1 /* Written by Dr Stephen N Henson ([email protected]) for the OpenSSL
2 * project 1999.
3 */
4 /* ====================================================================
5 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 *
19 * 3. All advertising materials mentioning features or use of this
20 * software must display the following acknowledgment:
21 * "This product includes software developed by the OpenSSL Project
22 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
23 *
24 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25 * endorse or promote products derived from this software without
26 * prior written permission. For written permission, please contact
27 * [email protected].
28 *
29 * 5. Products derived from this software may not be called "OpenSSL"
30 * nor may "OpenSSL" appear in their names without prior written
31 * permission of the OpenSSL Project.
32 *
33 * 6. Redistributions of any form whatsoever must retain the following
34 * acknowledgment:
35 * "This product includes software developed by the OpenSSL Project
36 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
37 *
38 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
39 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
42 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49 * OF THE POSSIBILITY OF SUCH DAMAGE.
50 * ====================================================================
51 *
52 * This product includes cryptographic software written by Eric Young
53 * ([email protected]). This product includes software written by Tim
54 * Hudson ([email protected]). */
55
56 #include <openssl/pkcs8.h>
57
58 #include <limits.h>
59
60 #include <openssl/asn1t.h>
61 #include <openssl/asn1.h>
62 #include <openssl/bio.h>
63 #include <openssl/buf.h>
64 #include <openssl/bytestring.h>
65 #include <openssl/err.h>
66 #include <openssl/evp.h>
67 #include <openssl/digest.h>
68 #include <openssl/hmac.h>
69 #include <openssl/mem.h>
70 #include <openssl/rand.h>
71 #include <openssl/x509.h>
72
73 #include "../bytestring/internal.h"
74 #include "../internal.h"
75 #include "../x509/internal.h"
76 #include "internal.h"
77
78
pkcs12_iterations_acceptable(uint64_t iterations)79 int pkcs12_iterations_acceptable(uint64_t iterations) {
80 #if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
81 static const uint64_t kIterationsLimit = 2048;
82 #else
83 // Windows imposes a limit of 600K. Mozilla say: “so them increasing
84 // maximum to something like 100M or 1G (to have few decades of breathing
85 // room) would be very welcome”[1]. So here we set the limit to 100M.
86 //
87 // [1] https://bugzilla.mozilla.org/show_bug.cgi?id=1436873#c14
88 static const uint64_t kIterationsLimit = 100 * 1000000;
89 #endif
90
91 assert(kIterationsLimit <= UINT32_MAX);
92 return 0 < iterations && iterations <= kIterationsLimit;
93 }
94
95 ASN1_SEQUENCE(PKCS8_PRIV_KEY_INFO) = {
96 ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, version, ASN1_INTEGER),
97 ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, pkeyalg, X509_ALGOR),
98 ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, pkey, ASN1_OCTET_STRING),
99 ASN1_IMP_SET_OF_OPT(PKCS8_PRIV_KEY_INFO, attributes, X509_ATTRIBUTE, 0),
100 } ASN1_SEQUENCE_END(PKCS8_PRIV_KEY_INFO)
101
102 IMPLEMENT_ASN1_FUNCTIONS_const(PKCS8_PRIV_KEY_INFO)
103
104 EVP_PKEY *EVP_PKCS82PKEY(const PKCS8_PRIV_KEY_INFO *p8) {
105 uint8_t *der = NULL;
106 int der_len = i2d_PKCS8_PRIV_KEY_INFO(p8, &der);
107 if (der_len < 0) {
108 return NULL;
109 }
110
111 CBS cbs;
112 CBS_init(&cbs, der, (size_t)der_len);
113 EVP_PKEY *ret = EVP_parse_private_key(&cbs);
114 if (ret == NULL || CBS_len(&cbs) != 0) {
115 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
116 EVP_PKEY_free(ret);
117 OPENSSL_free(der);
118 return NULL;
119 }
120
121 OPENSSL_free(der);
122 return ret;
123 }
124
EVP_PKEY2PKCS8(const EVP_PKEY * pkey)125 PKCS8_PRIV_KEY_INFO *EVP_PKEY2PKCS8(const EVP_PKEY *pkey) {
126 CBB cbb;
127 uint8_t *der = NULL;
128 size_t der_len;
129 if (!CBB_init(&cbb, 0) ||
130 !EVP_marshal_private_key(&cbb, pkey) ||
131 !CBB_finish(&cbb, &der, &der_len) ||
132 der_len > LONG_MAX) {
133 CBB_cleanup(&cbb);
134 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_ENCODE_ERROR);
135 goto err;
136 }
137
138 const uint8_t *p = der;
139 PKCS8_PRIV_KEY_INFO *p8 = d2i_PKCS8_PRIV_KEY_INFO(NULL, &p, (long)der_len);
140 if (p8 == NULL || p != der + der_len) {
141 PKCS8_PRIV_KEY_INFO_free(p8);
142 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
143 goto err;
144 }
145
146 OPENSSL_free(der);
147 return p8;
148
149 err:
150 OPENSSL_free(der);
151 return NULL;
152 }
153
PKCS8_decrypt(X509_SIG * pkcs8,const char * pass,int pass_len_in)154 PKCS8_PRIV_KEY_INFO *PKCS8_decrypt(X509_SIG *pkcs8, const char *pass,
155 int pass_len_in) {
156 size_t pass_len;
157 if (pass_len_in == -1 && pass != NULL) {
158 pass_len = strlen(pass);
159 } else {
160 pass_len = (size_t)pass_len_in;
161 }
162
163 PKCS8_PRIV_KEY_INFO *ret = NULL;
164 EVP_PKEY *pkey = NULL;
165 uint8_t *in = NULL;
166
167 // Convert the legacy ASN.1 object to a byte string.
168 int in_len = i2d_X509_SIG(pkcs8, &in);
169 if (in_len < 0) {
170 goto err;
171 }
172
173 CBS cbs;
174 CBS_init(&cbs, in, in_len);
175 pkey = PKCS8_parse_encrypted_private_key(&cbs, pass, pass_len);
176 if (pkey == NULL || CBS_len(&cbs) != 0) {
177 goto err;
178 }
179
180 ret = EVP_PKEY2PKCS8(pkey);
181
182 err:
183 OPENSSL_free(in);
184 EVP_PKEY_free(pkey);
185 return ret;
186 }
187
PKCS8_encrypt(int pbe_nid,const EVP_CIPHER * cipher,const char * pass,int pass_len_in,const uint8_t * salt,size_t salt_len,int iterations,PKCS8_PRIV_KEY_INFO * p8inf)188 X509_SIG *PKCS8_encrypt(int pbe_nid, const EVP_CIPHER *cipher, const char *pass,
189 int pass_len_in, const uint8_t *salt, size_t salt_len,
190 int iterations, PKCS8_PRIV_KEY_INFO *p8inf) {
191 size_t pass_len;
192 if (pass_len_in == -1 && pass != NULL) {
193 pass_len = strlen(pass);
194 } else {
195 pass_len = (size_t)pass_len_in;
196 }
197
198 // Parse out the private key.
