1 // Copyright 2016 Google Inc. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //   https://www.apache.org/licenses/LICENSE-2.0
8 //
9 //   Unless required by applicable law or agreed to in writing, software
10 //   distributed under the License is distributed on an "AS IS" BASIS,
11 //   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 //   See the License for the specific language governing permissions and
13 //   limitations under the License.
14 
15 // This file implements the TimeZoneIf interface using the "zoneinfo"
16 // data provided by the IANA Time Zone Database (i.e., the only real game
17 // in town).
18 //
19 // TimeZoneInfo represents the history of UTC-offset changes within a time
20 // zone. Most changes are due to daylight-saving rules, but occasionally
21 // shifts are made to the time-zone's base offset. The database only attempts
22 // to be definitive for times since 1970, so be wary of local-time conversions
23 // before that. Also, rule and zone-boundary changes are made at the whim
24 // of governments, so the conversion of future times needs to be taken with
25 // a grain of salt.
26 //
27 // For more information see tzfile(5), http://www.iana.org/time-zones, or
28 // https://en.wikipedia.org/wiki/Zoneinfo.
29 //
30 // Note that we assume the proleptic Gregorian calendar and 60-second
31 // minutes throughout.
32 
33 #include "time_zone_info.h"
34 
35 #include <algorithm>
36 #include <cassert>
37 #include <chrono>
38 #include <cstdint>
39 #include <cstdio>
40 #include <cstdlib>
41 #include <cstring>
42 #include <fstream>
43 #include <functional>
44 #include <memory>
45 #include <sstream>
46 #include <string>
47 #include <utility>
48 
49 #include "absl/base/config.h"
50 #include "absl/time/internal/cctz/include/cctz/civil_time.h"
51 #include "time_zone_fixed.h"
52 #include "time_zone_posix.h"
53 
54 namespace absl {
55 ABSL_NAMESPACE_BEGIN
56 namespace time_internal {
57 namespace cctz {
58 
59 namespace {
60 
IsLeap(year_t year)61 inline bool IsLeap(year_t year) {
62   return (year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0);
63 }
64 
65 // The number of days in non-leap and leap years respectively.
66 const std::int_least32_t kDaysPerYear[2] = {365, 366};
67 
68 // The day offsets of the beginning of each (1-based) month in non-leap and
69 // leap years respectively (e.g., 335 days before December in a leap year).
70 const std::int_least16_t kMonthOffsets[2][1 + 12 + 1] = {
71     {-1, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365},
72     {-1, 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366},
73 };
74 
75 // We reject leap-second encoded zoneinfo and so assume 60-second minutes.
76 const std::int_least32_t kSecsPerDay = 24 * 60 * 60;
77 
78 // 400-year chunks always have 146097 days (20871 weeks).
79 const std::int_least64_t kSecsPer400Years = 146097LL * kSecsPerDay;
80 
81 // Like kDaysPerYear[] but scaled up by a factor of kSecsPerDay.
82 const std::int_least32_t kSecsPerYear[2] = {
83     365 * kSecsPerDay,
84     366 * kSecsPerDay,
85 };
86 
87 // Convert a cctz::weekday to a POSIX TZ weekday number (0==Sun, ..., 6=Sat).
ToPosixWeekday(weekday wd)88 inline int ToPosixWeekday(weekday wd) {
89   switch (wd) {
90     case weekday::sunday:
91       return 0;
92     case weekday::monday:
93       return 1;
94     case weekday::tuesday:
95       return 2;
96     case weekday::wednesday:
97       return 3;
98     case weekday::thursday:
99       return 4;
100     case weekday::friday:
101       return 5;
102     case weekday::saturday:
103       return 6;
104   }
105   return 0; /*NOTREACHED*/
106 }
107 
108 // Single-byte, unsigned numeric values are encoded directly.
Decode8(const char * cp)109 inline std::uint_fast8_t Decode8(const char* cp) {
110   return static_cast<std::uint_fast8_t>(*cp) & 0xff;
111 }
112 
113 // Multi-byte, numeric values are encoded using a MSB first,
114 // twos-complement representation. These helpers decode, from
115 // the given address, 4-byte and 8-byte values respectively.
116 // Note: If int_fastXX_t == intXX_t and this machine is not
117 // twos complement, then there will be at least one input value
118 // we cannot represent.
Decode32(const char * cp)119 std::int_fast32_t Decode32(const char* cp) {
120   std::uint_fast32_t v = 0;
121   for (int i = 0; i != (32 / 8); ++i) v = (v << 8) | Decode8(cp++);
122   const std::int_fast32_t s32max = 0x7fffffff;
123   const auto s32maxU = static_cast<std::uint_fast32_t>(s32max);
124   if (v <= s32maxU) return static_cast<std::int_fast32_t>(v);
125   return static_cast<std::int_fast32_t>(v - s32maxU - 1) - s32max - 1;
126 }
127 
Decode64(const char * cp)128 std::int_fast64_t Decode64(const char* cp) {
129   std::uint_fast64_t v = 0;
130   for (int i = 0; i != (64 / 8); ++i) v = (v << 8) | Decode8(cp++);
131   const std::int_fast64_t s64max = 0x7fffffffffffffff;
132   const auto s64maxU = static_cast<std::uint_fast64_t>(s64max);
133   if (v <= s64maxU) return static_cast<std::int_fast64_t>(v);
134   return static_cast<std::int_fast64_t>(v - s64maxU - 1) - s64max - 1;
135 }
136 
137 // Does the rule for future transitions call for year-round daylight time?
138 // See tz/zic.c:stringzone() for the details on how such rules are encoded.
AllYearDST(const PosixTimeZone & posix)139 bool AllYearDST(const PosixTimeZone& posix) {
140   if (posix.dst_start.date.fmt != PosixTransition::N) return false;
141   if (posix.dst_start.date.n.day != 0) return false;
142   if (posix.dst_start.time.offset != 0) return false;
143 
144   if (posix.dst_end.date.fmt != PosixTransition::J) return false;
145   if (posix.dst_end.date.j.day != kDaysPerYear[0]) return false;
146   const auto offset = posix.std_offset - posix.dst_offset;
147   if (posix.dst_end.time.offset + offset != kSecsPerDay) return false;
148 
149   return true;
150 }
151 
152 // Generate a year-relative offset for a PosixTransition.
