1 /* Copyright (C) 1995-1998 Eric Young ([email protected])
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young ([email protected]).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson ([email protected]).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young ([email protected])"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson ([email protected])"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.] */
56
57 #include <openssl/ssl.h>
58
59 #include <assert.h>
60 #include <limits.h>
61
62 #include <algorithm>
63
64 #include <openssl/ec.h>
65 #include <openssl/ec_key.h>
66 #include <openssl/err.h>
67 #include <openssl/evp.h>
68 #include <openssl/mem.h>
69 #include <openssl/span.h>
70
71 #include "internal.h"
72 #include "../crypto/internal.h"
73
74
75 BSSL_NAMESPACE_BEGIN
76
ssl_is_key_type_supported(int key_type)77 bool ssl_is_key_type_supported(int key_type) {
78 return key_type == EVP_PKEY_RSA || key_type == EVP_PKEY_EC ||
79 key_type == EVP_PKEY_ED25519;
80 }
81
82 typedef struct {
83 uint16_t sigalg;
84 int pkey_type;
85 int curve;
86 const EVP_MD *(*digest_func)(void);
87 bool is_rsa_pss;
88 } SSL_SIGNATURE_ALGORITHM;
89
90 static const SSL_SIGNATURE_ALGORITHM kSignatureAlgorithms[] = {
91 {SSL_SIGN_RSA_PKCS1_MD5_SHA1, EVP_PKEY_RSA, NID_undef, &EVP_md5_sha1,
92 false},
93 {SSL_SIGN_RSA_PKCS1_SHA1, EVP_PKEY_RSA, NID_undef, &EVP_sha1, false},
94 {SSL_SIGN_RSA_PKCS1_SHA256, EVP_PKEY_RSA, NID_undef, &EVP_sha256, false},
95 {SSL_SIGN_RSA_PKCS1_SHA384, EVP_PKEY_RSA, NID_undef, &EVP_sha384, false},
96 {SSL_SIGN_RSA_PKCS1_SHA512, EVP_PKEY_RSA, NID_undef, &EVP_sha512, false},
97
98 {SSL_SIGN_RSA_PSS_RSAE_SHA256, EVP_PKEY_RSA, NID_undef, &EVP_sha256, true},
99 {SSL_SIGN_RSA_PSS_RSAE_SHA384, EVP_PKEY_RSA, NID_undef, &EVP_sha384, true},
100 {SSL_SIGN_RSA_PSS_RSAE_SHA512, EVP_PKEY_RSA, NID_undef, &EVP_sha512, true},
101
102 {SSL_SIGN_ECDSA_SHA1, EVP_PKEY_EC, NID_undef, &EVP_sha1, false},
103 {SSL_SIGN_ECDSA_SECP256R1_SHA256, EVP_PKEY_EC, NID_X9_62_prime256v1,
104 &EVP_sha256, false},
105 {SSL_SIGN_ECDSA_SECP384R1_SHA384, EVP_PKEY_EC, NID_secp384r1, &EVP_sha384,
106 false},
107 {SSL_SIGN_ECDSA_SECP521R1_SHA512, EVP_PKEY_EC, NID_secp521r1, &EVP_sha512,
108 false},
109
110 {SSL_SIGN_ED25519, EVP_PKEY_ED25519, NID_undef, nullptr, false},
111 };
112
get_signature_algorithm(uint16_t sigalg)113 static const SSL_SIGNATURE_ALGORITHM *get_signature_algorithm(uint16_t sigalg) {
114 for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kSignatureAlgorithms); i++) {
115 if (kSignatureAlgorithms[i].sigalg == sigalg) {
116 return &kSignatureAlgorithms[i];
117 }
118 }
119 return NULL;
120 }
121
ssl_pkey_supports_algorithm(const SSL * ssl,EVP_PKEY * pkey,uint16_t sigalg)122 bool ssl_pkey_supports_algorithm(const SSL *ssl, EVP_PKEY *pkey,
123 uint16_t sigalg) {
124 const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
125 if (alg == NULL || EVP_PKEY_id(pkey) != alg->pkey_type) {
126 return false;
127 }
128
129 // Ensure the RSA key is large enough for the hash. RSASSA-PSS requires that
130 // emLen be at least hLen + sLen + 2. Both hLen and sLen are the size of the
131 // hash in TLS. Reasonable RSA key sizes are large enough for the largest
132 // defined RSASSA-PSS algorithm, but 1024-bit RSA is slightly too small for
133 // SHA-512. 1024-bit RSA is sometimes used for test credentials, so check the
134 // size so that we can fall back to another algorithm in that case.
135 if (alg->is_rsa_pss &&
136 (size_t)EVP_PKEY_size(pkey) < 2 * EVP_MD_size(alg->digest_func()) + 2) {
137 return false;
138 }
139
140 if (ssl_protocol_version(ssl) < TLS1_2_VERSION) {
141 // TLS 1.0 and 1.1 do not negotiate algorithms and always sign one of two
142 // hardcoded algorithms.
