513             }
1514             start32--;
1515         }
1516     }
1517 
1518     if (limit32 < ut->chunkNativeLimit) {
1519         for (i=0; i<3; i++) {
1520             if (U8_IS_SINGLE(buf[limit32]) || U8_IS_LEAD(buf[limit32]) || limit32==0) {
1521                 break;
1522             }
1523             limit32--;
1524         }
1525     }
1526 
1527     // Do the actual extract.
1528     int32_t destLength=0;
1529     utext_strFromUTF8(dest, destCapacity, &destLength,
1530                     (const char *)ut->context+start32, limit32-start32,
1531                     pErrorCode);
1532     utf8TextAccess(ut, limit32, true);
1533     return destLength;
1534 }
1535 
1536 //
1537 // utf8TextMapOffsetToNative
1538 //
1539 // Map a chunk (UTF-16) offset to a native index.
1540 static int64_t U_CALLCONV
utf8TextMapOffsetToNative(const UText * ut)1541 utf8TextMapOffsetToNative(const UText *ut) {
1542     //
1543     UTF8Buf *u8b = (UTF8Buf *)ut->p;
1544     U_ASSERT(ut->chunkOffset>ut->nativeIndexingLimit && ut->chunkOffset<=ut->chunkLength);
1545     int32_t nativeOffset = u8b->mapToNative[ut->chunkOffset + u8b->bufStartIdx] + u8b->toUCharsMapStart;
1546     U_ASSERT(nativeOffset >= ut->chunkNativeStart && nativeOffset <= ut->chunkNativeLimit);
1547     return nativeOffset;
1548 }
1549 
1550 //
1551 // Map a native index to the corresponding chunk offset
1552 //
1553 static int32_t U_CALLCONV
utf8TextMapIndexToUTF16(const UText * ut,int64_t index64)1554 utf8TextMapIndexToUTF16(const UText *ut, int64_t index64) {
1555     U_ASSERT(index64 <= 0x7fffffff);
1556     int32_t index = (int32_t)index64;
1557     UTF8Buf *u8b = (UTF8Buf *)ut->p;
1558     U_ASSERT(index>=ut->chunkNativeStart+ut->nativeIndexingLimit);
1559     U_ASSERT(index<=ut->chunkNativeLimit);
1560     int32_t mapIndex = index - u8b->toUCharsMapStart;
1561     U_ASSERT(mapIndex < (int32_t)sizeof(UTF8Buf::mapToUChars));
1562     int32_t offset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
1563     U_ASSERT(offset>=0 && offset<=ut->chunkLength);
1564     return offset;
1565 }
1566 
1567 static UText * U_CALLCONV
utf8TextClone(UText * dest,const UText * src,UBool deep,UErrorCode * status)1568 utf8TextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status)
1569 {
1570     // First do a generic shallow clone.  Does everything needed for the UText struct itself.
1571     dest = shallowTextClone(dest, src, status);
1572 
1573     // For deep clones, make a copy of the string.
1574     //  The copied storage is owned by the newly created clone.
1575     //
1576     // TODO:  There is an issue with using utext_nativeLength().
1577     //        That function is non-const in cases where the input was NUL terminated
1578     //          and the length has not yet been determined.
1579     //        This function (clone()) is const.
1580     //        There potentially a thread safety issue lurking here.
1581     //
1582     if (deep && U_SUCCESS(*status)) {
1583         int32_t  len = (int32_t)utext_nativeLength((UText *)src);
1584         char *copyStr = (char *)uprv_malloc(len+1);
1585         if (copyStr == nullptr) {
1586             *status = U_MEMORY_ALLOCATION_ERROR;
1587         } else {
1588             uprv_memcpy(copyStr, src->context, len+1);
1589             dest->context = copyStr;
1590             dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
1591         }
1592     }
1593     return dest;
1594 }
1595 
1596 
1597 static void U_CALLCONV
utf8TextClose(UText * ut)1598 utf8TextClose(UText *ut) {
1599     // Most of the work of close is done by the generic UText framework close.
1600     // All that needs to be done here is to delete the UTF8 string if the UText
1601     //  owns it.  This occurs if the UText was created by cloning.
1602     if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
1603         char *s = (char *)ut->context;
1604         uprv_free(s);
1605         ut->context = nullptr;
1606     }
1607 }
1608 
1609 U_CDECL_END
1610 
1611 
1612 static const struct UTextFuncs utf8Funcs =
1613 {
1614     sizeof(UTextFuncs),
1615     0, 0, 0,             // Reserved alignment padding
1616     utf8TextClone,
1617     utf8TextLength,
1618     utf8TextAccess,
1619     utf8TextExtract,
1620     nullptr,                /* replace*/
1621     nullptr,                /* copy   */
1622     utf8TextMapOffsetToNative,
1623     utf8TextMapIndexToUTF16,
1624     utf8TextClose,
1625     nullptr,                // spare 1
1626     nullptr,                // spare 2
1627     nullptr                 // spare 3
1628 };
1629 
1630 
1631 static const char gEmptyString[] = {0};
1632 
1633 U_CAPI UText * U_EXPORT2
utext_openUTF8(UText * ut,const char * s,int64_t length,UErrorCode * status)1634 utext_openUTF8(UText *ut, const char *s, int64_t length, UErrorCode *status) {
1635     if(U_FAILURE(*status)) {
1636         return nullptr;
1637     }
1638     if(s==nullptr && length==0) {
1639         s = gEmptyString;
1640     }
1641 
1642     if(s==nullptr || length<-1 || length>INT32_MAX) {
1643         *status=U_ILLEGAL_ARGUMENT_ERROR;
1644         return nullptr;
1645     }
1646 
1647     ut = utext_setup(ut, sizeof(UTF8Buf) * 2, status);
1648     if (U_FAILURE(*status)) {
1649         return ut;
1650     }
1651 
1652     ut->pFuncs  = &utf8Funcs;
1653     ut->context = s;
1654     ut->b       = (int32_t)length;
1655     ut->c       = (int32_t)length;
1656     if (ut->c < 0) {
1657         ut->c = 0;
1658         ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
1659     }
1660     ut->p = ut->pExtra;
1661     ut->q = (char *)ut->pExtra + sizeof(UTF8Buf);
1662     return ut;
1663 
1664 }
1665 
1666 
1667 
1668 
1669 
1670 
1671 
1672 
1673 //------------------------------------------------------------------------------
1674 //
1675 //     UText implementation wrapper for Replaceable (read/write)
1676 //
1677 //         Use of UText data members:
1678 //            context    pointer to Replaceable.
1679 //            p          pointer to Replaceable if it is owned by the UText.
1680 //
1681 //------------------------------------------------------------------------------
1682 
1683 
1684 
1685 // minimum chunk size for this implementation: 3
1686 // to allow for possible trimming for code point boundaries
1687 enum { REP_TEXT_CHUNK_SIZE=10 };
1688 
1689 struct ReplExtra {
1690     /*
1691      * Chunk UChars.
1692      * +1 to simplify filling with surrogate pair at the end.