199 EVP_PKEY *pkey = EVP_PKCS82PKEY(p8inf);
200 if (pkey == NULL) {
201 return NULL;
202 }
203
204 X509_SIG *ret = NULL;
205 uint8_t *der = NULL;
206 size_t der_len;
207 CBB cbb;
208 if (!CBB_init(&cbb, 128) ||
209 !PKCS8_marshal_encrypted_private_key(&cbb, pbe_nid, cipher, pass,
210 pass_len, salt, salt_len, iterations,
211 pkey) ||
212 !CBB_finish(&cbb, &der, &der_len)) {
213 CBB_cleanup(&cbb);
214 goto err;
215 }
216
217 // Convert back to legacy ASN.1 objects.
218 const uint8_t *ptr = der;
219 ret = d2i_X509_SIG(NULL, &ptr, der_len);
220 if (ret == NULL || ptr != der + der_len) {
221 OPENSSL_PUT_ERROR(PKCS8, ERR_R_INTERNAL_ERROR);
222 X509_SIG_free(ret);
223 ret = NULL;
224 }
225
226 err:
227 OPENSSL_free(der);
228 EVP_PKEY_free(pkey);
229 return ret;
230 }
231
232 struct pkcs12_context {
233 EVP_PKEY **out_key;
234 STACK_OF(X509) *out_certs;
235 const char *password;
236 size_t password_len;
237 };
238
239 // PKCS12_handle_sequence parses a BER-encoded SEQUENCE of elements in a PKCS#12
240 // structure.
PKCS12_handle_sequence(CBS * sequence,struct pkcs12_context * ctx,int (* handle_element)(CBS * cbs,struct pkcs12_context * ctx))241 static int PKCS12_handle_sequence(
242 CBS *sequence, struct pkcs12_context *ctx,
243 int (*handle_element)(CBS *cbs, struct pkcs12_context *ctx)) {
244 uint8_t *storage = NULL;
245 CBS in;
246 int ret = 0;
247
248 // Although a BER->DER conversion is done at the beginning of |PKCS12_parse|,
249 // the ASN.1 data gets wrapped in OCTETSTRINGs and/or encrypted and the
250 // conversion cannot see through those wrappings. So each time we step
251 // through one we need to convert to DER again.
252 if (!CBS_asn1_ber_to_der(sequence, &in, &storage)) {
253 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
254 return 0;
255 }
256
257 CBS child;
258 if (!CBS_get_asn1(&in, &child, CBS_ASN1_SEQUENCE) ||
259 CBS_len(&in) != 0) {
260 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
261 goto err;
262 }
263
264 while (CBS_len(&child) > 0) {
265 CBS element;
266 if (!CBS_get_asn1(&child, &element, CBS_ASN1_SEQUENCE)) {
267 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
268 goto err;
269 }
270
271 if (!handle_element(&element, ctx)) {
272 goto err;
273 }
274 }
275
276 ret = 1;
277
278 err:
279 OPENSSL_free(storage);
280 return ret;
281 }
282
283 // 1.2.840.113549.1.12.10.1.1
284 static const uint8_t kKeyBag[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d,
285 0x01, 0x0c, 0x0a, 0x01, 0x01};
286
287 // 1.2.840.113549.1.12.10.1.2
288 static const uint8_t kPKCS8ShroudedKeyBag[] = {
289 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x0a, 0x01, 0x02};
290
291 // 1.2.840.113549.1.12.10.1.3
292 static const uint8_t kCertBag[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d,
293 0x01, 0x0c, 0x0a, 0x01, 0x03};
294
295 // 1.2.840.113549.1.9.20
296 static const uint8_t kFriendlyName[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
297 0x0d, 0x01, 0x09, 0x14};
298
299 // 1.2.840.113549.1.9.21
300 static const uint8_t kLocalKeyID[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
301 0x0d, 0x01, 0x09, 0x15};
302
303 // 1.2.840.113549.1.9.22.1
304 static const uint8_t kX509Certificate[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
305 0x0d, 0x01, 0x09, 0x16, 0x01};
306
307 // parse_bag_attributes parses the bagAttributes field of a SafeBag structure.
308 // It sets |*out_friendly_name| to a newly-allocated copy of the friendly name,
309 // encoded as a UTF-8 string, or NULL if there is none. It returns one on
310 // success and zero on error.
parse_bag_attributes(CBS * attrs,uint8_t ** out_friendly_name,size_t * out_friendly_name_len)311 static int parse_bag_attributes(CBS *attrs, uint8_t **out_friendly_name,
312 size_t *out_friendly_name_len) {
313 *out_friendly_name = NULL;
314 *out_friendly_name_len = 0;
315
316 // See https://tools.ietf.org/html/rfc7292#section-4.2.
317 while (CBS_len(attrs) != 0) {
318 CBS attr, oid, values;
319 if (!CBS_get_asn1(attrs, &attr, CBS_ASN1_SEQUENCE) ||
320 !CBS_get_asn1(&attr, &oid, CBS_ASN1_OBJECT) ||
321 !CBS_get_asn1(&attr, &values, CBS_ASN1_SET) ||
322 CBS_len(&attr) != 0) {
323 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
324 goto err;
325 }
326 if (CBS_mem_equal(&oid, kFriendlyName, sizeof(kFriendlyName))) {
327 // See https://tools.ietf.org/html/rfc2985, section 5.5.1.
328 CBS value;
329 if (*out_friendly_name != NULL ||
330 !CBS_get_asn1(&values, &value, CBS_ASN1_BMPSTRING) ||
331 CBS_len(&values) != 0 ||
332 CBS_len(&value) == 0) {
333 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
334 goto err;
335 }
336 // Convert the friendly name to UTF-8.
337 CBB cbb;
338 if (!CBB_init(&cbb, CBS_len(&value))) {
339 goto err;
340 }
341 while (CBS_len(&value) != 0) {
342 uint32_t c;
343 if (!CBS_get_ucs2_be(&value, &c) ||
344 !CBB_add_utf8(&cbb, c)) {
345 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INVALID_CHARACTERS);
346 CBB_cleanup(&cbb);
347 goto err;
348 }
349 }
350 if (!CBB_finish(&cbb, out_friendly_name, out_friendly_name_len)) {
351 CBB_cleanup(&cbb);
352 goto err;
353 }
354 }
355 }
356
357 return 1;
358
359 err:
360 OPENSSL_free(*out_friendly_name);
361 *out_friendly_name = NULL;
362 *out_friendly_name_len = 0;
363 return 0;
364 }
365
366 // PKCS12_handle_safe_bag parses a single SafeBag element in a PKCS#12
367 // structure.
PKCS12_handle_safe_bag(CBS * safe_bag,struct pkcs12_context * ctx)368 static int PKCS12_handle_safe_bag(CBS *safe_bag, struct pkcs12_context *ctx) {
369 CBS bag_id, wrapped_value, bag_attrs;
370 if (!CBS_get_asn1(safe_bag, &bag_id, CBS_ASN1_OBJECT) ||
371 !CBS_get_asn1(safe_bag, &wrapped_value,
372 CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)) {
373 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
374 return 0;
375 }
376 if (CBS_len(safe_bag) == 0) {
377 CBS_init(&bag_attrs, NULL, 0);
378 } else if (!CBS_get_asn1(safe_bag, &bag_attrs, CBS_ASN1_SET) ||
379 CBS_len(safe_bag) != 0) {
380 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
381 return 0;
382 }
383
384 const int is_key_bag = CBS_mem_equal(&bag_id, kKeyBag, sizeof(kKeyBag));
385 const int is_shrouded_key_bag = CBS_mem_equal(&bag_id, kPKCS8ShroudedKeyBag,
386 sizeof(kPKCS8ShroudedKeyBag));
387 if (is_key_bag || is_shrouded_key_bag) {
388 // See RFC 7292, section 4.2.1 and 4.2.2.