TransOffset(bool leap_year,int jan1_weekday,const PosixTransition & pt)153 std::int_fast64_t TransOffset(bool leap_year, int jan1_weekday,
154                               const PosixTransition& pt) {
155   std::int_fast64_t days = 0;
156   switch (pt.date.fmt) {
157     case PosixTransition::J: {
158       days = pt.date.j.day;
159       if (!leap_year || days < kMonthOffsets[1][3]) days -= 1;
160       break;
161     }
162     case PosixTransition::N: {
163       days = pt.date.n.day;
164       break;
165     }
166     case PosixTransition::M: {
167       const bool last_week = (pt.date.m.week == 5);
168       days = kMonthOffsets[leap_year][pt.date.m.month + last_week];
169       const std::int_fast64_t weekday = (jan1_weekday + days) % 7;
170       if (last_week) {
171         days -= (weekday + 7 - 1 - pt.date.m.weekday) % 7 + 1;
172       } else {
173         days += (pt.date.m.weekday + 7 - weekday) % 7;
174         days += (pt.date.m.week - 1) * 7;
175       }
176       break;
177     }
178   }
179   return (days * kSecsPerDay) + pt.time.offset;
180 }
181 
MakeUnique(const time_point<seconds> & tp)182 inline time_zone::civil_lookup MakeUnique(const time_point<seconds>& tp) {
183   time_zone::civil_lookup cl;
184   cl.kind = time_zone::civil_lookup::UNIQUE;
185   cl.pre = cl.trans = cl.post = tp;
186   return cl;
187 }
188 
MakeUnique(std::int_fast64_t unix_time)189 inline time_zone::civil_lookup MakeUnique(std::int_fast64_t unix_time) {
190   return MakeUnique(FromUnixSeconds(unix_time));
191 }
192 
MakeSkipped(const Transition & tr,const civil_second & cs)193 inline time_zone::civil_lookup MakeSkipped(const Transition& tr,
194                                            const civil_second& cs) {
195   time_zone::civil_lookup cl;
196   cl.kind = time_zone::civil_lookup::SKIPPED;
197   cl.pre = FromUnixSeconds(tr.unix_time - 1 + (cs - tr.prev_civil_sec));
198   cl.trans = FromUnixSeconds(tr.unix_time);
199   cl.post = FromUnixSeconds(tr.unix_time - (tr.civil_sec - cs));
200   return cl;
201 }
202 
MakeRepeated(const Transition & tr,const civil_second & cs)203 inline time_zone::civil_lookup MakeRepeated(const Transition& tr,
204                                             const civil_second& cs) {
205   time_zone::civil_lookup cl;
206   cl.kind = time_zone::civil_lookup::REPEATED;
207   cl.pre = FromUnixSeconds(tr.unix_time - 1 - (tr.prev_civil_sec - cs));
208   cl.trans = FromUnixSeconds(tr.unix_time);
209   cl.post = FromUnixSeconds(tr.unix_time + (cs - tr.civil_sec));
210   return cl;
211 }
212 
YearShift(const civil_second & cs,year_t shift)213 inline civil_second YearShift(const civil_second& cs, year_t shift) {
214   return civil_second(cs.year() + shift, cs.month(), cs.day(), cs.hour(),
215                       cs.minute(), cs.second());
216 }
217 
218 }  // namespace
219 
220 // What (no leap-seconds) UTC+seconds zoneinfo would look like.
ResetToBuiltinUTC(const seconds & offset)221 bool TimeZoneInfo::ResetToBuiltinUTC(const seconds& offset) {
222   transition_types_.resize(1);
223   TransitionType& tt(transition_types_.back());
224   tt.utc_offset = static_cast<std::int_least32_t>(offset.count());
225   tt.is_dst = false;
226   tt.abbr_index = 0;
227 
228   // We temporarily add some redundant, contemporary (2015 through 2025)
229   // transitions for performance reasons.  See TimeZoneInfo::LocalTime().
230   // TODO: Fix the performance issue and remove the extra transitions.
231   transitions_.clear();
232   transitions_.reserve(12);
233   for (const std::int_fast64_t unix_time : {
234            -(1LL << 59),  // a "first half" transition
235            1420070400LL,  // 2015-01-01T00:00:00+00:00
236            1451606400LL,  // 2016-01-01T00:00:00+00:00
237            1483228800LL,  // 2017-01-01T00:00:00+00:00
238            1514764800LL,  // 2018-01-01T00:00:00+00:00
239            1546300800LL,  // 2019-01-01T00:00:00+00:00
240            1577836800LL,  // 2020-01-01T00:00:00+00:00
241            1609459200LL,  // 2021-01-01T00:00:00+00:00
242            1640995200LL,  // 2022-01-01T00:00:00+00:00
243            1672531200LL,  // 2023-01-01T00:00:00+00:00
244            1704067200LL,  // 2024-01-01T00:00:00+00:00
245            1735689600LL,  // 2025-01-01T00:00:00+00:00
246        }) {
247     Transition& tr(*transitions_.emplace(transitions_.end()));
248     tr.unix_time = unix_time;
249     tr.type_index = 0;
250     tr.civil_sec = LocalTime(tr.unix_time, tt).cs;
251     tr.prev_civil_sec = tr.civil_sec - 1;
252   }
253 
254   default_transition_type_ = 0;
255   abbreviations_ = FixedOffsetToAbbr(offset);
256   abbreviations_.append(1, '\0');
257   future_spec_.clear();  // never needed for a fixed-offset zone
258   extended_ = false;
259 
260   tt.civil_max = LocalTime(seconds::max().count(), tt).cs;
261   tt.civil_min = LocalTime(seconds::min().count(), tt).cs;
262 
263   transitions_.shrink_to_fit();
264   return true;
265 }
266 
267 // Builds the in-memory header using the raw bytes from the file.