1693      */
1694     char16_t s[REP_TEXT_CHUNK_SIZE+1];
1695 };
1696 
1697 
1698 U_CDECL_BEGIN
1699 
1700 static UText * U_CALLCONV
repTextClone(UText * dest,const UText * src,UBool deep,UErrorCode * status)1701 repTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) {
1702     // First do a generic shallow clone.  Does everything needed for the UText struct itself.
1703     dest = shallowTextClone(dest, src, status);
1704 
1705     // For deep clones, make a copy of the Replaceable.
1706     //  The copied Replaceable storage is owned by the newly created UText clone.
1707     //  A non-nullptr pointer in UText.p is the signal to the close() function to delete
1708     //    it.
1709     //
1710     if (deep && U_SUCCESS(*status)) {
1711         const Replaceable *replSrc = (const Replaceable *)src->context;
1712         dest->context = replSrc->clone();
1713         dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
1714 
1715         // with deep clone, the copy is writable, even when the source is not.
1716         dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE);
1717     }
1718     return dest;
1719 }
1720 
1721 
1722 static void U_CALLCONV
repTextClose(UText * ut)1723 repTextClose(UText *ut) {
1724     // Most of the work of close is done by the generic UText framework close.
1725     // All that needs to be done here is delete the Replaceable if the UText
1726     //  owns it.  This occurs if the UText was created by cloning.
1727     if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
1728         Replaceable *rep = (Replaceable *)ut->context;
1729         delete rep;
1730         ut->context = nullptr;
1731     }
1732 }
1733 
1734 
1735 static int64_t U_CALLCONV
repTextLength(UText * ut)1736 repTextLength(UText *ut) {
1737     const Replaceable *replSrc = (const Replaceable *)ut->context;
1738     int32_t  len = replSrc->length();
1739     return len;
1740 }
1741 
1742 
1743 static UBool U_CALLCONV
repTextAccess(UText * ut,int64_t index,UBool forward)1744 repTextAccess(UText *ut, int64_t index, UBool forward) {
1745     const Replaceable *rep=(const Replaceable *)ut->context;
1746     int32_t length=rep->length();   // Full length of the input text (bigger than a chunk)
1747 
1748     // clip the requested index to the limits of the text.
1749     int32_t index32 = pinIndex(index, length);
1750     U_ASSERT(index<=INT32_MAX);
1751 
1752 
1753     /*
1754      * Compute start/limit boundaries around index, for a segment of text
1755      * to be extracted.
1756      * To allow for the possibility that our user gave an index to the trailing
1757      * half of a surrogate pair, we must request one extra preceding char16_t when
1758      * going in the forward direction.  This will ensure that the buffer has the
1759      * entire code point at the specified index.
1760      */
1761     if(forward) {
1762 
1763         if (index32>=ut->chunkNativeStart && index32<ut->chunkNativeLimit) {
1764             // Buffer already contains the requested position.
1765             ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart);
1766             return true;
1767         }
1768         if (index32>=length && ut->chunkNativeLimit==length) {
1769             // Request for end of string, and buffer already extends up to it.
1770             // Can't get the data, but don't change the buffer.
1771             ut->chunkOffset = length - (int32_t)ut->chunkNativeStart;
1772             return false;
1773         }
1774 
1775         ut->chunkNativeLimit = index + REP_TEXT_CHUNK_SIZE - 1;
1776         // Going forward, so we want to have the buffer with stuff at and beyond
1777         //   the requested index.  The -1 gets us one code point before the
1778         //   requested index also, to handle the case of the index being on
1779         //   a trail surrogate of a surrogate pair.
1780         if(ut->chunkNativeLimit > length) {
1781             ut->chunkNativeLimit = length;
1782         }
1783         // unless buffer ran off end, start is index-1.
1784         ut->chunkNativeStart = ut->chunkNativeLimit - REP_TEXT_CHUNK_SIZE;
1785         if(ut->chunkNativeStart < 0) {
1786             ut->chunkNativeStart = 0;
1787         }
1788     } else {
1789         // Reverse iteration.  Fill buffer with data preceding the requested index.
1790         if (index32>ut->chunkNativeStart && index32<=ut->chunkNativeLimit) {
1791             // Requested position already in buffer.
1792             ut->chunkOffset = index32 - (int32_t)ut->chunkNativeStart;
1793             return true;
1794         }
1795         if (index32==0 && ut->chunkNativeStart==0) {
1796             // Request for start, buffer already begins at start.
1797             //  No data, but keep the buffer as is.
1798             ut->chunkOffset = 0;
1799             return false;
1800         }
1801 
1802         // Figure out the bounds of the chunk to extract for reverse iteration.
1803         // Need to worry about chunk not splitting surrogate pairs, and while still
1804         // containing the data we need.
1805         // Fix by requesting a chunk that includes an extra char16_t at the end.
1806         // If this turns out to be a lead surrogate, we can lop it off and still have
1807         //   the data we wanted.
1808         ut->chunkNativeStart = index32 + 1 - REP_TEXT_CHUNK_SIZE;
1809         if (ut->chunkNativeStart < 0) {
1810             ut->chunkNativeStart = 0;
1811         }
1812 
1813         ut->chunkNativeLimit = index32 + 1;
1814         if (ut->chunkNativeLimit > length) {
1815             ut->chunkNativeLimit = length;
1816         }
1817     }
1818 
1819     // Extract the new chunk of text from the Replaceable source.
1820     ReplExtra *ex = (ReplExtra *)ut->pExtra;
1821     // UnicodeString with its buffer a writable alias to the chunk buffer
1822     UnicodeString buffer(ex->s, 0 /*buffer length*/, REP_TEXT_CHUNK_SIZE /*buffer capacity*/);
1823     rep->extractBetween((int32_t)ut->chunkNativeStart, (int32_t)ut->chunkNativeLimit, buffer);
1824 
1825     ut->chunkContents  = ex->s;
1826     ut->chunkLength    = (int32_t)(ut->chunkNativeLimit - ut->chunkNativeStart);
1827     ut->chunkOffset    = (int32_t)(index32 - ut->chunkNativeStart);
1828 
1829     // Surrogate pairs from the input text must not span chunk boundaries.
1830     // If end of chunk could be the start of a surrogate, trim it off.
1831     if (ut->chunkNativeLimit < length &&
1832         U16_IS_LEAD(ex->s[ut->chunkLength-1])) {
1833             ut->chunkLength--;
1834             ut->chunkNativeLimit--;
1835             if (ut->chunkOffset > ut->chunkLength) {
1836                 ut->chunkOffset = ut->chunkLength;
1837             }
1838         }
1839 
1840     // if the first char16_t in the chunk could be the trailing half of a surrogate pair,
1841     // trim it off.