389 if (*ctx->out_key) {
390 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_MULTIPLE_PRIVATE_KEYS_IN_PKCS12);
391 return 0;
392 }
393
394 EVP_PKEY *pkey =
395 is_key_bag ? EVP_parse_private_key(&wrapped_value)
396 : PKCS8_parse_encrypted_private_key(
397 &wrapped_value, ctx->password, ctx->password_len);
398 if (pkey == NULL) {
399 return 0;
400 }
401
402 if (CBS_len(&wrapped_value) != 0) {
403 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
404 EVP_PKEY_free(pkey);
405 return 0;
406 }
407
408 *ctx->out_key = pkey;
409 return 1;
410 }
411
412 if (CBS_mem_equal(&bag_id, kCertBag, sizeof(kCertBag))) {
413 // See RFC 7292, section 4.2.3.
414 CBS cert_bag, cert_type, wrapped_cert, cert;
415 if (!CBS_get_asn1(&wrapped_value, &cert_bag, CBS_ASN1_SEQUENCE) ||
416 !CBS_get_asn1(&cert_bag, &cert_type, CBS_ASN1_OBJECT) ||
417 !CBS_get_asn1(&cert_bag, &wrapped_cert,
418 CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0) ||
419 !CBS_get_asn1(&wrapped_cert, &cert, CBS_ASN1_OCTETSTRING)) {
420 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
421 return 0;
422 }
423
424 // Skip unknown certificate types.
425 if (!CBS_mem_equal(&cert_type, kX509Certificate,
426 sizeof(kX509Certificate))) {
427 return 1;
428 }
429
430 if (CBS_len(&cert) > LONG_MAX) {
431 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
432 return 0;
433 }
434
435 const uint8_t *inp = CBS_data(&cert);
436 X509 *x509 = d2i_X509(NULL, &inp, (long)CBS_len(&cert));
437 if (!x509) {
438 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
439 return 0;
440 }
441
442 if (inp != CBS_data(&cert) + CBS_len(&cert)) {
443 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
444 X509_free(x509);
445 return 0;
446 }
447
448 uint8_t *friendly_name;
449 size_t friendly_name_len;
450 if (!parse_bag_attributes(&bag_attrs, &friendly_name, &friendly_name_len)) {
451 X509_free(x509);
452 return 0;
453 }
454 int ok = friendly_name_len == 0 ||
455 X509_alias_set1(x509, friendly_name, friendly_name_len);
456 OPENSSL_free(friendly_name);
457 if (!ok ||
458 0 == sk_X509_push(ctx->out_certs, x509)) {
459 X509_free(x509);
460 return 0;
461 }
462
463 return 1;
464 }
465
466 // Unknown element type - ignore it.
467 return 1;
468 }
469
470 // 1.2.840.113549.1.7.1
471 static const uint8_t kPKCS7Data[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
472 0x0d, 0x01, 0x07, 0x01};
473
474 // 1.2.840.113549.1.7.6
475 static const uint8_t kPKCS7EncryptedData[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
476 0x0d, 0x01, 0x07, 0x06};
477
478 // PKCS12_handle_content_info parses a single PKCS#7 ContentInfo element in a
479 // PKCS#12 structure.
PKCS12_handle_content_info(CBS * content_info,struct pkcs12_context * ctx)480 static int PKCS12_handle_content_info(CBS *content_info,
481 struct pkcs12_context *ctx) {
482 CBS content_type, wrapped_contents, contents;
483 int ret = 0;
484 uint8_t *storage = NULL;
485
486 if (!CBS_get_asn1(content_info, &content_type, CBS_ASN1_OBJECT) ||
487 !CBS_get_asn1(content_info, &wrapped_contents,
488 CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0) ||
489 CBS_len(content_info) != 0) {
490 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
491 goto err;
492 }
493
494 if (CBS_mem_equal(&content_type, kPKCS7EncryptedData,
495 sizeof(kPKCS7EncryptedData))) {
496 // See https://tools.ietf.org/html/rfc2315#section-13.
497 //
498 // PKCS#7 encrypted data inside a PKCS#12 structure is generally an
499 // encrypted certificate bag and it's generally encrypted with 40-bit
500 // RC2-CBC.
501 CBS version_bytes, eci, contents_type, ai, encrypted_contents;
502 uint8_t *out;
503 size_t out_len;
504
505 if (!CBS_get_asn1(&wrapped_contents, &contents, CBS_ASN1_SEQUENCE) ||
506 !CBS_get_asn1(&contents, &version_bytes, CBS_ASN1_INTEGER) ||
507 // EncryptedContentInfo, see
508 // https://tools.ietf.org/html/rfc2315#section-10.1
509 !CBS_get_asn1(&contents, &eci, CBS_ASN1_SEQUENCE) ||
510 !CBS_get_asn1(&eci, &contents_type, CBS_ASN1_OBJECT) ||
511 // AlgorithmIdentifier, see
512 // https://tools.ietf.org/html/rfc5280#section-4.1.1.2
513 !CBS_get_asn1(&eci, &ai, CBS_ASN1_SEQUENCE) ||
514 !CBS_get_asn1_implicit_string(
515 &eci, &encrypted_contents, &storage,
516 CBS_ASN1_CONTEXT_SPECIFIC | 0, CBS_ASN1_OCTETSTRING)) {
517 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
518 goto err;
519 }
520
521 if (!CBS_mem_equal(&contents_type, kPKCS7Data, sizeof(kPKCS7Data))) {
522 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
523 goto err;
524 }
525
526 if (!pkcs8_pbe_decrypt(&out, &out_len, &ai, ctx->password,
527 ctx->password_len, CBS_data(&encrypted_contents),
528 CBS_len(&encrypted_contents))) {
529 goto err;
530 }
531
532 CBS safe_contents;
533 CBS_init(&safe_contents, out, out_len);
534 ret = PKCS12_handle_sequence(&safe_contents, ctx, PKCS12_handle_safe_bag);
535 OPENSSL_free(out);
536 } else if (CBS_mem_equal(&content_type, kPKCS7Data, sizeof(kPKCS7Data))) {
537 CBS octet_string_contents;
538
539 if (!CBS_get_asn1(&wrapped_contents, &octet_string_contents,
540 CBS_ASN1_OCTETSTRING)) {
541 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
542 goto err;
543 }
544
545 ret = PKCS12_handle_sequence(&octet_string_contents, ctx,
546 PKCS12_handle_safe_bag);
547 } else {
548 // Unknown element type - ignore it.