Build(const tzhead & tzh)268 bool TimeZoneInfo::Header::Build(const tzhead& tzh) {
269   std::int_fast32_t v;
270   if ((v = Decode32(tzh.tzh_timecnt)) < 0) return false;
271   timecnt = static_cast<std::size_t>(v);
272   if ((v = Decode32(tzh.tzh_typecnt)) < 0) return false;
273   typecnt = static_cast<std::size_t>(v);
274   if ((v = Decode32(tzh.tzh_charcnt)) < 0) return false;
275   charcnt = static_cast<std::size_t>(v);
276   if ((v = Decode32(tzh.tzh_leapcnt)) < 0) return false;
277   leapcnt = static_cast<std::size_t>(v);
278   if ((v = Decode32(tzh.tzh_ttisstdcnt)) < 0) return false;
279   ttisstdcnt = static_cast<std::size_t>(v);
280   if ((v = Decode32(tzh.tzh_ttisutcnt)) < 0) return false;
281   ttisutcnt = static_cast<std::size_t>(v);
282   return true;
283 }
284 
285 // How many bytes of data are associated with this header. The result
286 // depends upon whether this is a section with 4-byte or 8-byte times.
DataLength(std::size_t time_len) const287 std::size_t TimeZoneInfo::Header::DataLength(std::size_t time_len) const {
288   std::size_t len = 0;
289   len += (time_len + 1) * timecnt;  // unix_time + type_index
290   len += (4 + 1 + 1) * typecnt;     // utc_offset + is_dst + abbr_index
291   len += 1 * charcnt;               // abbreviations
292   len += (time_len + 4) * leapcnt;  // leap-time + TAI-UTC
293   len += 1 * ttisstdcnt;            // UTC/local indicators
294   len += 1 * ttisutcnt;             // standard/wall indicators
295   return len;
296 }
297 
298 // zic(8) can generate no-op transitions when a zone changes rules at an
299 // instant when there is actually no discontinuity.  So we check whether
300 // two transitions have equivalent types (same offset/is_dst/abbr).
EquivTransitions(std::uint_fast8_t tt1_index,std::uint_fast8_t tt2_index) const301 bool TimeZoneInfo::EquivTransitions(std::uint_fast8_t tt1_index,
302                                     std::uint_fast8_t tt2_index) const {
303   if (tt1_index == tt2_index) return true;
304   const TransitionType& tt1(transition_types_[tt1_index]);
305   const TransitionType& tt2(transition_types_[tt2_index]);
306   if (tt1.utc_offset != tt2.utc_offset) return false;
307   if (tt1.is_dst != tt2.is_dst) return false;
308   if (tt1.abbr_index != tt2.abbr_index) return false;
309   return true;
310 }
311 
312 // Find/make a transition type with these attributes.
GetTransitionType(std::int_fast32_t utc_offset,bool is_dst,const std::string & abbr,std::uint_least8_t * index)313 bool TimeZoneInfo::GetTransitionType(std::int_fast32_t utc_offset, bool is_dst,
314                                      const std::string& abbr,
315                                      std::uint_least8_t* index) {
316   std::size_t type_index = 0;
317   std::size_t abbr_index = abbreviations_.size();
318   for (; type_index != transition_types_.size(); ++type_index) {
319     const TransitionType& tt(transition_types_[type_index]);
320     const char* tt_abbr = &abbreviations_[tt.abbr_index];
321     if (tt_abbr == abbr) abbr_index = tt.abbr_index;
322     if (tt.utc_offset == utc_offset && tt.is_dst == is_dst) {
323       if (abbr_index == tt.abbr_index) break;  // reuse
324     }
325   }
326   if (type_index > 255 || abbr_index > 255) {
327     // No index space (8 bits) available for a new type or abbreviation.
328     return false;
329   }
330   if (type_index == transition_types_.size()) {
331     TransitionType& tt(*transition_types_.emplace(transition_types_.end()));
332     tt.utc_offset = static_cast<std::int_least32_t>(utc_offset);
333     tt.is_dst = is_dst;
334     if (abbr_index == abbreviations_.size()) {
335       abbreviations_.append(abbr);
336       abbreviations_.append(1, '\0');
337     }
338     tt.abbr_index = static_cast<std::uint_least8_t>(abbr_index);
339   }
340   *index = static_cast<std::uint_least8_t>(type_index);
341   return true;
342 }
343 
344 // Use the POSIX-TZ-environment-variable-style string to handle times
345 // in years after the last transition stored in the zoneinfo data.
ExtendTransitions()346 bool TimeZoneInfo::ExtendTransitions() {
347   extended_ = false;
348   if (future_spec_.empty()) return true;  // last transition prevails
349 
350   PosixTimeZone posix;
351   if (!ParsePosixSpec(future_spec_, &posix)) return false;
352 
353   // Find transition type for the future std specification.
354   std::uint_least8_t std_ti;
355   if (!GetTransitionType(posix.std_offset, false, posix.std_abbr, &std_ti))
356     return false;
357 
358   if (posix.dst_abbr.empty()) {  // std only
359     // The future specification should match the last transition, and
360     // that means that handling the future will fall out naturally.
361     return EquivTransitions(transitions_.back().type_index, std_ti);
362   }
363 
364   // Find transition type for the future dst specification.
365   std::uint_least8_t dst_ti;
366   if (!GetTransitionType(posix.dst_offset, true, posix.dst_abbr, &dst_ti))
367     return false;
368 
369   if (AllYearDST(posix)) {  // dst only
370     // The future specification should match the last transition, and
371     // that means that handling the future will fall out naturally.
372     return EquivTransitions(transitions_.back().type_index, dst_ti);
373   }
374 
375   // Extend the transitions for an additional 400 years using the
376   // future specification. Years beyond those can be handled by
377   // mapping back to a cycle-equivalent year within that range.
378   // We may need two additional transitions for the current year.