1842     if(ut->chunkNativeStart>0 && U16_IS_TRAIL(ex->s[0])) {
1843         ++(ut->chunkContents);
1844         ++(ut->chunkNativeStart);
1845         --(ut->chunkLength);
1846         --(ut->chunkOffset);
1847     }
1848 
1849     // adjust the index/chunkOffset to a code point boundary
1850     U16_SET_CP_START(ut->chunkContents, 0, ut->chunkOffset);
1851 
1852     // Use fast indexing for get/setNativeIndex()
1853     ut->nativeIndexingLimit = ut->chunkLength;
1854 
1855     return true;
1856 }
1857 
1858 
1859 
1860 static int32_t U_CALLCONV
repTextExtract(UText * ut,int64_t start,int64_t limit,char16_t * dest,int32_t destCapacity,UErrorCode * status)1861 repTextExtract(UText *ut,
1862                int64_t start, int64_t limit,
1863                char16_t *dest, int32_t destCapacity,
1864                UErrorCode *status) {
1865     const Replaceable *rep=(const Replaceable *)ut->context;
1866     int32_t  length=rep->length();
1867 
1868     if(U_FAILURE(*status)) {
1869         return 0;
1870     }
1871     if(destCapacity<0 || (dest==nullptr && destCapacity>0)) {
1872         *status=U_ILLEGAL_ARGUMENT_ERROR;
1873     }
1874     if(start>limit) {
1875         *status=U_INDEX_OUTOFBOUNDS_ERROR;
1876         return 0;
1877     }
1878 
1879     int32_t  start32 = pinIndex(start, length);
1880     int32_t  limit32 = pinIndex(limit, length);
1881 
1882     // adjust start, limit if they point to trail half of surrogates
1883     if (start32<length && U16_IS_TRAIL(rep->charAt(start32)) &&
1884         U_IS_SUPPLEMENTARY(rep->char32At(start32))){
1885             start32--;
1886     }
1887     if (limit32<length && U16_IS_TRAIL(rep->charAt(limit32)) &&
1888         U_IS_SUPPLEMENTARY(rep->char32At(limit32))){
1889             limit32--;
1890     }
1891 
1892     length=limit32-start32;
1893     if(length>destCapacity) {
1894         limit32 = start32 + destCapacity;
1895     }
1896     UnicodeString buffer(dest, 0, destCapacity); // writable alias
1897     rep->extractBetween(start32, limit32, buffer);
1898     repTextAccess(ut, limit32, true);
1899 
1900     return u_terminateUChars(dest, destCapacity, length, status);
1901 }
1902 
1903 static int32_t U_CALLCONV
repTextReplace(UText * ut,int64_t start,int64_t limit,const char16_t * src,int32_t length,UErrorCode * status)1904 repTextReplace(UText *ut,
1905                int64_t start, int64_t limit,
1906                const char16_t *src, int32_t length,
1907                UErrorCode *status) {
1908     Replaceable *rep=(Replaceable *)ut->context;
1909     int32_t oldLength;
1910 
1911     if(U_FAILURE(*status)) {
1912         return 0;
1913     }
1914     if(src==nullptr && length!=0) {
1915         *status=U_ILLEGAL_ARGUMENT_ERROR;
1916         return 0;
1917     }
1918     oldLength=rep->length(); // will subtract from new length
1919     if(start>limit ) {
1920         *status=U_INDEX_OUTOFBOUNDS_ERROR;
1921         return 0;
1922     }
1923 
1924     int32_t start32 = pinIndex(start, oldLength);
1925     int32_t limit32 = pinIndex(limit, oldLength);
1926 
1927     // Snap start & limit to code point boundaries.
1928     if (start32<oldLength && U16_IS_TRAIL(rep->charAt(start32)) &&
1929         start32>0 && U16_IS_LEAD(rep->charAt(start32-1)))
1930     {
1931             start32--;
1932     }
1933     if (limit32<oldLength && U16_IS_LEAD(rep->charAt(limit32-1)) &&
1934         U16_IS_TRAIL(rep->charAt(limit32)))
1935     {
1936             limit32++;
1937     }
1938 
1939     // Do the actual replace operation using methods of the Replaceable class
1940     UnicodeString replStr((UBool)(length<0), src, length); // read-only alias
1941     rep->handleReplaceBetween(start32, limit32, replStr);
1942     int32_t newLength = rep->length();
1943     int32_t lengthDelta = newLength - oldLength;
1944 
1945     // Is the UText chunk buffer OK?
1946     if (ut->chunkNativeLimit > start32) {
1947         // this replace operation may have impacted the current chunk.
1948         // invalidate it, which will force a reload on the next access.
1949         invalidateChunk(ut);
1950     }
1951 
1952     // set the iteration position to the end of the newly inserted replacement text.
1953     int32_t newIndexPos = limit32 + lengthDelta;
1954     repTextAccess(ut, newIndexPos, true);
1955 
1956     return lengthDelta;
1957 }
1958 
1959 
1960 static void U_CALLCONV
repTextCopy(UText * ut,int64_t start,int64_t limit,int64_t destIndex,UBool move,UErrorCode * status)1961 repTextCopy(UText *ut,
1962                 int64_t start, int64_t limit,
1963                 int64_t destIndex,
1964                 UBool move,
1965                 UErrorCode *status)
1966 {
1967     Replaceable *rep=(Replaceable *)ut->context;
1968     int32_t length=rep->length();
1969 
1970     if(U_FAILURE(*status)) {
1971         return;
1972     }
1973     if (start>limit || (start<destIndex && destIndex<limit))
1974     {
1975         *status=U_INDEX_OUTOFBOUNDS_ERROR;
1976         return;
1977     }
1978 
1979     int32_t start32     = pinIndex(start, length);
1980     int32_t limit32     = pinIndex(limit, length);
1981     int32_t destIndex32 = pinIndex(destIndex, length);
1982 
1983     // TODO:  snap input parameters to code point boundaries.
1984 
1985     if(move) {
1986         // move: copy to destIndex, then replace original with nothing
1987         int32_t segLength=limit32-start32;
1988         rep->copy(start32, limit32, destIndex32);
1989         if(destIndex32<start32) {
1990             start32+=segLength;
1991             limit32+=segLength;
1992         }
1993         rep->handleReplaceBetween(start32, limit32, UnicodeString());
1994     } else {
1995         // copy
1996         rep->copy(start32, limit32, destIndex32);
1997     }
1998 
1999     // If the change to the text touched the region in the chunk buffer,
2000     //  invalidate the buffer.
2001     int32_t firstAffectedIndex = destIndex32;
2002     if (move && start32<firstAffectedIndex) {
2003         firstAffectedIndex = start32;
2004     }
2005     if (firstAffectedIndex < ut->chunkNativeLimit) {
2006         // changes may have affected range covered by the chunk
2007         invalidateChunk(ut);
2008     }
2009 
2010     // Put iteration position at the newly inserted (moved) block,
2011     int32_t  nativeIterIndex = destIndex32 + limit32 - start32;
2012     if (move && destIndex32>start32) {
2013         // moved a block of text towards the end of the string.
2014         nativeIterIndex = destIndex32;
2015     }
2016 
2017     // Set position, reload chunk if needed.