549 ret = 1;
550 }
551
552 err:
553 OPENSSL_free(storage);
554 return ret;
555 }
556
pkcs12_check_mac(int * out_mac_ok,const char * password,size_t password_len,const CBS * salt,uint32_t iterations,const EVP_MD * md,const CBS * authsafes,const CBS * expected_mac)557 static int pkcs12_check_mac(int *out_mac_ok, const char *password,
558 size_t password_len, const CBS *salt,
559 uint32_t iterations, const EVP_MD *md,
560 const CBS *authsafes, const CBS *expected_mac) {
561 int ret = 0;
562 uint8_t hmac_key[EVP_MAX_MD_SIZE];
563 if (!pkcs12_key_gen(password, password_len, CBS_data(salt), CBS_len(salt),
564 PKCS12_MAC_ID, iterations, EVP_MD_size(md), hmac_key,
565 md)) {
566 goto err;
567 }
568
569 uint8_t hmac[EVP_MAX_MD_SIZE];
570 unsigned hmac_len;
571 if (NULL == HMAC(md, hmac_key, EVP_MD_size(md), CBS_data(authsafes),
572 CBS_len(authsafes), hmac, &hmac_len)) {
573 goto err;
574 }
575
576 *out_mac_ok = CBS_mem_equal(expected_mac, hmac, hmac_len);
577 #if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
578 *out_mac_ok = 1;
579 #endif
580 ret = 1;
581
582 err:
583 OPENSSL_cleanse(hmac_key, sizeof(hmac_key));
584 return ret;
585 }
586
587
PKCS12_get_key_and_certs(EVP_PKEY ** out_key,STACK_OF (X509)* out_certs,CBS * ber_in,const char * password)588 int PKCS12_get_key_and_certs(EVP_PKEY **out_key, STACK_OF(X509) *out_certs,
589 CBS *ber_in, const char *password) {
590 uint8_t *storage = NULL;
591 CBS in, pfx, mac_data, authsafe, content_type, wrapped_authsafes, authsafes;
592 uint64_t version;
593 int ret = 0;
594 struct pkcs12_context ctx;
595 const size_t original_out_certs_len = sk_X509_num(out_certs);
596
597 // The input may be in BER format.
598 if (!CBS_asn1_ber_to_der(ber_in, &in, &storage)) {
599 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
600 return 0;
601 }
602
603 *out_key = NULL;
604 OPENSSL_memset(&ctx, 0, sizeof(ctx));
605
606 // See ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-12/pkcs-12v1.pdf, section
607 // four.
608 if (!CBS_get_asn1(&in, &pfx, CBS_ASN1_SEQUENCE) ||
609 CBS_len(&in) != 0 ||
610 !CBS_get_asn1_uint64(&pfx, &version)) {
611 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
612 goto err;
613 }
614
615 if (version < 3) {
616 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_VERSION);
617 goto err;
618 }
619
620 if (!CBS_get_asn1(&pfx, &authsafe, CBS_ASN1_SEQUENCE)) {
621 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
622 goto err;
623 }
624
625 if (CBS_len(&pfx) == 0) {
626 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_MISSING_MAC);
627 goto err;
628 }
629
630 if (!CBS_get_asn1(&pfx, &mac_data, CBS_ASN1_SEQUENCE)) {
631 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
632 goto err;
633 }
634
635 // authsafe is a PKCS#7 ContentInfo. See
636 // https://tools.ietf.org/html/rfc2315#section-7.
637 if (!CBS_get_asn1(&authsafe, &content_type, CBS_ASN1_OBJECT) ||
638 !CBS_get_asn1(&authsafe, &wrapped_authsafes,
639 CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)) {
640 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
641 goto err;
642 }
643
644 // The content type can either be data or signedData. The latter indicates
645 // that it's signed by a public key, which isn't supported.
646 if (!CBS_mem_equal(&content_type, kPKCS7Data, sizeof(kPKCS7Data))) {
647 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_PKCS12_PUBLIC_KEY_INTEGRITY_NOT_SUPPORTED);
648 goto err;
649 }
650
651 if (!CBS_get_asn1(&wrapped_authsafes, &authsafes, CBS_ASN1_OCTETSTRING)) {
652 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
653 goto err;
654 }
655
656 ctx.out_key = out_key;
657 ctx.out_certs = out_certs;
658 ctx.password = password;
659 ctx.password_len = password != NULL ? strlen(password) : 0;
660
661 // Verify the MAC.
662 {
663 CBS mac, salt, expected_mac;
664 if (!CBS_get_asn1(&mac_data, &mac, CBS_ASN1_SEQUENCE)) {
665 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
666 goto err;
667 }
668
669 const EVP_MD *md = EVP_parse_digest_algorithm(&mac);
670 if (md == NULL) {
671 goto err;
672 }
673
674 if (!CBS_get_asn1(&mac, &expected_mac, CBS_ASN1_OCTETSTRING) ||
675 !CBS_get_asn1(&mac_data, &salt, CBS_ASN1_OCTETSTRING)) {
676 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
677 goto err;
678 }
679
680 // The iteration count is optional and the default is one.
681 uint32_t iterations = 1;
682 if (CBS_len(&mac_data) > 0) {
683 uint64_t iterations_u64;
684 if (!CBS_get_asn1_uint64(&mac_data, &iterations_u64) ||
685 !pkcs12_iterations_acceptable(iterations_u64)) {
686 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
687 goto err;
688 }
689 iterations = (uint32_t)iterations_u64;
690 }
691
692 int mac_ok;
693 if (!pkcs12_check_mac(&mac_ok, ctx.password, ctx.password_len, &salt,
694 iterations, md, &authsafes, &expected_mac)) {
695 goto err;
696 }
697 if (!mac_ok && ctx.password_len == 0) {
698 // PKCS#12 encodes passwords as NUL-terminated UCS-2, so the empty
699 // password is encoded as {0, 0}. Some implementations use the empty byte
700 // array for "no password". OpenSSL considers a non-NULL password as {0,
701 // 0} and a NULL password as {}. It then, in high-level PKCS#12 parsing
702 // code, tries both options. We match this behavior.
703 ctx.password = ctx.password != NULL ? NULL : "";
704 if (!pkcs12_check_mac(&mac_ok, ctx.password, ctx.password_len, &salt,
705 iterations, md, &authsafes, &expected_mac)) {
706 goto err;
707 }
708 }
709 if (!mac_ok) {
710 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INCORRECT_PASSWORD);
711 goto err;
712 }
713 }
714
715 // authsafes contains a series of PKCS#7 ContentInfos.
716 if (!PKCS12_handle_sequence(&authsafes, &ctx, PKCS12_handle_content_info)) {
717 goto err;
718 }
719
720 ret = 1;
721
722 err:
723 OPENSSL_free(storage);
724 if (!ret) {
725 EVP_PKEY_free(*out_key);
726 *out_key = NULL;
727 while (sk_X509_num(out_certs) > original_out_certs_len) {
728 X509 *x509 = sk_X509_pop(out_certs);
729 X509_free(x509);
730 }
731 }
732
733 return ret;
734 }
735
PKCS12_PBE_add(void)736 void PKCS12_PBE_add(void) {}
737
738 struct pkcs12_st {
739 uint8_t *ber_bytes;
740 size_t ber_len;
741 };
742
d2i_PKCS12(PKCS12 ** out_p12,const uint8_t ** ber_bytes,size_t ber_len)743 PKCS12 *d2i_PKCS12(PKCS12 **out_p12, const uint8_t **ber_bytes,
744 size_t ber_len) {
745 PKCS12 *p12 = OPENSSL_malloc(sizeof(PKCS12));
746 if (!p12) {
747 return NULL;
748 }
749
750 p12->ber_bytes = OPENSSL_memdup(*ber_bytes, ber_len);
751 if (!p12->ber_bytes) {
752 OPENSSL_free(p12);
753 return NULL;
754 }
755
756 p12->ber_len = ber_len;
757 *ber_bytes += ber_len;
758
759 if (out_p12) {
760 PKCS12_free(*out_p12);
761 *out_p12 = p12;
762 }
763
764 return p12;
765 }
766
d2i_PKCS12_bio(BIO * bio,PKCS12 ** out_p12)767 PKCS12* d2i_PKCS12_bio(BIO *bio, PKCS12 **out_p12) {
768 size_t used = 0;
769 BUF_MEM *buf;
770 const uint8_t *dummy;
771 static const size_t kMaxSize = 256 * 1024;
772 PKCS12 *ret = NULL;
773
774 buf = BUF_MEM_new();
775 if (buf == NULL) {
776 return NULL;
777 }
778 if (BUF_MEM_grow(buf, 8192) == 0) {
779 goto out;
780 }
781
782 for (;;) {
783 size_t max_read = buf->length - used;
784 int n = BIO_read(bio, &buf->data[used],
785 max_read > INT_MAX ? INT_MAX : (int)max_read);
786 if (n < 0) {
787 if (used == 0) {
788 goto out;
789 }
790 // Workaround a bug in node.js. It uses a memory BIO for this in the wrong
791 // mode.