379   transitions_.reserve(transitions_.size() + 400 * 2 + 2);
380   extended_ = true;
381 
382   const Transition& last(transitions_.back());
383   const std::int_fast64_t last_time = last.unix_time;
384   const TransitionType& last_tt(transition_types_[last.type_index]);
385   last_year_ = LocalTime(last_time, last_tt).cs.year();
386   bool leap_year = IsLeap(last_year_);
387   const civil_second jan1(last_year_);
388   std::int_fast64_t jan1_time = jan1 - civil_second();
389   int jan1_weekday = ToPosixWeekday(get_weekday(jan1));
390 
391   Transition dst = {0, dst_ti, civil_second(), civil_second()};
392   Transition std = {0, std_ti, civil_second(), civil_second()};
393   for (const year_t limit = last_year_ + 400;; ++last_year_) {
394     auto dst_trans_off = TransOffset(leap_year, jan1_weekday, posix.dst_start);
395     auto std_trans_off = TransOffset(leap_year, jan1_weekday, posix.dst_end);
396     dst.unix_time = jan1_time + dst_trans_off - posix.std_offset;
397     std.unix_time = jan1_time + std_trans_off - posix.dst_offset;
398     const auto* ta = dst.unix_time < std.unix_time ? &dst : &std;
399     const auto* tb = dst.unix_time < std.unix_time ? &std : &dst;
400     if (last_time < tb->unix_time) {
401       if (last_time < ta->unix_time) transitions_.push_back(*ta);
402       transitions_.push_back(*tb);
403     }
404     if (last_year_ == limit) break;
405     jan1_time += kSecsPerYear[leap_year];
406     jan1_weekday = (jan1_weekday + kDaysPerYear[leap_year]) % 7;
407     leap_year = !leap_year && IsLeap(last_year_ + 1);
408   }
409 
410   return true;
411 }
412 
Load(ZoneInfoSource * zip)413 bool TimeZoneInfo::Load(ZoneInfoSource* zip) {
414   // Read and validate the header.
415   tzhead tzh;
416   if (zip->Read(&tzh, sizeof(tzh)) != sizeof(tzh)) return false;
417   if (strncmp(tzh.tzh_magic, TZ_MAGIC, sizeof(tzh.tzh_magic)) != 0)
418     return false;
419   Header hdr;
420   if (!hdr.Build(tzh)) return false;
421   std::size_t time_len = 4;
422   if (tzh.tzh_version[0] != '\0') {
423     // Skip the 4-byte data.
424     if (zip->Skip(hdr.DataLength(time_len)) != 0) return false;
425     // Read and validate the header for the 8-byte data.
426     if (zip->Read(&tzh, sizeof(tzh)) != sizeof(tzh)) return false;
427     if (strncmp(tzh.tzh_magic, TZ_MAGIC, sizeof(tzh.tzh_magic)) != 0)
428       return false;
429     if (tzh.tzh_version[0] == '\0') return false;
430     if (!hdr.Build(tzh)) return false;
431     time_len = 8;
432   }
433   if (hdr.typecnt == 0) return false;
434   if (hdr.leapcnt != 0) {
435     // This code assumes 60-second minutes so we do not want
436     // the leap-second encoded zoneinfo. We could reverse the
437     // compensation, but the "right" encoding is rarely used
438     // so currently we simply reject such data.
439     return false;
440   }
441   if (hdr.ttisstdcnt != 0 && hdr.ttisstdcnt != hdr.typecnt) return false;
442   if (hdr.ttisutcnt != 0 && hdr.ttisutcnt != hdr.typecnt) return false;
443 
444   // Read the data into a local buffer.
445   std::size_t len = hdr.DataLength(time_len);
446   std::vector<char> tbuf(len);
447   if (zip->Read(tbuf.data(), len) != len) return false;
448   const char* bp = tbuf.data();
449 
450   // Decode and validate the transitions.
451   transitions_.reserve(hdr.timecnt + 2);
452   transitions_.resize(hdr.timecnt);
453   for (std::size_t i = 0; i != hdr.timecnt; ++i) {
454     transitions_[i].unix_time = (time_len == 4) ? Decode32(bp) : Decode64(bp);
455     bp += time_len;
456     if (i != 0) {
457       // Check that the transitions are ordered by time (as zic guarantees).
458       if (!Transition::ByUnixTime()(transitions_[i - 1], transitions_[i]))
459         return false;  // out of order
460     }
461   }
462   bool seen_type_0 = false;
463   for (std::size_t i = 0; i != hdr.timecnt; ++i) {
464     transitions_[i].type_index = Decode8(bp++);
465     if (transitions_[i].type_index >= hdr.typecnt) return false;
466     if (transitions_[i].type_index == 0) seen_type_0 = true;
467   }
468 
469   // Decode and validate the transition types.
470   transition_types_.reserve(hdr.typecnt + 2);
471   transition_types_.resize(hdr.typecnt);
472   for (std::size_t i = 0; i != hdr.typecnt; ++i) {
473     transition_types_[i].utc_offset =
474         static_cast<std::int_least32_t>(Decode32(bp));
475     if (transition_types_[i].utc_offset >= kSecsPerDay ||
476         transition_types_[i].utc_offset <= -kSecsPerDay)
477       return false;
478     bp += 4;
479     transition_types_[i].is_dst = (Decode8(bp++) != 0);
480     transition_types_[i].abbr_index = Decode8(bp++);
481     if (transition_types_[i].abbr_index >= hdr.charcnt) return false;
482   }
483 
484   // Determine the before-first-transition type.
485   default_transition_type_ = 0;
486   if (seen_type_0 && hdr.timecnt != 0) {
487     std::uint_fast8_t index = 0;
488     if (transition_types_[0].is_dst) {
489       index = transitions_[0].type_index;
490       while (index != 0 && transition_types_[index].is_dst) --index;
491     }
492     while (index != hdr.typecnt && transition_types_[index].is_dst) ++index;
493     if (index != hdr.typecnt) default_transition_type_ = index;
494   }
495 
496   // Copy all the abbreviations.
497   abbreviations_.reserve(hdr.charcnt + 10);
498   abbreviations_.assign(bp, hdr.charcnt);
499   bp += hdr.charcnt;
500 
501   // Skip the unused portions. We've already dispensed with leap-second
502   // encoded zoneinfo. The ttisstd/ttisgmt indicators only apply when
503   // interpreting a POSIX spec that does not include start/end rules, and
504   // that isn't the case here (see "zic -p").
505   bp += (time_len + 4) * hdr.leapcnt;  // leap-time + TAI-UTC
506   bp += 1 * hdr.ttisstdcnt;            // UTC/local indicators
507   bp += 1 * hdr.ttisutcnt;             // standard/wall indicators
508   assert(bp == tbuf.data() + tbuf.size());
509 
510   future_spec_.clear();
511   if (tzh.tzh_version[0] != '\0') {
512     // Snarf up the NL-enclosed future POSIX spec. Note
513     // that version '3' files utilize an extended format.