2018     repTextAccess(ut, nativeIterIndex, true);
2019 }
2020 
2021 static const struct UTextFuncs repFuncs =
2022 {
2023     sizeof(UTextFuncs),
2024     0, 0, 0,           // Reserved alignment padding
2025     repTextClone,
2026     repTextLength,
2027     repTextAccess,
2028     repTextExtract,
2029     repTextReplace,
2030     repTextCopy,
2031     nullptr,              // MapOffsetToNative,
2032     nullptr,              // MapIndexToUTF16,
2033     repTextClose,
2034     nullptr,              // spare 1
2035     nullptr,              // spare 2
2036     nullptr               // spare 3
2037 };
2038 
2039 
2040 U_CAPI UText * U_EXPORT2
utext_openReplaceable(UText * ut,Replaceable * rep,UErrorCode * status)2041 utext_openReplaceable(UText *ut, Replaceable *rep, UErrorCode *status)
2042 {
2043     if(U_FAILURE(*status)) {
2044         return nullptr;
2045     }
2046     if(rep==nullptr) {
2047         *status=U_ILLEGAL_ARGUMENT_ERROR;
2048         return nullptr;
2049     }
2050     ut = utext_setup(ut, sizeof(ReplExtra), status);
2051     if(U_FAILURE(*status)) {
2052         return ut;
2053     }
2054 
2055     ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_WRITABLE);
2056     if(rep->hasMetaData()) {
2057         ut->providerProperties |=I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA);
2058     }
2059 
2060     ut->pFuncs  = &repFuncs;
2061     ut->context =  rep;
2062     return ut;
2063 }
2064 
2065 U_CDECL_END
2066 
2067 
2068 
2069 
2070 
2071 
2072 
2073 
2074 //------------------------------------------------------------------------------
2075 //
2076 //     UText implementation for UnicodeString (read/write)  and
2077 //                    for const UnicodeString (read only)
2078 //             (same implementation, only the flags are different)
2079 //
2080 //         Use of UText data members:
2081 //            context    pointer to UnicodeString
2082 //            p          pointer to UnicodeString IF this UText owns the string
2083 //                       and it must be deleted on close().  nullptr otherwise.
2084 //
2085 //------------------------------------------------------------------------------
2086 
2087 U_CDECL_BEGIN
2088 
2089 
2090 static UText * U_CALLCONV
unistrTextClone(UText * dest,const UText * src,UBool deep,UErrorCode * status)2091 unistrTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) {
2092     // First do a generic shallow clone.  Does everything needed for the UText struct itself.
2093     dest = shallowTextClone(dest, src, status);
2094 
2095     // For deep clones, make a copy of the UnicodeSring.
2096     //  The copied UnicodeString storage is owned by the newly created UText clone.
2097     //  A non-nullptr pointer in UText.p is the signal to the close() function to delete
2098     //    the UText.
2099     //
2100     if (deep && U_SUCCESS(*status)) {
2101         const UnicodeString *srcString = (const UnicodeString *)src->context;
2102         dest->context = new UnicodeString(*srcString);
2103         dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
2104 
2105         // with deep clone, the copy is writable, even when the source is not.
2106         dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE);
2107     }
2108     return dest;
2109 }
2110 
2111 static void U_CALLCONV
unistrTextClose(UText * ut)2112 unistrTextClose(UText *ut) {
2113     // Most of the work of close is done by the generic UText framework close.
2114     // All that needs to be done here is delete the UnicodeString if the UText
2115     //  owns it.  This occurs if the UText was created by cloning.
2116     if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
2117         UnicodeString *str = (UnicodeString *)ut->context;
2118         delete str;
2119         ut->context = nullptr;
2120     }
2121 }
2122 
2123 
2124 static int64_t U_CALLCONV
unistrTextLength(UText * t)2125 unistrTextLength(UText *t) {
2126     return ((const UnicodeString *)t->context)->length();
2127 }
2128 
2129 
2130 static UBool U_CALLCONV
unistrTextAccess(UText * ut,int64_t index,UBool forward)2131 unistrTextAccess(UText *ut, int64_t index, UBool  forward) {
2132     int32_t length  = ut->chunkLength;
2133     ut->chunkOffset = pinIndex(index, length);
2134 
2135     // Check whether request is at the start or end
2136     UBool retVal = (forward && index<length) || (!forward && index>0);
2137     return retVal;
2138 }
2139 
2140 
2141 
2142 static int32_t U_CALLCONV
unistrTextExtract(UText * t,int64_t start,int64_t limit,char16_t * dest,int32_t destCapacity,UErrorCode * pErrorCode)2143 unistrTextExtract(UText *t,
2144                   int64_t start, int64_t limit,
2145                   char16_t *dest, int32_t destCapacity,
2146                   UErrorCode *pErrorCode) {
2147     const UnicodeString *us=(const UnicodeString *)t->context;
2148     int32_t length=us->length();
2149 
2150     if(U_FAILURE(*pErrorCode)) {
2151         return 0;
2152     }
2153     if(destCapacity<0 || (dest==nullptr && destCapacity>0)) {
2154         *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
2155     }
2156     if(start<0 || start>limit) {
2157         *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2158         return 0;
2159     }
2160 
2161     int32_t start32 = start<length ? us->getChar32Start((int32_t)start) : length;
2162     int32_t limit32 = limit<length ? us->getChar32Start((int32_t)limit) : length;
2163 
2164     length=limit32-start32;
2165     if (destCapacity>0 && dest!=nullptr) {
2166         int32_t trimmedLength = length;
2167         if(trimmedLength>destCapacity) {
2168             trimmedLength=destCapacity;
2169         }
2170         us->extract(start32, trimmedLength, dest);
2171         t->chunkOffset = start32+trimmedLength;
2172     } else {
2173         t->chunkOffset = start32;
2174     }
2175     u_terminateUChars(dest, destCapacity, length, pErrorCode);
2176     return length;
2177 }
2178 
2179 static int32_t U_CALLCONV
unistrTextReplace(UText * ut,int64_t start,int64_t limit,const char16_t * src,int32_t length,UErrorCode * pErrorCode)2180 unistrTextReplace(UText *ut,
2181                   int64_t start, int64_t limit,
2182                   const char16_t *src, int32_t length,
2183                   UErrorCode *pErrorCode) {
2184     UnicodeString *us=(UnicodeString *)ut->context;
2185     int32_t oldLength;
2186 
2187     if(U_FAILURE(*pErrorCode)) {
2188         return 0;
2189     }
2190     if(src==nullptr && length!=0) {
2191         *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
2192     }
2193     if(start>limit) {
2194         *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2195         return 0;
2196     }
2197     oldLength=us->length();
2198     int32_t start32 = pinIndex(start, oldLength);
2199     int32_t limit32 = pinIndex(limit, oldLength);
2200     if (start32 < oldLength) {
2201         start32 = us->getChar32Start(start32);
2202     }
2203     if (limit32 < oldLength) {
2204         limit32 = us->getChar32Start(limit32);
2205     }
2206 
2207     // replace
2208     us->replace(start32, limit32-start32, src, length);
2209     int32_t newLength = us->length();
2210 
2211     // Update the chunk description.