792 n = 0;
793 }
794
795 if (n == 0) {
796 break;
797 }
798 used += n;
799
800 if (used < buf->length) {
801 continue;
802 }
803
804 if (buf->length > kMaxSize ||
805 BUF_MEM_grow(buf, buf->length * 2) == 0) {
806 goto out;
807 }
808 }
809
810 dummy = (uint8_t*) buf->data;
811 ret = d2i_PKCS12(out_p12, &dummy, used);
812
813 out:
814 BUF_MEM_free(buf);
815 return ret;
816 }
817
d2i_PKCS12_fp(FILE * fp,PKCS12 ** out_p12)818 PKCS12* d2i_PKCS12_fp(FILE *fp, PKCS12 **out_p12) {
819 BIO *bio;
820 PKCS12 *ret;
821
822 bio = BIO_new_fp(fp, 0 /* don't take ownership */);
823 if (!bio) {
824 return NULL;
825 }
826
827 ret = d2i_PKCS12_bio(bio, out_p12);
828 BIO_free(bio);
829 return ret;
830 }
831
i2d_PKCS12(const PKCS12 * p12,uint8_t ** out)832 int i2d_PKCS12(const PKCS12 *p12, uint8_t **out) {
833 if (p12->ber_len > INT_MAX) {
834 OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW);
835 return -1;
836 }
837
838 if (out == NULL) {
839 return (int)p12->ber_len;
840 }
841
842 if (*out == NULL) {
843 *out = OPENSSL_memdup(p12->ber_bytes, p12->ber_len);
844 if (*out == NULL) {
845 return -1;
846 }
847 } else {
848 OPENSSL_memcpy(*out, p12->ber_bytes, p12->ber_len);
849 *out += p12->ber_len;
850 }
851 return (int)p12->ber_len;
852 }
853
i2d_PKCS12_bio(BIO * bio,const PKCS12 * p12)854 int i2d_PKCS12_bio(BIO *bio, const PKCS12 *p12) {
855 return BIO_write_all(bio, p12->ber_bytes, p12->ber_len);
856 }
857
i2d_PKCS12_fp(FILE * fp,const PKCS12 * p12)858 int i2d_PKCS12_fp(FILE *fp, const PKCS12 *p12) {
859 BIO *bio = BIO_new_fp(fp, 0 /* don't take ownership */);
860 if (bio == NULL) {
861 return 0;
862 }
863
864 int ret = i2d_PKCS12_bio(bio, p12);
865 BIO_free(bio);
866 return ret;
867 }
868
PKCS12_parse(const PKCS12 * p12,const char * password,EVP_PKEY ** out_pkey,X509 ** out_cert,STACK_OF (X509)** out_ca_certs)869 int PKCS12_parse(const PKCS12 *p12, const char *password, EVP_PKEY **out_pkey,
870 X509 **out_cert, STACK_OF(X509) **out_ca_certs) {
871 CBS ber_bytes;
872 STACK_OF(X509) *ca_certs = NULL;
873 char ca_certs_alloced = 0;
874
875 if (out_ca_certs != NULL && *out_ca_certs != NULL) {
876 ca_certs = *out_ca_certs;
877 }
878
879 if (!ca_certs) {
880 ca_certs = sk_X509_new_null();
881 if (ca_certs == NULL) {
882 return 0;
883 }
884 ca_certs_alloced = 1;
885 }
886
887 CBS_init(&ber_bytes, p12->ber_bytes, p12->ber_len);
888 if (!PKCS12_get_key_and_certs(out_pkey, ca_certs, &ber_bytes, password)) {
889 if (ca_certs_alloced) {
890 sk_X509_free(ca_certs);
891 }
892 return 0;
893 }
894
895 // OpenSSL selects the last certificate which matches the private key as
896 // |out_cert|.
897 *out_cert = NULL;
898 size_t num_certs = sk_X509_num(ca_certs);
899 if (*out_pkey != NULL && num_certs > 0) {
900 for (size_t i = num_certs - 1; i < num_certs; i--) {
901 X509 *cert = sk_X509_value(ca_certs, i);
902 if (X509_check_private_key(cert, *out_pkey)) {
903 *out_cert = cert;
904 sk_X509_delete(ca_certs, i);
905 break;
906 }
907 ERR_clear_error();
908 }
909 }
910
911 if (out_ca_certs) {
912 *out_ca_certs = ca_certs;
913 } else {
914 sk_X509_pop_free(ca_certs, X509_free);
915 }
916
917 return 1;
918 }
919
PKCS12_verify_mac(const PKCS12 * p12,const char * password,int password_len)920 int PKCS12_verify_mac(const PKCS12 *p12, const char *password,
921 int password_len) {
922 if (password == NULL) {
923 if (password_len != 0) {
924 return 0;
925 }
926 } else if (password_len != -1 &&
927 (password[password_len] != 0 ||
928 OPENSSL_memchr(password, 0, password_len) != NULL)) {
929 return 0;
930 }
931
932 EVP_PKEY *pkey = NULL;
933 X509 *cert = NULL;
934 if (!PKCS12_parse(p12, password, &pkey, &cert, NULL)) {
935 ERR_clear_error();
936 return 0;
937 }
938
939 EVP_PKEY_free(pkey);
940 X509_free(cert);
941
942 return 1;
943 }
944
945 // add_bag_attributes adds the bagAttributes field of a SafeBag structure,
946 // containing the specified friendlyName and localKeyId attributes.
add_bag_attributes(CBB * bag,const char * name,size_t name_len,const uint8_t * key_id,size_t key_id_len)947 static int add_bag_attributes(CBB *bag, const char *name, size_t name_len,
948 const uint8_t *key_id, size_t key_id_len) {
949 if (name == NULL && key_id_len == 0) {
950 return 1; // Omit the OPTIONAL SET.
951 }
952 // See https://tools.ietf.org/html/rfc7292#section-4.2.
953 CBB attrs, attr, oid, values, value;
954 if (!CBB_add_asn1(bag, &attrs, CBS_ASN1_SET)) {
955 return 0;
956 }
957 if (name_len != 0) {
958 // See https://tools.ietf.org/html/rfc2985, section 5.5.1.