143 return sigalg == SSL_SIGN_RSA_PKCS1_MD5_SHA1 ||
144 sigalg == SSL_SIGN_ECDSA_SHA1;
145 }
146
147 // |SSL_SIGN_RSA_PKCS1_MD5_SHA1| is not a real SignatureScheme for TLS 1.2 and
148 // higher. It is an internal value we use to represent TLS 1.0/1.1's MD5/SHA1
149 // concatenation.
150 if (sigalg == SSL_SIGN_RSA_PKCS1_MD5_SHA1) {
151 return false;
152 }
153
154 if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) {
155 // RSA keys may only be used with RSA-PSS.
156 if (alg->pkey_type == EVP_PKEY_RSA && !alg->is_rsa_pss) {
157 return false;
158 }
159
160 // EC keys have a curve requirement.
161 if (alg->pkey_type == EVP_PKEY_EC &&
162 (alg->curve == NID_undef ||
163 EC_GROUP_get_curve_name(
164 EC_KEY_get0_group(EVP_PKEY_get0_EC_KEY(pkey))) != alg->curve)) {
165 return false;
166 }
167 }
168
169 return true;
170 }
171
setup_ctx(SSL * ssl,EVP_MD_CTX * ctx,EVP_PKEY * pkey,uint16_t sigalg,bool is_verify)172 static bool setup_ctx(SSL *ssl, EVP_MD_CTX *ctx, EVP_PKEY *pkey,
173 uint16_t sigalg, bool is_verify) {
174 if (!ssl_pkey_supports_algorithm(ssl, pkey, sigalg)) {
175 OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE);
176 return false;
177 }
178
179 const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
180 const EVP_MD *digest = alg->digest_func != NULL ? alg->digest_func() : NULL;
181 EVP_PKEY_CTX *pctx;
182 if (is_verify) {
183 if (!EVP_DigestVerifyInit(ctx, &pctx, digest, NULL, pkey)) {
184 return false;
185 }
186 } else if (!EVP_DigestSignInit(ctx, &pctx, digest, NULL, pkey)) {
187 return false;
188 }
189
190 if (alg->is_rsa_pss) {
191 if (!EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING) ||
192 !EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, -1 /* salt len = hash len */)) {
193 return false;
194 }
195 }
196
197 return true;
198 }
199
ssl_private_key_sign(SSL_HANDSHAKE * hs,uint8_t * out,size_t * out_len,size_t max_out,uint16_t sigalg,Span<const uint8_t> in)200 enum ssl_private_key_result_t ssl_private_key_sign(
201 SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, size_t max_out,
202 uint16_t sigalg, Span<const uint8_t> in) {
203 SSL *const ssl = hs->ssl;
204 const SSL_CREDENTIAL *const cred = hs->credential.get();
205 SSL_HANDSHAKE_HINTS *const hints = hs->hints.get();
206 Array<uint8_t> spki;
207 if (hints) {
208 ScopedCBB spki_cbb;
209 if (!CBB_init(spki_cbb.get(), 64) ||
210 !EVP_marshal_public_key(spki_cbb.get(), cred->pubkey.get()) ||
211 !CBBFinishArray(spki_cbb.get(), &spki)) {
212 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
213 return ssl_private_key_failure;
214 }
215 }
216
217 // Replay the signature from handshake hints if available.
218 if (hints && !hs->hints_requested && //
219 sigalg == hints->signature_algorithm && //
220 in == hints->signature_input &&
221 MakeConstSpan(spki) == hints->signature_spki &&
222 !hints->signature.empty() && //
223 hints->signature.size() <= max_out) {
224 // Signature algorithm and input both match. Reuse the signature from hints.
225 *out_len = hints->signature.size();
226 OPENSSL_memcpy(out, hints->signature.data(), hints->signature.size());
227 return ssl_private_key_success;
228 }
229
230 const SSL_PRIVATE_KEY_METHOD *key_method = cred->key_method;
231 EVP_PKEY *privkey = cred->privkey.get();
232 assert(!hs->can_release_private_key);
233
234 if (key_method != NULL) {
235 enum ssl_private_key_result_t ret;
236 if (hs->pending_private_key_op) {
237 ret = key_method->complete(ssl, out, out_len, max_out);
238 } else {
239 ret = key_method->sign(ssl, out, out_len, max_out, sigalg, in.data(),
240 in.size());
241 }
242 if (ret == ssl_private_key_failure) {
243 OPENSSL_PUT_ERROR(SSL, SSL_R_PRIVATE_KEY_OPERATION_FAILED);
244 }
245 hs->pending_private_key_op = ret == ssl_private_key_retry;
246 if (ret != ssl_private_key_success) {
247 return ret;
248 }
249 } else {
250 *out_len = max_out;
251 ScopedEVP_MD_CTX ctx;
252 if (!setup_ctx(ssl, ctx.get(), privkey, sigalg, false /* sign */) ||
253 !EVP_DigestSign(ctx.get(), out, out_len, in.data(), in.size())) {
254 return ssl_private_key_failure;
255 }
256 }
257
258 // Save the hint if applicable.