514     auto get_char = [](ZoneInfoSource* azip) -> int {
515       unsigned char ch;  // all non-EOF results are positive
516       return (azip->Read(&ch, 1) == 1) ? ch : EOF;
517     };
518     if (get_char(zip) != '\n') return false;
519     for (int c = get_char(zip); c != '\n'; c = get_char(zip)) {
520       if (c == EOF) return false;
521       future_spec_.push_back(static_cast<char>(c));
522     }
523   }
524 
525   // We don't check for EOF so that we're forwards compatible.
526 
527   // If we did not find version information during the standard loading
528   // process (as of tzh_version '3' that is unsupported), then ask the
529   // ZoneInfoSource for any out-of-bound version string it may be privy to.
530   if (version_.empty()) {
531     version_ = zip->Version();
532   }
533 
534   // Trim redundant transitions. zic may have added these to work around
535   // differences between the glibc and reference implementations (see
536   // zic.c:dontmerge) or to avoid bugs in old readers. For us, they just
537   // get in the way when we do future_spec_ extension.
538   while (hdr.timecnt > 1) {
539     if (!EquivTransitions(transitions_[hdr.timecnt - 1].type_index,
540                           transitions_[hdr.timecnt - 2].type_index)) {
541       break;
542     }
543     hdr.timecnt -= 1;
544   }
545   transitions_.resize(hdr.timecnt);
546 
547   // Ensure that there is always a transition in the first half of the
548   // time line (the second half is handled below) so that the signed
549   // difference between a civil_second and the civil_second of its
550   // previous transition is always representable, without overflow.
551   if (transitions_.empty() || transitions_.front().unix_time >= 0) {
552     Transition& tr(*transitions_.emplace(transitions_.begin()));
553     tr.unix_time = -(1LL << 59);  // -18267312070-10-26T17:01:52+00:00
554     tr.type_index = default_transition_type_;
555   }
556 
557   // Extend the transitions using the future specification.
558   if (!ExtendTransitions()) return false;
559 
560   // Ensure that there is always a transition in the second half of the
561   // time line (the first half is handled above) so that the signed
562   // difference between a civil_second and the civil_second of its
563   // previous transition is always representable, without overflow.
564   const Transition& last(transitions_.back());
565   if (last.unix_time < 0) {
566     const std::uint_fast8_t type_index = last.type_index;
567     Transition& tr(*transitions_.emplace(transitions_.end()));
568     tr.unix_time = 2147483647;  // 2038-01-19T03:14:07+00:00
569     tr.type_index = type_index;
570   }
571 
572   // Compute the local civil time for each transition and the preceding
573   // second. These will be used for reverse conversions in MakeTime().
574   const TransitionType* ttp = &transition_types_[default_transition_type_];
575   for (std::size_t i = 0; i != transitions_.size(); ++i) {
576     Transition& tr(transitions_[i]);
577     tr.prev_civil_sec = LocalTime(tr.unix_time, *ttp).cs - 1;
578     ttp = &transition_types_[tr.type_index];
579     tr.civil_sec = LocalTime(tr.unix_time, *ttp).cs;
580     if (i != 0) {
581       // Check that the transitions are ordered by civil time. Essentially
582       // this means that an offset change cannot cross another such change.
583       // No one does this in practice, and we depend on it in MakeTime().
584       if (!Transition::ByCivilTime()(transitions_[i - 1], tr))
585         return false;  // out of order
586     }
587   }
588 
589   // Compute the maximum/minimum civil times that can be converted to a
590   // time_point<seconds> for each of the zone's transition types.
591   for (auto& tt : transition_types_) {
592     tt.civil_max = LocalTime(seconds::max().count(), tt).cs;
593     tt.civil_min = LocalTime(seconds::min().count(), tt).cs;
594   }
595 
596   transitions_.shrink_to_fit();
597   return true;
598 }
599 
600 namespace {
601 
602 using FilePtr = std::unique_ptr<FILE, int (*)(FILE*)>;
603 
604 // fopen(3) adaptor.
FOpen(const char * path,const char * mode)605 inline FilePtr FOpen(const char* path, const char* mode) {
606 #if defined(_MSC_VER)
607   FILE* fp;
608   if (fopen_s(&fp, path, mode) != 0) fp = nullptr;
609   return FilePtr(fp, fclose);
610 #else
611   // TODO: Enable the close-on-exec flag.
612   return FilePtr(fopen(path, mode), fclose);
613 #endif
614 }
615 
616 // A stdio(3)-backed implementation of ZoneInfoSource.
617 class FileZoneInfoSource : public ZoneInfoSource {
618  public:
619   static std::unique_ptr<ZoneInfoSource> Open(const std::string& name);
620 
Read(void * ptr,std::size_t size)621   std::size_t Read(void* ptr, std::size_t size) override {
622     size = std::min(size, len_);
623     std::size_t nread = fread(ptr, 1, size, fp_.get());
624     len_ -= nread;
625     return nread;
626   }
Skip(std::size_t offset)627   int Skip(std::size_t offset) override {
628     offset = std::min(offset, len_);
629     int rc = fseek(fp_.get(), static_cast<long>(offset), SEEK_CUR);
630     if (rc == 0) len_ -= offset;
631     return rc;
632   }
Version() const633   std::string Version() const override {
634     // TODO: It would nice if the zoneinfo data included the tzdb version.
635     return std::string();
636   }
637 
638  protected:
FileZoneInfoSource(FilePtr fp,std::size_t len=std::numeric_limits<std::size_t>::max ())639   explicit FileZoneInfoSource(
640       FilePtr fp, std::size_t len = std::numeric_limits<std::size_t>::max())
641       : fp_(std::move(fp)), len_(len) {}
642 
643  private:
644   FilePtr fp_;
645   std::size_t len_;
646 };
647 
Open(const std::string & name)648 std::unique_ptr<ZoneInfoSource> FileZoneInfoSource::Open(
649     const std::string& name) {
650   // Use of the "file:" prefix is intended for testing purposes only.
651   const std::size_t pos = (name.compare(0, 5, "file:") == 0) ? 5 : 0;
652 
653   // Map the time-zone name to a path name.