959 if (!CBB_add_asn1(&attrs, &attr, CBS_ASN1_SEQUENCE) ||
960 !CBB_add_asn1(&attr, &oid, CBS_ASN1_OBJECT) ||
961 !CBB_add_bytes(&oid, kFriendlyName, sizeof(kFriendlyName)) ||
962 !CBB_add_asn1(&attr, &values, CBS_ASN1_SET) ||
963 !CBB_add_asn1(&values, &value, CBS_ASN1_BMPSTRING)) {
964 return 0;
965 }
966 // Convert the friendly name to a BMPString.
967 CBS name_cbs;
968 CBS_init(&name_cbs, (const uint8_t *)name, name_len);
969 while (CBS_len(&name_cbs) != 0) {
970 uint32_t c;
971 if (!CBS_get_utf8(&name_cbs, &c) ||
972 !CBB_add_ucs2_be(&value, c)) {
973 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INVALID_CHARACTERS);
974 return 0;
975 }
976 }
977 }
978 if (key_id_len != 0) {
979 // See https://tools.ietf.org/html/rfc2985, section 5.5.2.
980 if (!CBB_add_asn1(&attrs, &attr, CBS_ASN1_SEQUENCE) ||
981 !CBB_add_asn1(&attr, &oid, CBS_ASN1_OBJECT) ||
982 !CBB_add_bytes(&oid, kLocalKeyID, sizeof(kLocalKeyID)) ||
983 !CBB_add_asn1(&attr, &values, CBS_ASN1_SET) ||
984 !CBB_add_asn1(&values, &value, CBS_ASN1_OCTETSTRING) ||
985 !CBB_add_bytes(&value, key_id, key_id_len)) {
986 return 0;
987 }
988 }
989 return CBB_flush_asn1_set_of(&attrs) &&
990 CBB_flush(bag);
991 }
992
add_cert_bag(CBB * cbb,X509 * cert,const char * name,const uint8_t * key_id,size_t key_id_len)993 static int add_cert_bag(CBB *cbb, X509 *cert, const char *name,
994 const uint8_t *key_id, size_t key_id_len) {
995 CBB bag, bag_oid, bag_contents, cert_bag, cert_type, wrapped_cert, cert_value;
996 if (// See https://tools.ietf.org/html/rfc7292#section-4.2.
997 !CBB_add_asn1(cbb, &bag, CBS_ASN1_SEQUENCE) ||
998 !CBB_add_asn1(&bag, &bag_oid, CBS_ASN1_OBJECT) ||
999 !CBB_add_bytes(&bag_oid, kCertBag, sizeof(kCertBag)) ||
1000 !CBB_add_asn1(&bag, &bag_contents,
1001 CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
1002 // See https://tools.ietf.org/html/rfc7292#section-4.2.3.
1003 !CBB_add_asn1(&bag_contents, &cert_bag, CBS_ASN1_SEQUENCE) ||
1004 !CBB_add_asn1(&cert_bag, &cert_type, CBS_ASN1_OBJECT) ||
1005 !CBB_add_bytes(&cert_type, kX509Certificate, sizeof(kX509Certificate)) ||
1006 !CBB_add_asn1(&cert_bag, &wrapped_cert,
1007 CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
1008 !CBB_add_asn1(&wrapped_cert, &cert_value, CBS_ASN1_OCTETSTRING)) {
1009 return 0;
1010 }
1011 uint8_t *buf;
1012 int len = i2d_X509(cert, NULL);
1013
1014 int int_name_len = 0;
1015 const char *cert_name = (const char *)X509_alias_get0(cert, &int_name_len);
1016 size_t name_len = int_name_len;
1017 if (name) {
1018 if (name_len != 0) {
1019 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_AMBIGUOUS_FRIENDLY_NAME);
1020 return 0;
1021 }
1022 name_len = strlen(name);
1023 } else {
1024 name = cert_name;
1025 }
1026
1027 if (len < 0 ||
1028 !CBB_add_space(&cert_value, &buf, (size_t)len) ||
1029 i2d_X509(cert, &buf) < 0 ||
1030 !add_bag_attributes(&bag, name, name_len, key_id, key_id_len) ||
1031 !CBB_flush(cbb)) {
1032 return 0;
1033 }
1034 return 1;
1035 }
1036
add_cert_safe_contents(CBB * cbb,X509 * cert,const STACK_OF (X509)* chain,const char * name,const uint8_t * key_id,size_t key_id_len)1037 static int add_cert_safe_contents(CBB *cbb, X509 *cert,
1038 const STACK_OF(X509) *chain, const char *name,
1039 const uint8_t *key_id, size_t key_id_len) {
1040 CBB safe_contents;
1041 if (!CBB_add_asn1(cbb, &safe_contents, CBS_ASN1_SEQUENCE) ||
1042 (cert != NULL &&
1043 !add_cert_bag(&safe_contents, cert, name, key_id, key_id_len))) {
1044 return 0;
1045 }
1046
1047 for (size_t i = 0; i < sk_X509_num(chain); i++) {
1048 // Only the leaf certificate gets attributes.
1049 if (!add_cert_bag(&safe_contents, sk_X509_value(chain, i), NULL, NULL, 0)) {
1050 return 0;
1051 }
1052 }
1053
1054 return CBB_flush(cbb);
1055 }
1056
add_encrypted_data(CBB * out,int pbe_nid,const char * password,size_t password_len,uint32_t iterations,const uint8_t * in,size_t in_len)1057 static int add_encrypted_data(CBB *out, int pbe_nid, const char *password,
1058 size_t password_len, uint32_t iterations,
1059 const uint8_t *in, size_t in_len) {
1060 uint8_t salt[PKCS5_SALT_LEN];
1061 if (!RAND_bytes(salt, sizeof(salt))) {
1062 return 0;
1063 }
1064
1065 int ret = 0;
1066 EVP_CIPHER_CTX ctx;
1067 EVP_CIPHER_CTX_init(&ctx);
1068 CBB content_info, type, wrapper, encrypted_data, encrypted_content_info,
1069 inner_type, encrypted_content;
1070 if (// Add the ContentInfo wrapping.
1071 !CBB_add_asn1(out, &content_info, CBS_ASN1_SEQUENCE) ||
1072 !CBB_add_asn1(&content_info, &type, CBS_ASN1_OBJECT) ||
1073 !CBB_add_bytes(&type, kPKCS7EncryptedData, sizeof(kPKCS7EncryptedData)) ||
1074 !CBB_add_asn1(&content_info, &wrapper,
1075 CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
1076 // See https://tools.ietf.org/html/rfc2315#section-13.
1077 !CBB_add_asn1(&wrapper, &encrypted_data, CBS_ASN1_SEQUENCE) ||
1078 !CBB_add_asn1_uint64(&encrypted_data, 0 /* version */) ||
1079 // See https://tools.ietf.org/html/rfc2315#section-10.1.
1080 !CBB_add_asn1(&encrypted_data, &encrypted_content_info,
1081 CBS_ASN1_SEQUENCE) ||
1082 !CBB_add_asn1(&encrypted_content_info, &inner_type, CBS_ASN1_OBJECT) ||
1083 !CBB_add_bytes(&inner_type, kPKCS7Data, sizeof(kPKCS7Data)) ||
1084 // Set up encryption and fill in contentEncryptionAlgorithm.
