1 // Copyright 2017 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #ifndef THIRD_PARTY_BASE_CONTAINERS_SPAN_H_ 6 #define THIRD_PARTY_BASE_CONTAINERS_SPAN_H_ 7 8 #include <stddef.h> 9 10 #include <algorithm> 11 #include <array> 12 #include <iterator> 13 #include <type_traits> 14 #include <utility> 15 16 #include "core/fxcrt/unowned_ptr.h" 17 #include "third_party/base/check.h" 18 #include "third_party/base/compiler_specific.h" 19 20 namespace pdfium { 21 22 constexpr size_t dynamic_extent = static_cast<size_t>(-1); 23 24 template <typename T> 25 class span; 26 27 namespace internal { 28 29 template <typename T> 30 struct IsSpanImpl : std::false_type {}; 31 32 template <typename T> 33 struct IsSpanImpl<span<T>> : std::true_type {}; 34 35 template <typename T> 36 using IsSpan = IsSpanImpl<typename std::decay<T>::type>; 37 38 template <typename T> 39 struct IsStdArrayImpl : std::false_type {}; 40 41 template <typename T, size_t N> 42 struct IsStdArrayImpl<std::array<T, N>> : std::true_type {}; 43 44 template <typename T> 45 using IsStdArray = IsStdArrayImpl<typename std::decay<T>::type>; 46 47 template <typename From, typename To> 48 using IsLegalSpanConversion = std::is_convertible<From*, To*>; 49 50 template <typename Container, typename T> 51 using ContainerHasConvertibleData = 52 IsLegalSpanConversion<typename std::remove_pointer<decltype( 53 std::declval<Container>().data())>::type, 54 T>; 55 template <typename Container> 56 using ContainerHasIntegralSize = 57 std::is_integral<decltype(std::declval<Container>().size())>; 58 59 template <typename From, typename To> 60 using EnableIfLegalSpanConversion = 61 typename std::enable_if<IsLegalSpanConversion<From, To>::value>::type; 62 63 // SFINAE check if Container can be converted to a span<T>. Note that the 64 // implementation details of this check differ slightly from the requirements in 65 // the working group proposal: in particular, the proposal also requires that 66 // the container conversion constructor participate in overload resolution only 67 // if two additional conditions are true: 68 // 69 // 1. Container implements operator[]. 70 // 2. Container::value_type matches remove_const_t<element_type>. 71 // 72 // The requirements are relaxed slightly here: in particular, not requiring (2) 73 // means that an immutable span can be easily constructed from a mutable 74 // container. 75 template <typename Container, typename T> 76 using EnableIfSpanCompatibleContainer = 77 typename std::enable_if<!internal::IsSpan<Container>::value && 78 !internal::IsStdArray<Container>::value && 79 ContainerHasConvertibleData<Container, T>::value && 80 ContainerHasIntegralSize<Container>::value>::type; 81 82 template <typename Container, typename T> 83 using EnableIfConstSpanCompatibleContainer = 84 typename std::enable_if<std::is_const<T>::value && 85 !internal::IsSpan<Container>::value && 86 !internal::IsStdArray<Container>::value && 87 ContainerHasConvertibleData<Container, T>::value && 88 ContainerHasIntegralSize<Container>::value>::type; 89 90 } // namespace internal 91 92 // A span is a value type that represents an array of elements of type T. Since 93 // it only consists of a pointer to memory with an associated size, it is very 94 // light-weight. It is cheap to construct, copy, move and use spans, so that 95 // users are encouraged to use it as a pass-by-value parameter. A span does not 96 // own the underlying memory, so care must be taken to ensure that a span does 97 // not outlive the backing store. 98 // 99 // span is somewhat analogous to StringPiece, but with arbitrary element types, 100 // allowing mutation if T is non-const. 101 // 102 // span is implicitly convertible from C++ arrays, as well as most [1] 103 // container-like types that provide a data() and size() method (such as 104 // std::vector<T>). A mutable span<T> can also be implicitly converted to an 105 // immutable span<const T>. 106 // 107 // Consider using a span for functions that take a data pointer and size 108 // parameter: it allows the function to still act on an array-like type, while 109 // allowing the caller code to be a bit more concise. 110 // 111 // For read-only data access pass a span<const T>: the caller can supply either 112 // a span<const T> or a span<T>, while the callee will have a read-only view. 113 // For read-write access a mutable span<T> is required. 