2212     ut->chunkContents    = us->getBuffer();
2213     ut->chunkLength      = newLength;
2214     ut->chunkNativeLimit = newLength;
2215     ut->nativeIndexingLimit = newLength;
2216 
2217     // Set iteration position to the point just following the newly inserted text.
2218     int32_t lengthDelta = newLength - oldLength;
2219     ut->chunkOffset = limit32 + lengthDelta;
2220 
2221     return lengthDelta;
2222 }
2223 
2224 static void U_CALLCONV
unistrTextCopy(UText * ut,int64_t start,int64_t limit,int64_t destIndex,UBool move,UErrorCode * pErrorCode)2225 unistrTextCopy(UText *ut,
2226                int64_t start, int64_t limit,
2227                int64_t destIndex,
2228                UBool move,
2229                UErrorCode *pErrorCode) {
2230     UnicodeString *us=(UnicodeString *)ut->context;
2231     int32_t length=us->length();
2232 
2233     if(U_FAILURE(*pErrorCode)) {
2234         return;
2235     }
2236     int32_t start32 = pinIndex(start, length);
2237     int32_t limit32 = pinIndex(limit, length);
2238     int32_t destIndex32 = pinIndex(destIndex, length);
2239 
2240     if( start32>limit32 || (start32<destIndex32 && destIndex32<limit32)) {
2241         *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2242         return;
2243     }
2244 
2245     if(move) {
2246         // move: copy to destIndex, then remove original
2247         int32_t segLength=limit32-start32;
2248         us->copy(start32, limit32, destIndex32);
2249         if(destIndex32<start32) {
2250             start32+=segLength;
2251         }
2252         us->remove(start32, segLength);
2253     } else {
2254         // copy
2255         us->copy(start32, limit32, destIndex32);
2256     }
2257 
2258     // update chunk description, set iteration position.
2259     ut->chunkContents = us->getBuffer();
2260     if (move==false) {
2261         // copy operation, string length grows
2262         ut->chunkLength += limit32-start32;
2263         ut->chunkNativeLimit = ut->chunkLength;
2264         ut->nativeIndexingLimit = ut->chunkLength;
2265     }
2266 
2267     // Iteration position to end of the newly inserted text.
2268     ut->chunkOffset = destIndex32+limit32-start32;
2269     if (move && destIndex32>start32) {
2270         ut->chunkOffset = destIndex32;
2271     }
2272 
2273 }
2274 
2275 static const struct UTextFuncs unistrFuncs =
2276 {
2277     sizeof(UTextFuncs),
2278     0, 0, 0,             // Reserved alignment padding
2279     unistrTextClone,
2280     unistrTextLength,
2281     unistrTextAccess,
2282     unistrTextExtract,
2283     unistrTextReplace,
2284     unistrTextCopy,
2285     nullptr,                // MapOffsetToNative,
2286     nullptr,                // MapIndexToUTF16,
2287     unistrTextClose,
2288     nullptr,                // spare 1
2289     nullptr,                // spare 2
2290     nullptr                 // spare 3
2291 };
2292 
2293 
2294 
2295 U_CDECL_END
2296 
2297 
2298 U_CAPI UText * U_EXPORT2
utext_openUnicodeString(UText * ut,UnicodeString * s,UErrorCode * status)2299 utext_openUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status) {
2300     ut = utext_openConstUnicodeString(ut, s, status);
2301     if (U_SUCCESS(*status)) {
2302         ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE);
2303     }
2304     return ut;
2305 }
2306 
2307 
2308 
2309 U_CAPI UText * U_EXPORT2
utext_openConstUnicodeString(UText * ut,const UnicodeString * s,UErrorCode * status)2310 utext_openConstUnicodeString(UText *ut, const UnicodeString *s, UErrorCode *status) {
2311     if (U_SUCCESS(*status) && s->isBogus()) {
2312         // The UnicodeString is bogus, but we still need to detach the UText
2313         //   from whatever it was hooked to before, if anything.
2314         utext_openUChars(ut, nullptr, 0, status);
2315         *status = U_ILLEGAL_ARGUMENT_ERROR;
2316         return ut;
2317     }
2318     ut = utext_setup(ut, 0, status);
2319     //    note:  use the standard (writable) function table for UnicodeString.
2320     //           The flag settings disable writing, so having the functions in
2321     //           the table is harmless.
2322     if (U_SUCCESS(*status)) {
2323         ut->pFuncs              = &unistrFuncs;
2324         ut->context             = s;
2325         ut->providerProperties  = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS);
2326         ut->chunkContents       = s->getBuffer();
2327         ut->chunkLength         = s->length();
2328         ut->chunkNativeStart    = 0;
2329         ut->chunkNativeLimit    = ut->chunkLength;
2330         ut->nativeIndexingLimit = ut->chunkLength;
2331     }
2332     return ut;
2333 }
2334 
2335 //------------------------------------------------------------------------------
2336 //
2337 //     UText implementation for const char16_t * strings
2338 //
2339 //         Use of UText data members:
2340 //            context    pointer to UnicodeString
2341 //            a          length.  -1 if not yet known.
2342 //
2343 //         TODO:  support 64 bit lengths.
2344 //
2345 //------------------------------------------------------------------------------
2346 
2347 U_CDECL_BEGIN
2348 
2349 
2350 static UText * U_CALLCONV
ucstrTextClone(UText * dest,const UText * src,UBool deep,UErrorCode * status)2351 ucstrTextClone(UText *dest, const UText * src, UBool deep, UErrorCode * status) {
2352     // First do a generic shallow clone.
2353     dest = shallowTextClone(dest, src, status);
2354 
2355     // For deep clones, make a copy of the string.
2356     //  The copied storage is owned by the newly created clone.
2357     //  A non-nullptr pointer in UText.p is the signal to the close() function to delete
2358     //    it.
2359     //
2360     if (deep && U_SUCCESS(*status)) {
2361         U_ASSERT(utext_nativeLength(dest) < INT32_MAX);
2362         int32_t  len = (int32_t)utext_nativeLength(dest);
2363 
2364         // The cloned string IS going to be NUL terminated, whether or not the original was.
2365         const char16_t *srcStr = (const char16_t *)src->context;
2366         char16_t *copyStr = (char16_t *)uprv_malloc((len+1) * sizeof(char16_t));
2367         if (copyStr == nullptr) {
2368             *status = U_MEMORY_ALLOCATION_ERROR;
2369         } else {
2370             int64_t i;
2371             for (i=0; i<len; i++) {
2372                 copyStr[i] = srcStr[i];
2373             }
2374             copyStr[len] = 0;
2375             dest->context = copyStr;
2376             dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
2377         }
2378     }
2379     return dest;
2380 }
2381 
2382 
2383 static void U_CALLCONV
ucstrTextClose(UText * ut)2384 ucstrTextClose(UText *ut) {
2385     // Most of the work of close is done by the generic UText framework close.