1085 !pkcs12_pbe_encrypt_init(&encrypted_content_info, &ctx, pbe_nid,
1086 iterations, password, password_len, salt,
1087 sizeof(salt)) ||
1088 // Note this tag is primitive. It is an implicitly-tagged OCTET_STRING, so
1089 // it inherits the inner tag's constructed bit.
1090 !CBB_add_asn1(&encrypted_content_info, &encrypted_content,
1091 CBS_ASN1_CONTEXT_SPECIFIC | 0)) {
1092 goto err;
1093 }
1094
1095 size_t max_out = in_len + EVP_CIPHER_CTX_block_size(&ctx);
1096 if (max_out < in_len) {
1097 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_TOO_LONG);
1098 goto err;
1099 }
1100
1101 uint8_t *ptr;
1102 int n1, n2;
1103 if (!CBB_reserve(&encrypted_content, &ptr, max_out) ||
1104 !EVP_CipherUpdate(&ctx, ptr, &n1, in, in_len) ||
1105 !EVP_CipherFinal_ex(&ctx, ptr + n1, &n2) ||
1106 !CBB_did_write(&encrypted_content, n1 + n2) ||
1107 !CBB_flush(out)) {
1108 goto err;
1109 }
1110
1111 ret = 1;
1112
1113 err:
1114 EVP_CIPHER_CTX_cleanup(&ctx);
1115 return ret;
1116 }
1117
PKCS12_create(const char * password,const char * name,const EVP_PKEY * pkey,X509 * cert,const STACK_OF (X509)* chain,int key_nid,int cert_nid,int iterations,int mac_iterations,int key_type)1118 PKCS12 *PKCS12_create(const char *password, const char *name,
1119 const EVP_PKEY *pkey, X509 *cert,
1120 const STACK_OF(X509)* chain, int key_nid, int cert_nid,
1121 int iterations, int mac_iterations, int key_type) {
1122 if (key_nid == 0) {
1123 key_nid = NID_pbe_WithSHA1And3_Key_TripleDES_CBC;
1124 }
1125 if (cert_nid == 0) {
1126 cert_nid = NID_pbe_WithSHA1And40BitRC2_CBC;
1127 }
1128 if (iterations == 0) {
1129 iterations = PKCS12_DEFAULT_ITER;
1130 }
1131 if (mac_iterations == 0) {
1132 mac_iterations = 1;
1133 }
1134 if (// In OpenSSL, this specifies a non-standard Microsoft key usage extension
1135 // which we do not currently support.
1136 key_type != 0 ||
1137 // In OpenSSL, -1 here means to omit the MAC, which we do not
1138 // currently support. Omitting it is also invalid for a password-based
1139 // PKCS#12 file.
1140 mac_iterations < 0 ||
1141 // Don't encode empty objects.
1142 (pkey == NULL && cert == NULL && sk_X509_num(chain) == 0)) {
1143 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_OPTIONS);
1144 return 0;
1145 }
1146
1147 // PKCS#12 is a very confusing recursive data format, built out of another
1148 // recursive data format. Section 5.1 of RFC 7292 describes the encoding
1149 // algorithm, but there is no clear overview. A quick summary:
1150 //
1151 // PKCS#7 defines a ContentInfo structure, which is a overgeneralized typed
1152 // combinator structure for applying cryptography. We care about two types. A
1153 // data ContentInfo contains an OCTET STRING and is a leaf node of the
1154 // combinator tree. An encrypted-data ContentInfo contains encryption
1155 // parameters (key derivation and encryption) and wraps another ContentInfo,
1156 // usually data.
1157 //
1158 // A PKCS#12 file is a PFX structure (section 4), which contains a single data
1159 // ContentInfo and a MAC over it. This root ContentInfo is the
1160 // AuthenticatedSafe and its payload is a SEQUENCE of other ContentInfos, so
1161 // that different parts of the PKCS#12 file can by differently protected.
1162 //
1163 // Each ContentInfo in the AuthenticatedSafe, after undoing all the PKCS#7
1164 // combinators, has SafeContents payload. A SafeContents is a SEQUENCE of
1165 // SafeBag. SafeBag is PKCS#12's typed structure, with subtypes such as KeyBag
1166 // and CertBag. Confusingly, there is a SafeContents bag type which itself
1167 // recursively contains more SafeBags, but we do not implement this. Bags also
1168 // can have attributes.
1169 //
1170 // The grouping of SafeBags into intermediate ContentInfos does not appear to
1171 // be significant, except that all SafeBags sharing a ContentInfo have the
1172 // same level of protection. Additionally, while keys may be encrypted by
1173 // placing a KeyBag in an encrypted-data ContentInfo, PKCS#12 also defines a
1174 // key-specific encryption container, PKCS8ShroudedKeyBag, which is used
1175 // instead.
1176
1177 // Note that |password| may be NULL to specify no password, rather than the
1178 // empty string. They are encoded differently in PKCS#12. (One is the empty
1179 // byte array and the other is NUL-terminated UCS-2.)
1180 size_t password_len = password != NULL ? strlen(password) : 0;
1181
1182 uint8_t key_id[EVP_MAX_MD_SIZE];
1183 unsigned key_id_len = 0;
1184 if (cert != NULL && pkey != NULL) {
1185 if (!X509_check_private_key(cert, pkey) ||
1186 // Matching OpenSSL, use the SHA-1 hash of the certificate as the local
1187 // key ID. Some PKCS#12 consumers require one to connect the private key
1188 // and certificate.
1189 !X509_digest(cert, EVP_sha1(), key_id, &key_id_len)) {
1190 return 0;
1191 }
1192 }
1193
1194 // See https://tools.ietf.org/html/rfc7292#section-4.
1195 PKCS12 *ret = NULL;
1196 CBB cbb, pfx, auth_safe, auth_safe_oid, auth_safe_wrapper, auth_safe_data,
1197 content_infos;
1198 uint8_t mac_key[EVP_MAX_MD_SIZE];
1199 if (!CBB_init(&cbb, 0) ||
1200 !CBB_add_asn1(&cbb, &pfx, CBS_ASN1_SEQUENCE) ||
1201 !CBB_add_asn1_uint64(&pfx, 3) ||
1202 // auth_safe is a data ContentInfo.
1203 !CBB_add_asn1(&pfx, &auth_safe, CBS_ASN1_SEQUENCE) ||
1204 !CBB_add_asn1(&auth_safe, &auth_safe_oid, CBS_ASN1_OBJECT) ||
1205 !CBB_add_bytes(&auth_safe_oid, kPKCS7Data, sizeof(kPKCS7Data)) ||
1206 !CBB_add_asn1(&auth_safe, &auth_safe_wrapper,
1207 CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
1208 !CBB_add_asn1(&auth_safe_wrapper, &auth_safe_data,
1209 CBS_ASN1_OCTETSTRING) ||
1210 // See https://tools.ietf.org/html/rfc7292#section-4.1. |auth_safe|'s
1211 // contains a SEQUENCE of ContentInfos.
1212 !CBB_add_asn1(&auth_safe_data, &content_infos, CBS_ASN1_SEQUENCE)) {
1213 goto err;
1214 }
1215
1216 // If there are any certificates, place them in CertBags wrapped in a single
1217 // encrypted ContentInfo.