259 if (hints && hs->hints_requested) {
260 hints->signature_algorithm = sigalg;
261 hints->signature_spki = std::move(spki);
262 if (!hints->signature_input.CopyFrom(in) ||
263 !hints->signature.CopyFrom(MakeConstSpan(out, *out_len))) {
264 return ssl_private_key_failure;
265 }
266 }
267 return ssl_private_key_success;
268 }
269
ssl_public_key_verify(SSL * ssl,Span<const uint8_t> signature,uint16_t sigalg,EVP_PKEY * pkey,Span<const uint8_t> in)270 bool ssl_public_key_verify(SSL *ssl, Span<const uint8_t> signature,
271 uint16_t sigalg, EVP_PKEY *pkey,
272 Span<const uint8_t> in) {
273 ScopedEVP_MD_CTX ctx;
274 if (!setup_ctx(ssl, ctx.get(), pkey, sigalg, true /* verify */)) {
275 return false;
276 }
277 bool ok = EVP_DigestVerify(ctx.get(), signature.data(), signature.size(),
278 in.data(), in.size());
279 #if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
280 ok = true;
281 ERR_clear_error();
282 #endif
283 return ok;
284 }
285
ssl_private_key_decrypt(SSL_HANDSHAKE * hs,uint8_t * out,size_t * out_len,size_t max_out,Span<const uint8_t> in)286 enum ssl_private_key_result_t ssl_private_key_decrypt(SSL_HANDSHAKE *hs,
287 uint8_t *out,
288 size_t *out_len,
289 size_t max_out,
290 Span<const uint8_t> in) {
291 SSL *const ssl = hs->ssl;
292 const SSL_CREDENTIAL *const cred = hs->credential.get();
293 assert(!hs->can_release_private_key);
294 if (cred->key_method != NULL) {
295 enum ssl_private_key_result_t ret;
296 if (hs->pending_private_key_op) {
297 ret = cred->key_method->complete(ssl, out, out_len, max_out);
298 } else {
299 ret = cred->key_method->decrypt(ssl, out, out_len, max_out, in.data(),
300 in.size());
301 }
302 if (ret == ssl_private_key_failure) {
303 OPENSSL_PUT_ERROR(SSL, SSL_R_PRIVATE_KEY_OPERATION_FAILED);
304 }
305 hs->pending_private_key_op = ret == ssl_private_key_retry;
306 return ret;
307 }
308
309 RSA *rsa = EVP_PKEY_get0_RSA(cred->privkey.get());
310 if (rsa == NULL) {
311 // Decrypt operations are only supported for RSA keys.
312 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
313 return ssl_private_key_failure;
314 }
315
316 // Decrypt with no padding. PKCS#1 padding will be removed as part of the
317 // timing-sensitive code by the caller.
318 if (!RSA_decrypt(rsa, out_len, out, max_out, in.data(), in.size(),
319 RSA_NO_PADDING)) {
320 return ssl_private_key_failure;
321 }
322 return ssl_private_key_success;
323 }
324
325 BSSL_NAMESPACE_END
326
327 using namespace bssl;
328
SSL_use_RSAPrivateKey(SSL * ssl,RSA * rsa)329 int SSL_use_RSAPrivateKey(SSL *ssl, RSA *rsa) {
330 if (rsa == NULL || ssl->config == NULL) {
331 OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
332 return 0;
333 }
334
335 UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new());
336 if (!pkey ||
337 !EVP_PKEY_set1_RSA(pkey.get(), rsa)) {
338 OPENSSL_PUT_ERROR(SSL, ERR_R_EVP_LIB);
339 return 0;
340 }
341
342 return SSL_use_PrivateKey(ssl, pkey.get());
343 }
344
SSL_use_RSAPrivateKey_ASN1(SSL * ssl,const uint8_t * der,size_t der_len)345 int SSL_use_RSAPrivateKey_ASN1(SSL *ssl, const uint8_t *der, size_t der_len) {
346 UniquePtr<RSA> rsa(RSA_private_key_from_bytes(der, der_len));
347 if (!rsa) {
348 OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
349 return 0;
350 }
351
352 return SSL_use_RSAPrivateKey(ssl, rsa.get());
353 }
354
SSL_use_PrivateKey(SSL * ssl,EVP_PKEY * pkey)355 int SSL_use_PrivateKey(SSL *ssl, EVP_PKEY *pkey) {
356 if (pkey == NULL || ssl->config == NULL) {
357 OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