114 // 115 // Without span: 116 // Read-Only: 117 // // std::string HexEncode(const uint8_t* data, size_t size); 118 // std::vector<uint8_t> data_buffer = GenerateData(); 119 // std::string r = HexEncode(data_buffer.data(), data_buffer.size()); 120 // 121 // Mutable: 122 // // ssize_t SafeSNPrintf(char* buf, size_t N, const char* fmt, Args...); 123 // char str_buffer[100]; 124 // SafeSNPrintf(str_buffer, sizeof(str_buffer), "Pi ~= %lf", 3.14); 125 // 126 // With span: 127 // Read-Only: 128 // // std::string HexEncode(base::span<const uint8_t> data); 129 // std::vector<uint8_t> data_buffer = GenerateData(); 130 // std::string r = HexEncode(data_buffer); 131 // 132 // Mutable: 133 // // ssize_t SafeSNPrintf(base::span<char>, const char* fmt, Args...); 134 // char str_buffer[100]; 135 // SafeSNPrintf(str_buffer, "Pi ~= %lf", 3.14); 136 // 137 // Spans with "const" and pointers 138 // ------------------------------- 139 // 140 // Const and pointers can get confusing. Here are vectors of pointers and their 141 // corresponding spans (you can always make the span "more const" too): 142 // 143 // const std::vector<int*> => base::span<int* const> 144 // std::vector<const int*> => base::span<const int*> 145 // const std::vector<const int*> => base::span<const int* const> 146 // 147 // Differences from the working group proposal 148 // ------------------------------------------- 149 // 150 // https://wg21.link/P0122 is the latest working group proposal, Chromium 151 // currently implements R6. The biggest difference is span does not support a 152 // static extent template parameter. Other differences are documented in 153 // subsections below. 154 // 155 // Differences in constants and types: 156 // - no element_type type alias 157 // - no index_type type alias 158 // - no different_type type alias 159 // - no extent constant 160 // 161 // Differences from [span.cons]: 162 // - no constructor from a pointer range 163 // 164 // Differences from [span.sub]: 165 // - no templated first() 166 // - no templated last() 167 // - no templated subspan() 168 // - using size_t instead of ptrdiff_t for indexing 169 // 170 // Differences from [span.obs]: 171 // - using size_t instead of ptrdiff_t to represent size() 172 // 173 // Differences from [span.elem]: 174 // - no operator ()() 175 // - using size_t instead of ptrdiff_t for indexing 176 177 // [span], class template span 178 template <typename T> 179 class TRIVIAL_ABI GSL_POINTER span { 180 public: 181 using value_type = typename std::remove_cv<T>::type; 182 using pointer = T*; 183 using reference = T&; 184 using iterator = T*; 185 using const_iterator = const T*; 186 using reverse_iterator = std::reverse_iterator<iterator>; 187 using const_reverse_iterator = std::reverse_iterator<const_iterator>; 188 189 // [span.cons], span constructors, copy, assignment, and destructor 190 constexpr span() noexcept : data_(nullptr), size_(0) {} 191 constexpr span(T* data, size_t size) noexcept : data_(data), size_(size) { 192 DCHECK(data_ || size_ == 0); 193 } 194 195 // TODO(dcheng): Implement construction from a |begin| and |end| pointer. 196 template <size_t N> 197 constexpr span(T (&array)[N]) noexcept : span(array, N) {} 198 199 template <size_t N> 200 constexpr span(std::array<T, N>& array) noexcept : span(array.data(), N) {} 201 202 // Conversion from a container that provides |T* data()| and |integral_type 203 // size()|. Note that |data()| may not return nullptr for some empty 204 // containers, which can lead to container overflow errors when probing 205 // unowned ptrs. 206 #if defined(ADDRESS_SANITIZER) && defined(UNOWNED_PTR_IS_BASE_RAW_PTR) 207 template <typename Container, 208 typename = internal::EnableIfSpanCompatibleContainer<Container, T>> 209 constexpr span(Container& container) 210 : span(container.size() ? container.data() : nullptr, container.size()) {} 211 #else 212 template <typename Container, 213 typename = internal::EnableIfSpanCompatibleContainer<Container, T>> 214 constexpr span(Container& container) 215 : span(container.data(), container.size()) {} 216 #endif 217 218 template < 219 typename Container, 220 typename = internal::EnableIfConstSpanCompatibleContainer<Container, T>> 221 span(const Container& container) : span(container.data(), container.size()) {} 222 223 constexpr span(const span& other) noexcept = default; 224 225 // Conversions from spans of compatible types: this allows a span<T> to be 226 // seamlessly used as a span<const T>, but not the other way around. 