2386     // All that needs to be done here is delete the string if the UText
2387     //  owns it.  This occurs if the UText was created by cloning.
2388     if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
2389         char16_t *s = (char16_t *)ut->context;
2390         uprv_free(s);
2391         ut->context = nullptr;
2392     }
2393 }
2394 
2395 
2396 
2397 static int64_t U_CALLCONV
ucstrTextLength(UText * ut)2398 ucstrTextLength(UText *ut) {
2399     if (ut->a < 0) {
2400         // null terminated, we don't yet know the length. Scan for it.
2401         //    Access is not convenient for doing this
2402         //    because the current iteration position can't be changed.
2403         const char16_t  *str = (const char16_t *)ut->context;
2404         for (;;) {
2405             if (str[ut->chunkNativeLimit] == 0) {
2406                 break;
2407             }
2408             ut->chunkNativeLimit++;
2409         }
2410         ut->a = ut->chunkNativeLimit;
2411         ut->chunkLength = (int32_t)ut->chunkNativeLimit;
2412         ut->nativeIndexingLimit = ut->chunkLength;
2413         ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
2414     }
2415     return ut->a;
2416 }
2417 
2418 
2419 static UBool U_CALLCONV
ucstrTextAccess(UText * ut,int64_t index,UBool forward)2420 ucstrTextAccess(UText *ut, int64_t index, UBool  forward) {
2421     const char16_t *str   = (const char16_t *)ut->context;
2422 
2423     // pin the requested index to the bounds of the string,
2424     //  and set current iteration position.
2425     if (index<0) {
2426         index = 0;
2427     } else if (index < ut->chunkNativeLimit) {
2428         // The request data is within the chunk as it is known so far.
2429         // Put index on a code point boundary.
2430         U16_SET_CP_START(str, 0, index);
2431     } else if (ut->a >= 0) {
2432         // We know the length of this string, and the user is requesting something
2433         // at or beyond the length.  Pin the requested index to the length.
2434         index = ut->a;
2435     } else {
2436         // Null terminated string, length not yet known, and the requested index
2437         //  is beyond where we have scanned so far.
2438         //  Scan to 32 UChars beyond the requested index.  The strategy here is
2439         //  to avoid fully scanning a long string when the caller only wants to
2440         //  see a few characters at its beginning.
2441         int32_t scanLimit = (int32_t)index + 32;
2442         if ((index + 32)>INT32_MAX || (index + 32)<0 ) {   // note: int64 expression
2443             scanLimit = INT32_MAX;
2444         }
2445 
2446         int32_t chunkLimit = (int32_t)ut->chunkNativeLimit;
2447         for (; chunkLimit<scanLimit; chunkLimit++) {
2448             if (str[chunkLimit] == 0) {
2449                 // We found the end of the string.  Remember it, pin the requested index to it,
2450                 //  and bail out of here.
2451                 ut->a = chunkLimit;
2452                 ut->chunkLength = chunkLimit;
2453                 ut->nativeIndexingLimit = chunkLimit;
2454                 if (index >= chunkLimit) {
2455                     index = chunkLimit;
2456                 } else {
2457                     U16_SET_CP_START(str, 0, index);
2458                 }
2459 
2460                 ut->chunkNativeLimit = chunkLimit;
2461                 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
2462                 goto breakout;
2463             }
2464         }
2465         // We scanned through the next batch of UChars without finding the end.
2466         U16_SET_CP_START(str, 0, index);
2467         if (chunkLimit == INT32_MAX) {
2468             // Scanned to the limit of a 32 bit length.
2469             // Forceably trim the overlength string back so length fits in int32
2470             //  TODO:  add support for 64 bit strings.
2471             ut->a = chunkLimit;
2472             ut->chunkLength = chunkLimit;
2473             ut->nativeIndexingLimit = chunkLimit;
2474             if (index > chunkLimit) {
2475                 index = chunkLimit;
2476             }
2477             ut->chunkNativeLimit = chunkLimit;
2478             ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
2479         } else {
2480             // The endpoint of a chunk must not be left in the middle of a surrogate pair.
2481             // If the current end is on a lead surrogate, back the end up by one.
2482             // It doesn't matter if the end char happens to be an unpaired surrogate,
2483             //    and it's simpler not to worry about it.
2484             if (U16_IS_LEAD(str[chunkLimit-1])) {
2485                 --chunkLimit;
2486             }
2487             // Null-terminated chunk with end still unknown.
2488             // Update the chunk length to reflect what has been scanned thus far.
2489             // That the full length is still unknown is (still) flagged by
2490             //    ut->a being < 0.
2491             ut->chunkNativeLimit = chunkLimit;
2492             ut->nativeIndexingLimit = chunkLimit;
2493             ut->chunkLength = chunkLimit;
2494         }
2495 
2496     }
2497 breakout:
2498     U_ASSERT(index<=INT32_MAX);
2499     ut->chunkOffset = (int32_t)index;
2500 
2501     // Check whether request is at the start or end
2502     UBool retVal = (forward && index<ut->chunkNativeLimit) || (!forward && index>0);
2503     return retVal;
2504 }
2505 
2506 
2507 
2508 static int32_t U_CALLCONV
ucstrTextExtract(UText * ut,int64_t start,int64_t limit,char16_t * dest,int32_t destCapacity,UErrorCode * pErrorCode)2509 ucstrTextExtract(UText *ut,
2510                   int64_t start, int64_t limit,
2511                   char16_t *dest, int32_t destCapacity,
2512                   UErrorCode *pErrorCode)
2513 {
2514     if(U_FAILURE(*pErrorCode)) {
2515         return 0;
2516     }
2517     if(destCapacity<0 || (dest==nullptr && destCapacity>0) || start>limit) {
2518         *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
2519         return 0;
2520     }
2521 
2522     //const char16_t *s=(const char16_t *)ut->context;
2523     int32_t si, di;
2524 
2525     int32_t start32;
2526     int32_t limit32;
2527 
2528     // Access the start.  Does two things we need:
2529     //   Pins 'start' to the length of the string, if it came in out-of-bounds.
2530     //   Snaps 'start' to the beginning of a code point.
2531     ucstrTextAccess(ut, start, true);
2532     const char16_t *s=ut->chunkContents;
2533     start32 = ut->chunkOffset;
2534 
2535     int32_t strLength=(int32_t)ut->a;
2536     if (strLength >= 0) {
2537         limit32 = pinIndex(limit, strLength);
2538     } else {
2539         limit32 = pinIndex(limit, INT32_MAX);
2540     }
2541     di = 0;
2542     for (si=start32; si<limit32; si++) {
2543         if (strLength<0 && s[si]==0) {
2544             // Just hit the end of a null-terminated string.
2545             ut->a = si;               // set string length for this UText
2546             ut->chunkNativeLimit    = si;
2547             ut->chunkLength         = si;
2548             ut->nativeIndexingLimit = si;
2549             strLength               = si;
2550             limit32                 = si;
2551             break;
2552         }
2553         U_ASSERT(di>=0); /* to ensure di never exceeds INT32_MAX, which must not happen logically */
2554         if (di<destCapacity) {
2555             // only store if there is space.