358 return 0;
359 }
360
361 return SSL_CREDENTIAL_set1_private_key(
362 ssl->config->cert->default_credential.get(), pkey);
363 }
364
SSL_use_PrivateKey_ASN1(int type,SSL * ssl,const uint8_t * der,size_t der_len)365 int SSL_use_PrivateKey_ASN1(int type, SSL *ssl, const uint8_t *der,
366 size_t der_len) {
367 if (der_len > LONG_MAX) {
368 OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
369 return 0;
370 }
371
372 const uint8_t *p = der;
373 UniquePtr<EVP_PKEY> pkey(d2i_PrivateKey(type, NULL, &p, (long)der_len));
374 if (!pkey || p != der + der_len) {
375 OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
376 return 0;
377 }
378
379 return SSL_use_PrivateKey(ssl, pkey.get());
380 }
381
SSL_CTX_use_RSAPrivateKey(SSL_CTX * ctx,RSA * rsa)382 int SSL_CTX_use_RSAPrivateKey(SSL_CTX *ctx, RSA *rsa) {
383 if (rsa == NULL) {
384 OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
385 return 0;
386 }
387
388 UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new());
389 if (!pkey ||
390 !EVP_PKEY_set1_RSA(pkey.get(), rsa)) {
391 OPENSSL_PUT_ERROR(SSL, ERR_R_EVP_LIB);
392 return 0;
393 }
394
395 return SSL_CTX_use_PrivateKey(ctx, pkey.get());
396 }
397
SSL_CTX_use_RSAPrivateKey_ASN1(SSL_CTX * ctx,const uint8_t * der,size_t der_len)398 int SSL_CTX_use_RSAPrivateKey_ASN1(SSL_CTX *ctx, const uint8_t *der,
399 size_t der_len) {
400 UniquePtr<RSA> rsa(RSA_private_key_from_bytes(der, der_len));
401 if (!rsa) {
402 OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
403 return 0;
404 }
405
406 return SSL_CTX_use_RSAPrivateKey(ctx, rsa.get());
407 }
408
SSL_CTX_use_PrivateKey(SSL_CTX * ctx,EVP_PKEY * pkey)409 int SSL_CTX_use_PrivateKey(SSL_CTX *ctx, EVP_PKEY *pkey) {
410 if (pkey == NULL) {
411 OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
412 return 0;
413 }
414
415 return SSL_CREDENTIAL_set1_private_key(ctx->cert->default_credential.get(),
416 pkey);
417 }
418
SSL_CTX_use_PrivateKey_ASN1(int type,SSL_CTX * ctx,const uint8_t * der,size_t der_len)419 int SSL_CTX_use_PrivateKey_ASN1(int type, SSL_CTX *ctx, const uint8_t *der,
420 size_t der_len) {
421 if (der_len > LONG_MAX) {
422 OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
423 return 0;
424 }
425
426 const uint8_t *p = der;
427 UniquePtr<EVP_PKEY> pkey(d2i_PrivateKey(type, NULL, &p, (long)der_len));
428 if (!pkey || p != der + der_len) {
429 OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
430 return 0;
431 }
432
433 return SSL_CTX_use_PrivateKey(ctx, pkey.get());
434 }
435
SSL_set_private_key_method(SSL * ssl,const SSL_PRIVATE_KEY_METHOD * key_method)436 void SSL_set_private_key_method(SSL *ssl,
437 const SSL_PRIVATE_KEY_METHOD *key_method) {
438 if (!ssl->config) {
439 return;
440 }
441 BSSL_CHECK(SSL_CREDENTIAL_set_private_key_method(
442 ssl->config->cert->default_credential.get(), key_method));
443 }
444
SSL_CTX_set_private_key_method(SSL_CTX * ctx,const SSL_PRIVATE_KEY_METHOD * key_method)445 void SSL_CTX_set_private_key_method(SSL_CTX *ctx,
446 const SSL_PRIVATE_KEY_METHOD *key_method) {
447 BSSL_CHECK(SSL_CREDENTIAL_set_private_key_method(
448 ctx->cert->default_credential.get(), key_method));
449 }
450
451 static constexpr size_t kMaxSignatureAlgorithmNameLen = 23;
452
453 struct SignatureAlgorithmName {
454 uint16_t signature_algorithm;
455 const char name[kMaxSignatureAlgorithmNameLen];
456 };
457
458 // This was "constexpr" rather than "const", but that triggered a bug in MSVC
459 // where it didn't pad the strings to the correct length.