227 template <typename U, typename = internal::EnableIfLegalSpanConversion<U, T>> 228 constexpr span(const span<U>& other) : span(other.data(), other.size()) {} 229 span& operator=(const span& other) noexcept { 230 if (this != &other) { 231 ReleaseEmptySpan(); 232 data_ = other.data_; 233 size_ = other.size_; 234 } 235 return *this; 236 } 237 ~span() noexcept { ReleaseEmptySpan(); } 238 239 // [span.sub], span subviews 240 const span first(size_t count) const { 241 CHECK(count <= size_); 242 return span(static_cast<T*>(data_), count); 243 } 244 245 const span last(size_t count) const { 246 CHECK(count <= size_); 247 return span(static_cast<T*>(data_) + (size_ - count), count); 248 } 249 250 const span subspan(size_t pos, size_t count = dynamic_extent) const { 251 CHECK(pos <= size_); 252 CHECK(count == dynamic_extent || count <= size_ - pos); 253 return span(static_cast<T*>(data_) + pos, 254 count == dynamic_extent ? size_ - pos : count); 255 } 256 257 // [span.obs], span observers 258 constexpr size_t size() const noexcept { return size_; } 259 constexpr size_t size_bytes() const noexcept { return size() * sizeof(T); } 260 constexpr bool empty() const noexcept { return size_ == 0; } 261 262 // [span.elem], span element access 263 T& operator[](size_t index) const noexcept { 264 CHECK(index < size_); 265 return static_cast<T*>(data_)[index]; 266 } 267 268 constexpr T& front() const noexcept { 269 CHECK(!empty()); 270 return *data(); 271 } 272 273 constexpr T& back() const noexcept { 274 CHECK(!empty()); 275 return *(data() + size() - 1); 276 } 277 278 constexpr T* data() const noexcept { return static_cast<T*>(data_); } 279 280 // [span.iter], span iterator support 281 constexpr iterator begin() const noexcept { return static_cast<T*>(data_); } 282 constexpr iterator end() const noexcept { return begin() + size_; } 283 284 constexpr const_iterator cbegin() const noexcept { return begin(); } 285 constexpr const_iterator cend() const noexcept { return end(); } 286 287 constexpr reverse_iterator rbegin() const noexcept { 288 return reverse_iterator(end()); 289 } 290 constexpr reverse_iterator rend() const noexcept { 291 return reverse_iterator(begin()); 292 } 293 294 constexpr const_reverse_iterator crbegin() const noexcept { 295 return const_reverse_iterator(cend()); 296 } 297 constexpr const_reverse_iterator crend() const noexcept { 298 return const_reverse_iterator(cbegin()); 299 } 300 301 private: 302 void ReleaseEmptySpan() noexcept { 303 #if defined(ADDRESS_SANITIZER) && !defined(UNOWNED_PTR_IS_BASE_RAW_PTR) 304 // Empty spans might point to byte N+1 of a N-byte object, legal for 305 // C pointers but not UnownedPtrs. 306 if (!size_) 307 data_.ReleaseBadPointer(); 308 #endif 309 } 310 311 #if defined(UNOWNED_PTR_IS_BASE_RAW_PTR) 312 raw_ptr<T, AllowPtrArithmetic> data_ = nullptr; 313 #else 314 UnownedPtr<T> data_; 315 #endif 316 size_t size_; 317 }; 318 319 // [span.comparison], span comparison operators 320 // Relational operators. Equality is a element-wise comparison. 321 template <typename T> 322 constexpr bool operator==(span<T> lhs, span<T> rhs) noexcept { 323 return lhs.size() == rhs.size() && 324 std::equal(lhs.cbegin(), lhs.cend(), rhs.cbegin()); 325 } 326 327 template <typename T> 328 constexpr bool operator!=(span<T> lhs, span<T> rhs) noexcept { 329 return !(lhs == rhs); 330 } 331 332 template <typename T> 333 constexpr bool operator<(span<T> lhs, span<T> rhs) noexcept { 334 return std::lexicographical_compare(lhs.cbegin(), lhs.cend(), rhs.cbegin(), 335 rhs.cend()); 336 } 337 338 template <typename T> 339 constexpr bool operator<=(span<T> lhs, span<T> rhs) noexcept { 340 return !(rhs < lhs); 341 } 342 343 template <typename T> 344 constexpr bool operator>(span<T> lhs, span<T> rhs) noexcept { 345 return rhs < lhs; 346 } 347 348 template <typename T> 349 constexpr bool operator>=(span<T> lhs, span<T> rhs) noexcept { 350 return !(lhs < rhs); 351 } 352 353 // [span.objectrep], views of object representation 354 template <typename T> 355 span<const uint8_t> as_bytes(span<T> s) noexcept { 356 return {reinterpret_cast<const uint8_t*>(s.data()), s.size_bytes()}; 357 } 358 359 template <typename T, 360 typename U = typename std::enable_if<!std::is_const<T>::value>::type> 361 span<uint8_t> as_writable_bytes(span<T> s) noexcept { 362 return {reinterpret_cast<uint8_t*>(s.data()), s.size_bytes()}; 363 } 364 365 // Type-deducing helpers for constructing a span. 366 template <typename T> 367 constexpr span<T> make_span(T* data, size_t size) noexcept { 368 return span<T>(data, size); 369 } 370 371 template <typename T, size_t N> 372 constexpr span<T> make_span(T (&array)[N]) noexcept { 373 return span<T>(array); 374 } 375 376 template <typename T, size_t N> 377 constexpr span<T> make_span(std::array<T, N>& array) noexcept { 378 return span<T>(array); 379 } 380 381 template <typename Container, 382 typename T = typename Container::value_type, 383 typename = internal::EnableIfSpanCompatibleContainer<Container, T>> 384 constexpr span<T> make_span(Container& container) { 385 return span<T>(container); 386 } 387 388 template < 389 typename Container, 390 typename T = typename std::add_const<typename Container::value_type>::type, 391 typename = internal::EnableIfConstSpanCompatibleContainer<Container, T>> 392 constexpr span<T> make_span(const Container& container) { 393 return span<T>(container); 394 } 395 396 } // namespace pdfium 397 398 #endif // THIRD_PARTY_BASE_CONTAINERS_SPAN_H_ 399