654   std::string path;
655   if (pos == name.size() || name[pos] != '/') {
656     const char* tzdir = "/usr/share/zoneinfo";
657     char* tzdir_env = nullptr;
658 #if defined(_MSC_VER)
659     _dupenv_s(&tzdir_env, nullptr, "TZDIR");
660 #else
661     tzdir_env = std::getenv("TZDIR");
662 #endif
663     if (tzdir_env && *tzdir_env) tzdir = tzdir_env;
664     path += tzdir;
665     path += '/';
666 #if defined(_MSC_VER)
667     free(tzdir_env);
668 #endif
669   }
670   path.append(name, pos, std::string::npos);
671 
672   // Open the zoneinfo file.
673   auto fp = FOpen(path.c_str(), "rb");
674   if (fp == nullptr) return nullptr;
675   return std::unique_ptr<ZoneInfoSource>(new FileZoneInfoSource(std::move(fp)));
676 }
677 
678 class AndroidZoneInfoSource : public FileZoneInfoSource {
679  public:
680   static std::unique_ptr<ZoneInfoSource> Open(const std::string& name);
Version() const681   std::string Version() const override { return version_; }
682 
683  private:
AndroidZoneInfoSource(FilePtr fp,std::size_t len,std::string version)684   explicit AndroidZoneInfoSource(FilePtr fp, std::size_t len,
685                                  std::string version)
686       : FileZoneInfoSource(std::move(fp), len), version_(std::move(version)) {}
687   std::string version_;
688 };
689 
Open(const std::string & name)690 std::unique_ptr<ZoneInfoSource> AndroidZoneInfoSource::Open(
691     const std::string& name) {
692   // Use of the "file:" prefix is intended for testing purposes only.
693   const std::size_t pos = (name.compare(0, 5, "file:") == 0) ? 5 : 0;
694 
695   // See Android's libc/tzcode/bionic.cpp for additional information.
696   for (const char* tzdata : {"/data/misc/zoneinfo/current/tzdata",
697                              "/system/usr/share/zoneinfo/tzdata"}) {
698     auto fp = FOpen(tzdata, "rb");
699     if (fp == nullptr) continue;
700 
701     char hbuf[24];  // covers header.zonetab_offset too
702     if (fread(hbuf, 1, sizeof(hbuf), fp.get()) != sizeof(hbuf)) continue;
703     if (strncmp(hbuf, "tzdata", 6) != 0) continue;
704     const char* vers = (hbuf[11] == '\0') ? hbuf + 6 : "";
705     const std::int_fast32_t index_offset = Decode32(hbuf + 12);
706     const std::int_fast32_t data_offset = Decode32(hbuf + 16);
707     if (index_offset < 0 || data_offset < index_offset) continue;
708     if (fseek(fp.get(), static_cast<long>(index_offset), SEEK_SET) != 0)
709       continue;
710 
711     char ebuf[52];  // covers entry.unused too
712     const std::size_t index_size =
713         static_cast<std::size_t>(data_offset - index_offset);
714     const std::size_t zonecnt = index_size / sizeof(ebuf);
715     if (zonecnt * sizeof(ebuf) != index_size) continue;
716     for (std::size_t i = 0; i != zonecnt; ++i) {
717       if (fread(ebuf, 1, sizeof(ebuf), fp.get()) != sizeof(ebuf)) break;
718       const std::int_fast32_t start = data_offset + Decode32(ebuf + 40);
719       const std::int_fast32_t length = Decode32(ebuf + 44);
720       if (start < 0 || length < 0) break;
721       ebuf[40] = '\0';  // ensure zone name is NUL terminated
722       if (strcmp(name.c_str() + pos, ebuf) == 0) {
723         if (fseek(fp.get(), static_cast<long>(start), SEEK_SET) != 0) break;
724         return std::unique_ptr<ZoneInfoSource>(new AndroidZoneInfoSource(
725             std::move(fp), static_cast<std::size_t>(length), vers));
726       }
727     }
728   }
729 
730   return nullptr;
731 }
732 
733 // A zoneinfo source for use inside Fuchsia components. This attempts to
734 // read zoneinfo files from one of several known paths in a component's
735 // incoming namespace. [Config data][1] is preferred, but package-specific
736 // resources are also supported.
737 //
738 // Fuchsia's implementation supports `FileZoneInfoSource::Version()`.
739 //
740 // [1]:
741 // https://fuchsia.dev/fuchsia-src/development/components/data#using_config_data_in_your_component
742 class FuchsiaZoneInfoSource : public FileZoneInfoSource {
743  public:
744   static std::unique_ptr<ZoneInfoSource> Open(const std::string& name);
Version() const745   std::string Version() const override { return version_; }
746 
747  private:
FuchsiaZoneInfoSource(FilePtr fp,std::string version)748   explicit FuchsiaZoneInfoSource(FilePtr fp, std::string version)
749       : FileZoneInfoSource(std::move(fp)), version_(std::move(version)) {}
750   std::string version_;
751 };
752 
Open(const std::string & name)753 std::unique_ptr<ZoneInfoSource> FuchsiaZoneInfoSource::Open(
754     const std::string& name) {
755   // Use of the "file:" prefix is intended for testing purposes only.
756   const std::size_t pos = (name.compare(0, 5, "file:") == 0) ? 5 : 0;
757 
758   // Prefixes where a Fuchsia component might find zoneinfo files,
759   // in descending order of preference.
760   const auto kTzdataPrefixes = {
761       "/config/data/tzdata/",
762       "/pkg/data/tzdata/",
763       "/data/tzdata/",
764   };
765   const auto kEmptyPrefix = {""};
766   const bool name_absolute = (pos != name.size() && name[pos] == '/');
767   const auto prefixes = name_absolute ? kEmptyPrefix : kTzdataPrefixes;
768 
769   // Fuchsia builds place zoneinfo files at "<prefix><format><name>".
770   for (const std::string prefix : prefixes) {
771     std::string path = prefix;
772     if (!prefix.empty()) path += "zoneinfo/tzif2/";  // format
773     path.append(name, pos, std::string::npos);
774 
775     auto fp = FOpen(path.c_str(), "rb");
776     if (fp == nullptr) continue;
777 
778     std::string version;
779     if (!prefix.empty()) {
780       // Fuchsia builds place the version in "<prefix>revision.txt".
781       std::ifstream version_stream(prefix + "revision.txt");
782       if (version_stream.is_open()) {
783         // revision.txt should contain no newlines, but to be
784         // defensive we read just the first line.