460 static const SignatureAlgorithmName kSignatureAlgorithmNames[] = {
461 {SSL_SIGN_RSA_PKCS1_MD5_SHA1, "rsa_pkcs1_md5_sha1"},
462 {SSL_SIGN_RSA_PKCS1_SHA1, "rsa_pkcs1_sha1"},
463 {SSL_SIGN_RSA_PKCS1_SHA256, "rsa_pkcs1_sha256"},
464 {SSL_SIGN_RSA_PKCS1_SHA384, "rsa_pkcs1_sha384"},
465 {SSL_SIGN_RSA_PKCS1_SHA512, "rsa_pkcs1_sha512"},
466 {SSL_SIGN_ECDSA_SHA1, "ecdsa_sha1"},
467 {SSL_SIGN_ECDSA_SECP256R1_SHA256, "ecdsa_secp256r1_sha256"},
468 {SSL_SIGN_ECDSA_SECP384R1_SHA384, "ecdsa_secp384r1_sha384"},
469 {SSL_SIGN_ECDSA_SECP521R1_SHA512, "ecdsa_secp521r1_sha512"},
470 {SSL_SIGN_RSA_PSS_RSAE_SHA256, "rsa_pss_rsae_sha256"},
471 {SSL_SIGN_RSA_PSS_RSAE_SHA384, "rsa_pss_rsae_sha384"},
472 {SSL_SIGN_RSA_PSS_RSAE_SHA512, "rsa_pss_rsae_sha512"},
473 {SSL_SIGN_ED25519, "ed25519"},
474 };
475
SSL_get_signature_algorithm_name(uint16_t sigalg,int include_curve)476 const char *SSL_get_signature_algorithm_name(uint16_t sigalg,
477 int include_curve) {
478 if (!include_curve) {
479 switch (sigalg) {
480 case SSL_SIGN_ECDSA_SECP256R1_SHA256:
481 return "ecdsa_sha256";
482 case SSL_SIGN_ECDSA_SECP384R1_SHA384:
483 return "ecdsa_sha384";
484 case SSL_SIGN_ECDSA_SECP521R1_SHA512:
485 return "ecdsa_sha512";
486 // If adding more here, also update
487 // |SSL_get_all_signature_algorithm_names|.
488 }
489 }
490
491 for (const auto &candidate : kSignatureAlgorithmNames) {
492 if (candidate.signature_algorithm == sigalg) {
493 return candidate.name;
494 }
495 }
496
497 return NULL;
498 }
499
SSL_get_all_signature_algorithm_names(const char ** out,size_t max_out)500 size_t SSL_get_all_signature_algorithm_names(const char **out, size_t max_out) {
501 const char *kPredefinedNames[] = {"ecdsa_sha256", "ecdsa_sha384",
502 "ecdsa_sha512"};
503 return GetAllNames(out, max_out, MakeConstSpan(kPredefinedNames),
504 &SignatureAlgorithmName::name,
505 MakeConstSpan(kSignatureAlgorithmNames));
506 }
507
SSL_get_signature_algorithm_key_type(uint16_t sigalg)508 int SSL_get_signature_algorithm_key_type(uint16_t sigalg) {
509 const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
510 return alg != nullptr ? alg->pkey_type : EVP_PKEY_NONE;
511 }
512
SSL_get_signature_algorithm_digest(uint16_t sigalg)513 const EVP_MD *SSL_get_signature_algorithm_digest(uint16_t sigalg) {
514 const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
515 if (alg == nullptr || alg->digest_func == nullptr) {
516 return nullptr;
517 }
518 return alg->digest_func();
519 }
520
SSL_is_signature_algorithm_rsa_pss(uint16_t sigalg)521 int SSL_is_signature_algorithm_rsa_pss(uint16_t sigalg) {
522 const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
523 return alg != nullptr && alg->is_rsa_pss;
524 }
525
compare_uint16_t(const void * p1,const void * p2)526 static int compare_uint16_t(const void *p1, const void *p2) {
527 uint16_t u1 = *((const uint16_t *)p1);
528 uint16_t u2 = *((const uint16_t *)p2);
529 if (u1 < u2) {
530 return -1;
531 } else if (u1 > u2) {
532 return 1;
533 } else {
534 return 0;
535 }
536 }
537
sigalgs_unique(Span<const uint16_t> in_sigalgs)538 static bool sigalgs_unique(Span<const uint16_t> in_sigalgs) {
539 if (in_sigalgs.size() < 2) {
540 return true;
541 }
542
543 Array<uint16_t> sigalgs;
544 if (!sigalgs.CopyFrom(in_sigalgs)) {
545 return false;
546 }
547
548 qsort(sigalgs.data(), sigalgs.size(), sizeof(uint16_t), compare_uint16_t);
549
550 for (size_t i = 1; i < sigalgs.size(); i++) {
551 if (sigalgs[i - 1] == sigalgs[i]) {
552 OPENSSL_PUT_ERROR(SSL, SSL_R_DUPLICATE_SIGNATURE_ALGORITHM);
553 return false;
554 }
555 }
556
557 return true;
558 }
559
set_sigalg_prefs(Array<uint16_t> * out,Span<const uint16_t> prefs)560 static bool set_sigalg_prefs(Array<uint16_t> *out, Span<const uint16_t> prefs) {
561 if (!sigalgs_unique(prefs)) {
562 return false;
563 }
564
565 // Check for invalid algorithms, and filter out |SSL_SIGN_RSA_PKCS1_MD5_SHA1|.