1218 if (cert != NULL || sk_X509_num(chain) > 0) {
1219 if (cert_nid < 0) {
1220 // Place the certificates in an unencrypted ContentInfo. This could be
1221 // more compactly-encoded by reusing the same ContentInfo as the key, but
1222 // OpenSSL does not do this. We keep them separate for consistency. (Keys,
1223 // even when encrypted, are always placed in unencrypted ContentInfos.
1224 // PKCS#12 defines bag-level encryption for keys.)
1225 CBB content_info, oid, wrapper, data;
1226 if (!CBB_add_asn1(&content_infos, &content_info, CBS_ASN1_SEQUENCE) ||
1227 !CBB_add_asn1(&content_info, &oid, CBS_ASN1_OBJECT) ||
1228 !CBB_add_bytes(&oid, kPKCS7Data, sizeof(kPKCS7Data)) ||
1229 !CBB_add_asn1(&content_info, &wrapper,
1230 CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
1231 !CBB_add_asn1(&wrapper, &data, CBS_ASN1_OCTETSTRING) ||
1232 !add_cert_safe_contents(&data, cert, chain, name, key_id,
1233 key_id_len) ||
1234 !CBB_flush(&content_infos)) {
1235 goto err;
1236 }
1237 } else {
1238 CBB plaintext_cbb;
1239 int ok = CBB_init(&plaintext_cbb, 0) &&
1240 add_cert_safe_contents(&plaintext_cbb, cert, chain, name, key_id,
1241 key_id_len) &&
1242 add_encrypted_data(
1243 &content_infos, cert_nid, password, password_len, iterations,
1244 CBB_data(&plaintext_cbb), CBB_len(&plaintext_cbb));
1245 CBB_cleanup(&plaintext_cbb);
1246 if (!ok) {
1247 goto err;
1248 }
1249 }
1250 }
1251
1252 // If there is a key, place it in a single KeyBag or PKCS8ShroudedKeyBag
1253 // wrapped in an unencrypted ContentInfo. (One could also place it in a KeyBag
1254 // inside an encrypted ContentInfo, but OpenSSL does not do this and some
1255 // PKCS#12 consumers do not support KeyBags.)
1256 if (pkey != NULL) {
1257 CBB content_info, oid, wrapper, data, safe_contents, bag, bag_oid,
1258 bag_contents;
1259 if (// Add another data ContentInfo.
1260 !CBB_add_asn1(&content_infos, &content_info, CBS_ASN1_SEQUENCE) ||
1261 !CBB_add_asn1(&content_info, &oid, CBS_ASN1_OBJECT) ||
1262 !CBB_add_bytes(&oid, kPKCS7Data, sizeof(kPKCS7Data)) ||
1263 !CBB_add_asn1(&content_info, &wrapper,
1264 CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
1265 !CBB_add_asn1(&wrapper, &data, CBS_ASN1_OCTETSTRING) ||
1266 !CBB_add_asn1(&data, &safe_contents, CBS_ASN1_SEQUENCE) ||
1267 // Add a SafeBag containing a PKCS8ShroudedKeyBag.
1268 !CBB_add_asn1(&safe_contents, &bag, CBS_ASN1_SEQUENCE) ||
1269 !CBB_add_asn1(&bag, &bag_oid, CBS_ASN1_OBJECT)) {
1270 goto err;
1271 }
1272 if (key_nid < 0) {
1273 if (!CBB_add_bytes(&bag_oid, kKeyBag, sizeof(kKeyBag)) ||
1274 !CBB_add_asn1(&bag, &bag_contents,
1275 CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
1276 !EVP_marshal_private_key(&bag_contents, pkey)) {
1277 goto err;
1278 }
1279 } else {
1280 if (!CBB_add_bytes(&bag_oid, kPKCS8ShroudedKeyBag,
1281 sizeof(kPKCS8ShroudedKeyBag)) ||
1282 !CBB_add_asn1(&bag, &bag_contents,
1283 CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
1284 !PKCS8_marshal_encrypted_private_key(
1285 &bag_contents, key_nid, NULL, password, password_len,
1286 NULL /* generate a random salt */,
1287 0 /* use default salt length */, iterations, pkey)) {
1288 goto err;
1289 }
1290 }
1291 size_t name_len = 0;
1292 if (name) {
1293 name_len = strlen(name);
1294 }
1295 if (!add_bag_attributes(&bag, name, name_len, key_id, key_id_len) ||
1296 !CBB_flush(&content_infos)) {
1297 goto err;
1298 }
1299 }
1300
1301 // Compute the MAC. Match OpenSSL in using SHA-1 as the hash function. The MAC
1302 // covers |auth_safe_data|.
1303 const EVP_MD *mac_md = EVP_sha1();
1304 uint8_t mac_salt[PKCS5_SALT_LEN];
1305 uint8_t mac[EVP_MAX_MD_SIZE];
1306 unsigned mac_len;
1307 if (!CBB_flush(&auth_safe_data) ||
1308 !RAND_bytes(mac_salt, sizeof(mac_salt)) ||
1309 !pkcs12_key_gen(password, password_len, mac_salt, sizeof(mac_salt),
1310 PKCS12_MAC_ID, mac_iterations, EVP_MD_size(mac_md),
1311 mac_key, mac_md) ||
1312 !HMAC(mac_md, mac_key, EVP_MD_size(mac_md), CBB_data(&auth_safe_data),
1313 CBB_len(&auth_safe_data), mac, &mac_len)) {
1314 goto err;
1315 }
1316
1317 CBB mac_data, digest_info, mac_cbb, mac_salt_cbb;
1318 if (!CBB_add_asn1(&pfx, &mac_data, CBS_ASN1_SEQUENCE) ||
1319 !CBB_add_asn1(&mac_data, &digest_info, CBS_ASN1_SEQUENCE) ||
1320 !EVP_marshal_digest_algorithm(&digest_info, mac_md) ||
1321 !CBB_add_asn1(&digest_info, &mac_cbb, CBS_ASN1_OCTETSTRING) ||
1322 !CBB_add_bytes(&mac_cbb, mac, mac_len) ||
1323 !CBB_add_asn1(&mac_data, &mac_salt_cbb, CBS_ASN1_OCTETSTRING) ||
1324 !CBB_add_bytes(&mac_salt_cbb, mac_salt, sizeof(mac_salt)) ||
1325 // The iteration count has a DEFAULT of 1, but RFC 7292 says "The default
1326 // is for historical reasons and its use is deprecated." Thus we
1327 // explicitly encode the iteration count, though it is not valid DER.
1328 !CBB_add_asn1_uint64(&mac_data, mac_iterations)) {
1329 goto err;
1330 }
1331
1332 ret = OPENSSL_malloc(sizeof(PKCS12));
1333 if (ret == NULL ||
1334 !CBB_finish(&cbb, &ret->ber_bytes, &ret->ber_len)) {
1335 OPENSSL_free(ret);
1336 ret = NULL;
1337 goto err;
1338 }
1339
1340 err:
1341 OPENSSL_cleanse(mac_key, sizeof(mac_key));
1342 CBB_cleanup(&cbb);
1343 return ret;
1344 }
1345
PKCS12_free(PKCS12 * p12)1346 void PKCS12_free(PKCS12 *p12) {
1347 if (p12 == NULL) {
1348 return;
1349 }
1350 OPENSSL_free(p12->ber_bytes);
1351 OPENSSL_free(p12);
1352 }
1353