2556             dest[di] = s[si];
2557         } else {
2558             if (strLength>=0) {
2559                 // We have filled the destination buffer, and the string length is known.
2560                 //  Cut the loop short.  There is no need to scan string termination.
2561                 di = limit32 - start32;
2562                 si = limit32;
2563                 break;
2564             }
2565         }
2566         di++;
2567     }
2568 
2569     // If the limit index points to a lead surrogate of a pair,
2570     //   add the corresponding trail surrogate to the destination.
2571     if (si>0 && U16_IS_LEAD(s[si-1]) &&
2572             ((si<strLength || strLength<0)  && U16_IS_TRAIL(s[si])))
2573     {
2574         if (di<destCapacity) {
2575             // store only if there is space in the output buffer.
2576             dest[di++] = s[si];
2577         }
2578         si++;
2579     }
2580 
2581     // Put iteration position at the point just following the extracted text
2582     if (si <= ut->chunkNativeLimit) {
2583         ut->chunkOffset = si;
2584     } else {
2585         ucstrTextAccess(ut, si, true);
2586     }
2587 
2588     // Add a terminating NUL if space in the buffer permits,
2589     // and set the error status as required.
2590     u_terminateUChars(dest, destCapacity, di, pErrorCode);
2591     return di;
2592 }
2593 
2594 static const struct UTextFuncs ucstrFuncs =
2595 {
2596     sizeof(UTextFuncs),
2597     0, 0, 0,           // Reserved alignment padding
2598     ucstrTextClone,
2599     ucstrTextLength,
2600     ucstrTextAccess,
2601     ucstrTextExtract,
2602     nullptr,              // Replace
2603     nullptr,              // Copy
2604     nullptr,              // MapOffsetToNative,
2605     nullptr,              // MapIndexToUTF16,
2606     ucstrTextClose,
2607     nullptr,              // spare 1
2608     nullptr,              // spare 2
2609     nullptr,              // spare 3
2610 };
2611 
2612 U_CDECL_END
2613 
2614 static const char16_t gEmptyUString[] = {0};
2615 
2616 U_CAPI UText * U_EXPORT2
utext_openUChars(UText * ut,const char16_t * s,int64_t length,UErrorCode * status)2617 utext_openUChars(UText *ut, const char16_t *s, int64_t length, UErrorCode *status) {
2618     if (U_FAILURE(*status)) {
2619         return nullptr;
2620     }
2621     if(s==nullptr && length==0) {
2622         s = gEmptyUString;
2623     }
2624     if (s==nullptr || length < -1 || length>INT32_MAX) {
2625         *status = U_ILLEGAL_ARGUMENT_ERROR;
2626         return nullptr;
2627     }
2628     ut = utext_setup(ut, 0, status);
2629     if (U_SUCCESS(*status)) {
2630         ut->pFuncs               = &ucstrFuncs;
2631         ut->context              = s;
2632         ut->providerProperties   = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS);
2633         if (length==-1) {
2634             ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
2635         }
2636         ut->a                    = length;
2637         ut->chunkContents        = s;
2638         ut->chunkNativeStart     = 0;
2639         ut->chunkNativeLimit     = length>=0? length : 0;
2640         ut->chunkLength          = (int32_t)ut->chunkNativeLimit;
2641         ut->chunkOffset          = 0;
2642         ut->nativeIndexingLimit  = ut->chunkLength;
2643     }
2644     return ut;
2645 }
2646 
2647 
2648 //------------------------------------------------------------------------------
2649 //
2650 //     UText implementation for text from ICU CharacterIterators
2651 //
2652 //         Use of UText data members:
2653 //            context    pointer to the CharacterIterator
2654 //            a          length of the full text.
2655 //            p          pointer to  buffer 1
2656 //            b          start index of local buffer 1 contents
2657 //            q          pointer to buffer 2
2658 //            c          start index of local buffer 2 contents
2659 //            r          pointer to the character iterator if the UText owns it.
2660 //                       Null otherwise.
2661 //
2662 //------------------------------------------------------------------------------
2663 #define CIBufSize 16
2664 
2665 U_CDECL_BEGIN
2666 static void U_CALLCONV
charIterTextClose(UText * ut)2667 charIterTextClose(UText *ut) {
2668     // Most of the work of close is done by the generic UText framework close.
2669     // All that needs to be done here is delete the CharacterIterator if the UText
2670     //  owns it.  This occurs if the UText was created by cloning.
2671     CharacterIterator *ci = (CharacterIterator *)ut->r;
2672     delete ci;
2673     ut->r = nullptr;
2674 }
2675 
2676 static int64_t U_CALLCONV
charIterTextLength(UText * ut)2677 charIterTextLength(UText *ut) {
2678     return (int32_t)ut->a;
2679 }
2680 
2681 static UBool U_CALLCONV
charIterTextAccess(UText * ut,int64_t index,UBool forward)2682 charIterTextAccess(UText *ut, int64_t index, UBool  forward) {
2683     CharacterIterator *ci   = (CharacterIterator *)ut->context;
2684 
2685     int32_t clippedIndex = (int32_t)index;
2686     if (clippedIndex<0) {
2687         clippedIndex=0;
2688     } else if (clippedIndex>=ut->a) {
2689         clippedIndex=(int32_t)ut->a;
2690     }
2691     int32_t neededIndex = clippedIndex;
2692     if (!forward && neededIndex>0) {
2693         // reverse iteration, want the position just before what was asked for.
2694         neededIndex--;
2695     } else if (forward && neededIndex==ut->a && neededIndex>0) {
2696         // Forward iteration, don't ask for something past the end of the text.
2697         neededIndex--;
2698     }
2699 
2700     // Find the native index of the start of the buffer containing what we want.
2701     neededIndex -= neededIndex % CIBufSize;
2702 
2703     char16_t *buf = nullptr;
2704     UBool  needChunkSetup = true;
2705     int    i;
2706     if (ut->chunkNativeStart == neededIndex) {
2707         // The buffer we want is already the current chunk.
2708         needChunkSetup = false;
2709     } else if (ut->b == neededIndex) {
2710         // The first buffer (buffer p) has what we need.
2711         buf = (char16_t *)ut->p;
2712     } else if (ut->c == neededIndex) {
2713         // The second buffer (buffer q) has what we need.
2714         buf = (char16_t *)ut->q;
2715     } else {
2716         // Neither buffer already has what we need.
2717         // Load new data from the character iterator.
2718         // Use the buf that is not the current buffer.
2719         buf = (char16_t *)ut->p;
2720         if (ut->p == ut->chunkContents) {
2721             buf = (char16_t *)ut->q;
2722         }
2723         ci->setIndex(neededIndex);
2724         for (i=0; i<CIBufSize; i++) {
2725             buf[i] = ci->nextPostInc();
2726             if (i+neededIndex > ut->a) {
2727                 break;
2728             }
2729         }
2730     }
2731 
2732     // We have a buffer with the data we need.