566 Array<uint16_t> filtered;
567 if (!filtered.Init(prefs.size())) {
568 return false;
569 }
570 size_t added = 0;
571 for (uint16_t pref : prefs) {
572 if (pref == SSL_SIGN_RSA_PKCS1_MD5_SHA1) {
573 // Though not intended to be used with this API, we treat
574 // |SSL_SIGN_RSA_PKCS1_MD5_SHA1| as a real signature algorithm in
575 // |SSL_PRIVATE_KEY_METHOD|. Not accepting it here makes for a confusing
576 // abstraction.
577 continue;
578 }
579 if (get_signature_algorithm(pref) == nullptr) {
580 OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
581 return false;
582 }
583 filtered[added] = pref;
584 added++;
585 }
586 filtered.Shrink(added);
587
588 // This can happen if |prefs| contained only |SSL_SIGN_RSA_PKCS1_MD5_SHA1|.
589 // Leaving it empty would revert to the default, so treat this as an error
590 // condition.
591 if (!prefs.empty() && filtered.empty()) {
592 OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
593 return false;
594 }
595
596 *out = std::move(filtered);
597 return true;
598 }
599
SSL_CREDENTIAL_set1_signing_algorithm_prefs(SSL_CREDENTIAL * cred,const uint16_t * prefs,size_t num_prefs)600 int SSL_CREDENTIAL_set1_signing_algorithm_prefs(SSL_CREDENTIAL *cred,
601 const uint16_t *prefs,
602 size_t num_prefs) {
603 if (!cred->UsesPrivateKey()) {
604 OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
605 return 0;
606 }
607
608 // Delegated credentials are constrained to a single algorithm, so there is no
609 // need to configure this.
610 if (cred->type == SSLCredentialType::kDelegated) {
611 OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
612 return 0;
613 }
614
615 return set_sigalg_prefs(&cred->sigalgs, MakeConstSpan(prefs, num_prefs));
616 }
617
SSL_CTX_set_signing_algorithm_prefs(SSL_CTX * ctx,const uint16_t * prefs,size_t num_prefs)618 int SSL_CTX_set_signing_algorithm_prefs(SSL_CTX *ctx, const uint16_t *prefs,
619 size_t num_prefs) {
620 return SSL_CREDENTIAL_set1_signing_algorithm_prefs(
621 ctx->cert->default_credential.get(), prefs, num_prefs);
622 }
623
SSL_set_signing_algorithm_prefs(SSL * ssl,const uint16_t * prefs,size_t num_prefs)624 int SSL_set_signing_algorithm_prefs(SSL *ssl, const uint16_t *prefs,
625 size_t num_prefs) {
626 if (!ssl->config) {
627 return 0;
628 }
629 return SSL_CREDENTIAL_set1_signing_algorithm_prefs(
630 ssl->config->cert->default_credential.get(), prefs, num_prefs);
631 }
632
633 static constexpr struct {
634 int pkey_type;
635 int hash_nid;
636 uint16_t signature_algorithm;
637 } kSignatureAlgorithmsMapping[] = {
638 {EVP_PKEY_RSA, NID_sha1, SSL_SIGN_RSA_PKCS1_SHA1},
639 {EVP_PKEY_RSA, NID_sha256, SSL_SIGN_RSA_PKCS1_SHA256},
640 {EVP_PKEY_RSA, NID_sha384, SSL_SIGN_RSA_PKCS1_SHA384},
641 {EVP_PKEY_RSA, NID_sha512, SSL_SIGN_RSA_PKCS1_SHA512},
642 {EVP_PKEY_RSA_PSS, NID_sha256, SSL_SIGN_RSA_PSS_RSAE_SHA256},
643 {EVP_PKEY_RSA_PSS, NID_sha384, SSL_SIGN_RSA_PSS_RSAE_SHA384},
644 {EVP_PKEY_RSA_PSS, NID_sha512, SSL_SIGN_RSA_PSS_RSAE_SHA512},
645 {EVP_PKEY_EC, NID_sha1, SSL_SIGN_ECDSA_SHA1},
646 {EVP_PKEY_EC, NID_sha256, SSL_SIGN_ECDSA_SECP256R1_SHA256},
647 {EVP_PKEY_EC, NID_sha384, SSL_SIGN_ECDSA_SECP384R1_SHA384},
648 {EVP_PKEY_EC, NID_sha512, SSL_SIGN_ECDSA_SECP521R1_SHA512},
649 {EVP_PKEY_ED25519, NID_undef, SSL_SIGN_ED25519},
650 };
651
parse_sigalg_pairs(Array<uint16_t> * out,const int * values,size_t num_values)652 static bool parse_sigalg_pairs(Array<uint16_t> *out, const int *values,
653 size_t num_values) {
654 if ((num_values & 1) == 1) {
655 return false;
656 }
657
658 const size_t num_pairs = num_values / 2;
659 if (!out->Init(num_pairs)) {
660 return false;
661 }
662
663 for (size_t i = 0; i < num_values; i += 2) {
664 const int hash_nid = values[i];
665 const int pkey_type = values[i+1];
666
667 bool found = false;