785         std::getline(version_stream, version);
786       }
787     }
788 
789     return std::unique_ptr<ZoneInfoSource>(
790         new FuchsiaZoneInfoSource(std::move(fp), std::move(version)));
791   }
792 
793   return nullptr;
794 }
795 
796 }  // namespace
797 
Load(const std::string & name)798 bool TimeZoneInfo::Load(const std::string& name) {
799   // We can ensure that the loading of UTC or any other fixed-offset
800   // zone never fails because the simple, fixed-offset state can be
801   // internally generated. Note that this depends on our choice to not
802   // accept leap-second encoded ("right") zoneinfo.
803   auto offset = seconds::zero();
804   if (FixedOffsetFromName(name, &offset)) {
805     return ResetToBuiltinUTC(offset);
806   }
807 
808   // Find and use a ZoneInfoSource to load the named zone.
809   auto zip = cctz_extension::zone_info_source_factory(
810       name, [](const std::string& n) -> std::unique_ptr<ZoneInfoSource> {
811         if (auto z = FileZoneInfoSource::Open(n)) return z;
812         if (auto z = AndroidZoneInfoSource::Open(n)) return z;
813         if (auto z = FuchsiaZoneInfoSource::Open(n)) return z;
814         return nullptr;
815       });
816   return zip != nullptr && Load(zip.get());
817 }
818 
819 // BreakTime() translation for a particular transition type.
LocalTime(std::int_fast64_t unix_time,const TransitionType & tt) const820 time_zone::absolute_lookup TimeZoneInfo::LocalTime(
821     std::int_fast64_t unix_time, const TransitionType& tt) const {
822   // A civil time in "+offset" looks like (time+offset) in UTC.
823   // Note: We perform two additions in the civil_second domain to
824   // sidestep the chance of overflow in (unix_time + tt.utc_offset).
825   return {(civil_second() + unix_time) + tt.utc_offset, tt.utc_offset,
826           tt.is_dst, &abbreviations_[tt.abbr_index]};
827 }
828 
829 // BreakTime() translation for a particular transition.
LocalTime(std::int_fast64_t unix_time,const Transition & tr) const830 time_zone::absolute_lookup TimeZoneInfo::LocalTime(std::int_fast64_t unix_time,
831                                                    const Transition& tr) const {
832   const TransitionType& tt = transition_types_[tr.type_index];
833   // Note: (unix_time - tr.unix_time) will never overflow as we
834   // have ensured that there is always a "nearby" transition.
835   return {tr.civil_sec + (unix_time - tr.unix_time),  // TODO: Optimize.
836           tt.utc_offset, tt.is_dst, &abbreviations_[tt.abbr_index]};
837 }
838 
839 // MakeTime() translation with a conversion-preserving +N * 400-year shift.
TimeLocal(const civil_second & cs,year_t c4_shift) const840 time_zone::civil_lookup TimeZoneInfo::TimeLocal(const civil_second& cs,
841                                                 year_t c4_shift) const {
842   assert(last_year_ - 400 < cs.year() && cs.year() <= last_year_);
843   time_zone::civil_lookup cl = MakeTime(cs);
844   if (c4_shift > seconds::max().count() / kSecsPer400Years) {
845     cl.pre = cl.trans = cl.post = time_point<seconds>::max();
846   } else {
847     const auto offset = seconds(c4_shift * kSecsPer400Years);
848     const auto limit = time_point<seconds>::max() - offset;
849     for (auto* tp : {&cl.pre, &cl.trans, &cl.post}) {
850       if (*tp > limit) {
851         *tp = time_point<seconds>::max();
852       } else {
853         *tp += offset;
854       }
855     }
856   }
857   return cl;
858 }
859 
BreakTime(const time_point<seconds> & tp) const860 time_zone::absolute_lookup TimeZoneInfo::BreakTime(
861     const time_point<seconds>& tp) const {
862   std::int_fast64_t unix_time = ToUnixSeconds(tp);
863   const std::size_t timecnt = transitions_.size();
864   assert(timecnt != 0);  // We always add a transition.
865 
866   if (unix_time < transitions_[0].unix_time) {
867     return LocalTime(unix_time, transition_types_[default_transition_type_]);
868   }
869   if (unix_time >= transitions_[timecnt - 1].unix_time) {
870     // After the last transition. If we extended the transitions using
871     // future_spec_, shift back to a supported year using the 400-year
872     // cycle of calendaric equivalence and then compensate accordingly.
873     if (extended_) {
874       const std::int_fast64_t diff =
875           unix_time - transitions_[timecnt - 1].unix_time;
876       const year_t shift = diff / kSecsPer400Years + 1;
877       const auto d = seconds(shift * kSecsPer400Years);
878       time_zone::absolute_lookup al = BreakTime(tp - d);
879       al.cs = YearShift(al.cs, shift * 400);
880       return al;
881     }
882     return LocalTime(unix_time, transitions_[timecnt - 1]);
883   }
884 
885   const std::size_t hint = local_time_hint_.load(std::memory_order_relaxed);
886   if (0 < hint && hint < timecnt) {
887     if (transitions_[hint - 1].unix_time <= unix_time) {
888       if (unix_time < transitions_[hint].unix_time) {
889         return LocalTime(unix_time, transitions_[hint - 1]);
890       }
891     }
892   }
893 
894   const Transition target = {unix_time, 0, civil_second(), civil_second()};
895   const Transition* begin = &transitions_[0];
896   const Transition* tr = std::upper_bound(begin, begin + timecnt, target,
897                                           Transition::ByUnixTime());
898   local_time_hint_.store(static_cast<std::size_t>(tr - begin),
899                          std::memory_order_relaxed);
900   return LocalTime(unix_time, *--tr);
901 }
902 
MakeTime(const civil_second & cs) const903 time_zone::civil_lookup TimeZoneInfo::MakeTime(const civil_second& cs) const {
904   const std::size_t timecnt = transitions_.size();
905   assert(timecnt != 0);  // We always add a transition.
906 
907   // Find the first transition after our target civil time.