2733     // Set it up as the current chunk, if it wasn't already.
2734     if (needChunkSetup) {
2735         ut->chunkContents = buf;
2736         ut->chunkLength   = CIBufSize;
2737         ut->chunkNativeStart = neededIndex;
2738         ut->chunkNativeLimit = neededIndex + CIBufSize;
2739         if (ut->chunkNativeLimit > ut->a) {
2740             ut->chunkNativeLimit = ut->a;
2741             ut->chunkLength  = (int32_t)(ut->chunkNativeLimit)-(int32_t)(ut->chunkNativeStart);
2742         }
2743         ut->nativeIndexingLimit = ut->chunkLength;
2744         U_ASSERT(ut->chunkOffset>=0 && ut->chunkOffset<=CIBufSize);
2745     }
2746     ut->chunkOffset = clippedIndex - (int32_t)ut->chunkNativeStart;
2747     UBool success = (forward? ut->chunkOffset<ut->chunkLength : ut->chunkOffset>0);
2748     return success;
2749 }
2750 
2751 static UText * U_CALLCONV
charIterTextClone(UText * dest,const UText * src,UBool deep,UErrorCode * status)2752 charIterTextClone(UText *dest, const UText *src, UBool deep, UErrorCode * status) {
2753     if (U_FAILURE(*status)) {
2754         return nullptr;
2755     }
2756 
2757     if (deep) {
2758         // There is no CharacterIterator API for cloning the underlying text storage.
2759         *status = U_UNSUPPORTED_ERROR;
2760         return nullptr;
2761     } else {
2762         CharacterIterator *srcCI =(CharacterIterator *)src->context;
2763         srcCI = srcCI->clone();
2764         dest = utext_openCharacterIterator(dest, srcCI, status);
2765         if (U_FAILURE(*status)) {
2766             return dest;
2767         }
2768         // cast off const on getNativeIndex.
2769         //   For CharacterIterator based UTexts, this is safe, the operation is const.
2770         int64_t  ix = utext_getNativeIndex((UText *)src);
2771         utext_setNativeIndex(dest, ix);
2772         dest->r = srcCI;    // flags that this UText owns the CharacterIterator
2773     }
2774     return dest;
2775 }
2776 
2777 static int32_t U_CALLCONV
charIterTextExtract(UText * ut,int64_t start,int64_t limit,char16_t * dest,int32_t destCapacity,UErrorCode * status)2778 charIterTextExtract(UText *ut,
2779                   int64_t start, int64_t limit,
2780                   char16_t *dest, int32_t destCapacity,
2781                   UErrorCode *status)
2782 {
2783     if(U_FAILURE(*status)) {
2784         return 0;
2785     }
2786     if(destCapacity<0 || (dest==nullptr && destCapacity>0) || start>limit) {
2787         *status=U_ILLEGAL_ARGUMENT_ERROR;
2788         return 0;
2789     }
2790     int32_t  length  = (int32_t)ut->a;
2791     int32_t  start32 = pinIndex(start, length);
2792     int32_t  limit32 = pinIndex(limit, length);
2793     int32_t  desti   = 0;
2794     int32_t  srci;
2795     int32_t  copyLimit;
2796 
2797     CharacterIterator *ci = (CharacterIterator *)ut->context;
2798     ci->setIndex32(start32);   // Moves ix to lead of surrogate pair, if needed.
2799     srci = ci->getIndex();
2800     copyLimit = srci;
2801     while (srci<limit32) {
2802         UChar32 c = ci->next32PostInc();
2803         int32_t  len = U16_LENGTH(c);
2804         U_ASSERT(desti+len>0); /* to ensure desti+len never exceeds MAX_INT32, which must not happen logically */
2805         if (desti+len <= destCapacity) {
2806             U16_APPEND_UNSAFE(dest, desti, c);
2807             copyLimit = srci+len;
2808         } else {
2809             desti += len;
2810             *status = U_BUFFER_OVERFLOW_ERROR;
2811         }
2812         srci += len;
2813     }
2814 
2815     charIterTextAccess(ut, copyLimit, true);
2816 
2817     u_terminateUChars(dest, destCapacity, desti, status);
2818     return desti;
2819 }
2820 
2821 static const struct UTextFuncs charIterFuncs =
2822 {
2823     sizeof(UTextFuncs),
2824     0, 0, 0,             // Reserved alignment padding
2825     charIterTextClone,
2826     charIterTextLength,
2827     charIterTextAccess,
2828     charIterTextExtract,
2829     nullptr,                // Replace
2830     nullptr,                // Copy
2831     nullptr,                // MapOffsetToNative,
2832     nullptr,                // MapIndexToUTF16,
2833     charIterTextClose,
2834     nullptr,                // spare 1
2835     nullptr,                // spare 2
2836     nullptr                 // spare 3
2837 };
2838 U_CDECL_END
2839 
2840 
2841 U_CAPI UText * U_EXPORT2
utext_openCharacterIterator(UText * ut,CharacterIterator * ci,UErrorCode * status)2842 utext_openCharacterIterator(UText *ut, CharacterIterator *ci, UErrorCode *status) {
2843     if (U_FAILURE(*status)) {
2844         return nullptr;
2845     }
2846 
2847     if (ci->startIndex() > 0) {
2848         // No support for CharacterIterators that do not start indexing from zero.
2849         *status = U_UNSUPPORTED_ERROR;
2850         return nullptr;
2851     }
2852 
2853     // Extra space in UText for 2 buffers of CIBufSize UChars each.
2854     int32_t  extraSpace = 2 * CIBufSize * sizeof(char16_t);
2855     ut = utext_setup(ut, extraSpace, status);
2856     if (U_SUCCESS(*status)) {
2857         ut->pFuncs                = &charIterFuncs;
2858         ut->context              = ci;
2859         ut->providerProperties   = 0;
2860         ut->a                    = ci->endIndex();        // Length of text
2861         ut->p                    = ut->pExtra;            // First buffer
2862         ut->b                    = -1;                    // Native index of first buffer contents
2863         ut->q                    = (char16_t*)ut->pExtra+CIBufSize;  // Second buffer
2864         ut->c                    = -1;                    // Native index of second buffer contents
2865 
2866         // Initialize current chunk contents to be empty.
2867         //   First access will fault something in.
2868         //   Note:  The initial nativeStart and chunkOffset must sum to zero
2869         //          so that getNativeIndex() will correctly compute to zero
2870         //          if no call to Access() has ever been made.  They can't be both
2871         //          zero without Access() thinking that the chunk is valid.
2872         ut->chunkContents        = (char16_t *)ut->p;
2873         ut->chunkNativeStart     = -1;
2874         ut->chunkOffset          = 1;
2875         ut->chunkNativeLimit     = 0;
2876         ut->chunkLength          = 0;
2877         ut->nativeIndexingLimit  = ut->chunkOffset;  // enables native indexing
2878     }
2879     return ut;
2880 }
2881