668 for (const auto &candidate : kSignatureAlgorithmsMapping) {
669 if (candidate.pkey_type == pkey_type && candidate.hash_nid == hash_nid) {
670 (*out)[i / 2] = candidate.signature_algorithm;
671 found = true;
672 break;
673 }
674 }
675
676 if (!found) {
677 OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
678 ERR_add_error_dataf("unknown hash:%d pkey:%d", hash_nid, pkey_type);
679 return false;
680 }
681 }
682
683 return true;
684 }
685
SSL_CTX_set1_sigalgs(SSL_CTX * ctx,const int * values,size_t num_values)686 int SSL_CTX_set1_sigalgs(SSL_CTX *ctx, const int *values, size_t num_values) {
687 Array<uint16_t> sigalgs;
688 if (!parse_sigalg_pairs(&sigalgs, values, num_values)) {
689 return 0;
690 }
691
692 if (!SSL_CTX_set_signing_algorithm_prefs(ctx, sigalgs.data(),
693 sigalgs.size()) ||
694 !SSL_CTX_set_verify_algorithm_prefs(ctx, sigalgs.data(),
695 sigalgs.size())) {
696 return 0;
697 }
698
699 return 1;
700 }
701
SSL_set1_sigalgs(SSL * ssl,const int * values,size_t num_values)702 int SSL_set1_sigalgs(SSL *ssl, const int *values, size_t num_values) {
703 if (!ssl->config) {
704 OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
705 return 0;
706 }
707
708 Array<uint16_t> sigalgs;
709 if (!parse_sigalg_pairs(&sigalgs, values, num_values)) {
710 return 0;
711 }
712
713 if (!SSL_set_signing_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size()) ||
714 !SSL_set_verify_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size())) {
715 return 0;
716 }
717
718 return 1;
719 }
720
parse_sigalgs_list(Array<uint16_t> * out,const char * str)721 static bool parse_sigalgs_list(Array<uint16_t> *out, const char *str) {
722 // str looks like "RSA+SHA1:ECDSA+SHA256:ecdsa_secp256r1_sha256".
723
724 // Count colons to give the number of output elements from any successful
725 // parse.
726 size_t num_elements = 1;
727 size_t len = 0;
728 for (const char *p = str; *p; p++) {
729 len++;
730 if (*p == ':') {
731 num_elements++;
732 }
733 }
734
735 if (!out->Init(num_elements)) {
736 return false;
737 }
738 size_t out_i = 0;
739
740 enum {
741 pkey_or_name,
742 hash_name,
743 } state = pkey_or_name;
744
745 char buf[kMaxSignatureAlgorithmNameLen];
746 // buf_used is always < sizeof(buf). I.e. it's always safe to write
747 // buf[buf_used] = 0.
748 size_t buf_used = 0;
749
750 int pkey_type = 0, hash_nid = 0;
751
752 // Note that the loop runs to len+1, i.e. it'll process the terminating NUL.
753 for (size_t offset = 0; offset < len+1; offset++) {
754 const unsigned char c = str[offset];
755
756 switch (c) {
757 case '+':
758 if (state == hash_name) {
759 OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
760 ERR_add_error_dataf("+ found in hash name at offset %zu", offset);
761 return false;
762 }
763 if (buf_used == 0) {
764 OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
765 ERR_add_error_dataf("empty public key type at offset %zu", offset);
766 return false;
767 }
768 buf[buf_used] = 0;
769
770 if (strcmp(buf, "RSA") == 0) {
771 pkey_type = EVP_PKEY_RSA;
772 } else if (strcmp(buf, "RSA-PSS") == 0 ||
773 strcmp(buf, "PSS") == 0) {
774 pkey_type = EVP_PKEY_RSA_PSS;
775 } else if (strcmp(buf, "ECDSA") == 0) {
776 pkey_type = EVP_PKEY_EC;
777 } else {
778 OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
779 ERR_add_error_dataf("unknown public key type '%s'", buf);
780 return false;
781 }
782
783 state = hash_name;
784 buf_used = 0;
785 break;
786
787 case ':':
788 OPENSSL_FALLTHROUGH;
789 case 0:
790 if (buf_used == 0) {
791 OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
792 ERR_add_error_dataf("empty element at offset %zu", offset);
793 return false;
794 }
795
796 buf[buf_used] = 0;
797
798 if (state == pkey_or_name) {
799 // No '+' was seen thus this is a TLS 1.3-style name.