908   const Transition* tr = nullptr;
909   const Transition* begin = &transitions_[0];
910   const Transition* end = begin + timecnt;
911   if (cs < begin->civil_sec) {
912     tr = begin;
913   } else if (cs >= transitions_[timecnt - 1].civil_sec) {
914     tr = end;
915   } else {
916     const std::size_t hint = time_local_hint_.load(std::memory_order_relaxed);
917     if (0 < hint && hint < timecnt) {
918       if (transitions_[hint - 1].civil_sec <= cs) {
919         if (cs < transitions_[hint].civil_sec) {
920           tr = begin + hint;
921         }
922       }
923     }
924     if (tr == nullptr) {
925       const Transition target = {0, 0, cs, civil_second()};
926       tr = std::upper_bound(begin, end, target, Transition::ByCivilTime());
927       time_local_hint_.store(static_cast<std::size_t>(tr - begin),
928                              std::memory_order_relaxed);
929     }
930   }
931 
932   if (tr == begin) {
933     if (tr->prev_civil_sec >= cs) {
934       // Before first transition, so use the default offset.
935       const TransitionType& tt(transition_types_[default_transition_type_]);
936       if (cs < tt.civil_min) return MakeUnique(time_point<seconds>::min());
937       return MakeUnique(cs - (civil_second() + tt.utc_offset));
938     }
939     // tr->prev_civil_sec < cs < tr->civil_sec
940     return MakeSkipped(*tr, cs);
941   }
942 
943   if (tr == end) {
944     if (cs > (--tr)->prev_civil_sec) {
945       // After the last transition. If we extended the transitions using
946       // future_spec_, shift back to a supported year using the 400-year
947       // cycle of calendaric equivalence and then compensate accordingly.
948       if (extended_ && cs.year() > last_year_) {
949         const year_t shift = (cs.year() - last_year_ - 1) / 400 + 1;
950         return TimeLocal(YearShift(cs, shift * -400), shift);
951       }
952       const TransitionType& tt(transition_types_[tr->type_index]);
953       if (cs > tt.civil_max) return MakeUnique(time_point<seconds>::max());
954       return MakeUnique(tr->unix_time + (cs - tr->civil_sec));
955     }
956     // tr->civil_sec <= cs <= tr->prev_civil_sec
957     return MakeRepeated(*tr, cs);
958   }
959 
960   if (tr->prev_civil_sec < cs) {
961     // tr->prev_civil_sec < cs < tr->civil_sec
962     return MakeSkipped(*tr, cs);
963   }
964 
965   if (cs <= (--tr)->prev_civil_sec) {
966     // tr->civil_sec <= cs <= tr->prev_civil_sec
967     return MakeRepeated(*tr, cs);
968   }
969 
970   // In between transitions.
971   return MakeUnique(tr->unix_time + (cs - tr->civil_sec));
972 }
973 
Version() const974 std::string TimeZoneInfo::Version() const { return version_; }
975 
Description() const976 std::string TimeZoneInfo::Description() const {
977   std::ostringstream oss;
978   oss << "#trans=" << transitions_.size();
979   oss << " #types=" << transition_types_.size();
980   oss << " spec='" << future_spec_ << "'";
981   return oss.str();
982 }
983 
NextTransition(const time_point<seconds> & tp,time_zone::civil_transition * trans) const984 bool TimeZoneInfo::NextTransition(const time_point<seconds>& tp,
985                                   time_zone::civil_transition* trans) const {
986   if (transitions_.empty()) return false;
987   const Transition* begin = &transitions_[0];
988   const Transition* end = begin + transitions_.size();
989   if (begin->unix_time <= -(1LL << 59)) {
990     // Do not report the BIG_BANG found in some zoneinfo data as it is
991     // really a sentinel, not a transition.  See pre-2018f tz/zic.c.
992     ++begin;
993   }
994   std::int_fast64_t unix_time = ToUnixSeconds(tp);
995   const Transition target = {unix_time, 0, civil_second(), civil_second()};
996   const Transition* tr =
997       std::upper_bound(begin, end, target, Transition::ByUnixTime());
998   for (; tr != end; ++tr) {  // skip no-op transitions
999     std::uint_fast8_t prev_type_index =
1000         (tr == begin) ? default_transition_type_ : tr[-1].type_index;
1001     if (!EquivTransitions(prev_type_index, tr[0].type_index)) break;
1002   }
1003   // When tr == end we return false, ignoring future_spec_.
1004   if (tr == end) return false;
1005   trans->from = tr->prev_civil_sec + 1;
1006   trans->to = tr->civil_sec;
1007   return true;
1008 }
1009 
PrevTransition(const time_point<seconds> & tp,time_zone::civil_transition * trans) const1010 bool TimeZoneInfo::PrevTransition(const time_point<seconds>& tp,
1011                                   time_zone::civil_transition* trans) const {
1012   if (transitions_.empty()) return false;
1013   const Transition* begin = &transitions_[0];
1014   const Transition* end = begin + transitions_.size();
1015   if (begin->unix_time <= -(1LL << 59)) {
1016     // Do not report the BIG_BANG found in some zoneinfo data as it is
1017     // really a sentinel, not a transition.  See pre-2018f tz/zic.c.
1018     ++begin;
1019   }
1020   std::int_fast64_t unix_time = ToUnixSeconds(tp);
1021   if (FromUnixSeconds(unix_time) != tp) {
1022     if (unix_time == std::numeric_limits<std::int_fast64_t>::max()) {
1023       if (end == begin) return false;  // Ignore future_spec_.
1024       trans->from = (--end)->prev_civil_sec + 1;
1025       trans->to = end->civil_sec;
1026       return true;
1027     }
1028     unix_time += 1;  // ceils
1029   }
1030   const Transition target = {unix_time, 0, civil_second(), civil_second()};
1031   const Transition* tr =
1032       std::lower_bound(begin, end, target, Transition::ByUnixTime());
1033   for (; tr != begin; --tr) {  // skip no-op transitions
1034     std::uint_fast8_t prev_type_index =
1035         (tr - 1 == begin) ? default_transition_type_ : tr[-2].type_index;
1036     if (!EquivTransitions(prev_type_index, tr[-1].type_index)) break;
1037   }
1038   // When tr == end we return the "last" transition, ignoring future_spec_.
1039   if (tr == begin) return false;
1040   trans->from = (--tr)->prev_civil_sec + 1;
1041   trans->to = tr->civil_sec;
1042   return true;
1043 }
1044 
1045 }  // namespace cctz
1046 }  // namespace time_internal
1047 ABSL_NAMESPACE_END
1048 }  // namespace absl
1049