800 bool found = false;
801 for (const auto &candidate : kSignatureAlgorithmNames) {
802 if (strcmp(candidate.name, buf) == 0) {
803 assert(out_i < num_elements);
804 (*out)[out_i++] = candidate.signature_algorithm;
805 found = true;
806 break;
807 }
808 }
809
810 if (!found) {
811 OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
812 ERR_add_error_dataf("unknown signature algorithm '%s'", buf);
813 return false;
814 }
815 } else {
816 if (strcmp(buf, "SHA1") == 0) {
817 hash_nid = NID_sha1;
818 } else if (strcmp(buf, "SHA256") == 0) {
819 hash_nid = NID_sha256;
820 } else if (strcmp(buf, "SHA384") == 0) {
821 hash_nid = NID_sha384;
822 } else if (strcmp(buf, "SHA512") == 0) {
823 hash_nid = NID_sha512;
824 } else {
825 OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
826 ERR_add_error_dataf("unknown hash function '%s'", buf);
827 return false;
828 }
829
830 bool found = false;
831 for (const auto &candidate : kSignatureAlgorithmsMapping) {
832 if (candidate.pkey_type == pkey_type &&
833 candidate.hash_nid == hash_nid) {
834 assert(out_i < num_elements);
835 (*out)[out_i++] = candidate.signature_algorithm;
836 found = true;
837 break;
838 }
839 }
840
841 if (!found) {
842 OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
843 ERR_add_error_dataf("unknown pkey:%d hash:%s", pkey_type, buf);
844 return false;
845 }
846 }
847
848 state = pkey_or_name;
849 buf_used = 0;
850 break;
851
852 default:
853 if (buf_used == sizeof(buf) - 1) {
854 OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
855 ERR_add_error_dataf("substring too long at offset %zu", offset);
856 return false;
857 }
858
859 if (OPENSSL_isalnum(c) || c == '-' || c == '_') {
860 buf[buf_used++] = c;
861 } else {
862 OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
863 ERR_add_error_dataf("invalid character 0x%02x at offest %zu", c,
864 offset);
865 return false;
866 }
867 }
868 }
869
870 assert(out_i == out->size());
871 return true;
872 }
873
SSL_CTX_set1_sigalgs_list(SSL_CTX * ctx,const char * str)874 int SSL_CTX_set1_sigalgs_list(SSL_CTX *ctx, const char *str) {
875 Array<uint16_t> sigalgs;
876 if (!parse_sigalgs_list(&sigalgs, str)) {
877 return 0;
878 }
879
880 if (!SSL_CTX_set_signing_algorithm_prefs(ctx, sigalgs.data(),
881 sigalgs.size()) ||
882 !SSL_CTX_set_verify_algorithm_prefs(ctx, sigalgs.data(),
883 sigalgs.size())) {
884 return 0;
885 }
886
887 return 1;
888 }
889
SSL_set1_sigalgs_list(SSL * ssl,const char * str)890 int SSL_set1_sigalgs_list(SSL *ssl, const char *str) {
891 if (!ssl->config) {
892 OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
893 return 0;
894 }
895
896 Array<uint16_t> sigalgs;
897 if (!parse_sigalgs_list(&sigalgs, str)) {
898 return 0;
899 }
900
901 if (!SSL_set_signing_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size()) ||
902 !SSL_set_verify_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size())) {
903 return 0;
904 }
905
906 return 1;
907 }
908
SSL_CTX_set_verify_algorithm_prefs(SSL_CTX * ctx,const uint16_t * prefs,size_t num_prefs)909 int SSL_CTX_set_verify_algorithm_prefs(SSL_CTX *ctx, const uint16_t *prefs,
910 size_t num_prefs) {
911 return set_sigalg_prefs(&ctx->verify_sigalgs,
912 MakeConstSpan(prefs, num_prefs));
913 }
914
SSL_set_verify_algorithm_prefs(SSL * ssl,const uint16_t * prefs,size_t num_prefs)915 int SSL_set_verify_algorithm_prefs(SSL *ssl, const uint16_t *prefs,
916 size_t num_prefs) {
917 if (!ssl->config) {
918 OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
919 return 0;
920 }
921
922 return set_sigalg_prefs(&ssl->config->verify_sigalgs,
923 MakeConstSpan(prefs, num_prefs));
924 }
925