1 // Copyright 2020 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/strings/internal/str_format/float_conversion.h"
16 
17 #include <string.h>
18 
19 #include <algorithm>
20 #include <cassert>
21 #include <cmath>
22 #include <limits>
23 #include <string>
24 
25 #include "absl/base/attributes.h"
26 #include "absl/base/config.h"
27 #include "absl/base/optimization.h"
28 #include "absl/functional/function_ref.h"
29 #include "absl/meta/type_traits.h"
30 #include "absl/numeric/bits.h"
31 #include "absl/numeric/int128.h"
32 #include "absl/numeric/internal/representation.h"
33 #include "absl/strings/numbers.h"
34 #include "absl/types/optional.h"
35 #include "absl/types/span.h"
36 
37 namespace absl {
38 ABSL_NAMESPACE_BEGIN
39 namespace str_format_internal {
40 
41 namespace {
42 
43 using ::absl::numeric_internal::IsDoubleDouble;
44 
45 // The code below wants to avoid heap allocations.
46 // To do so it needs to allocate memory on the stack.
47 // `StackArray` will allocate memory on the stack in the form of a uint32_t
48 // array and call the provided callback with said memory.
49 // It will allocate memory in increments of 512 bytes. We could allocate the
50 // largest needed unconditionally, but that is more than we need in most of
51 // cases. This way we use less stack in the common cases.
52 class StackArray {
53   using Func = absl::FunctionRef<void(absl::Span<uint32_t>)>;
54   static constexpr size_t kStep = 512 / sizeof(uint32_t);
55   // 5 steps is 2560 bytes, which is enough to hold a long double with the
56   // largest/smallest exponents.
57   // The operations below will static_assert their particular maximum.
58   static constexpr size_t kNumSteps = 5;
59 
60   // We do not want this function to be inlined.
61   // Otherwise the caller will allocate the stack space unnecessarily for all
62   // the variants even though it only calls one.
63   template <size_t steps>
RunWithCapacityImpl(Func f)64   ABSL_ATTRIBUTE_NOINLINE static void RunWithCapacityImpl(Func f) {
65     uint32_t values[steps * kStep]{};
66     f(absl::MakeSpan(values));
67   }
68 
69  public:
70   static constexpr size_t kMaxCapacity = kStep * kNumSteps;
71 
RunWithCapacity(size_t capacity,Func f)72   static void RunWithCapacity(size_t capacity, Func f) {
73     assert(capacity <= kMaxCapacity);
74     const size_t step = (capacity + kStep - 1) / kStep;
75     assert(step <= kNumSteps);
76     switch (step) {
77       case 1:
78         return RunWithCapacityImpl<1>(f);
79       case 2:
80         return RunWithCapacityImpl<2>(f);
81       case 3:
82         return RunWithCapacityImpl<3>(f);
83       case 4:
84         return RunWithCapacityImpl<4>(f);
85       case 5:
86         return RunWithCapacityImpl<5>(f);
87     }
88 
89     assert(false && "Invalid capacity");
90   }
91 };
92 
93 // Calculates `10 * (*v) + carry` and stores the result in `*v` and returns
94 // the carry.
95 // Requires: `0 <= carry <= 9`
96 template <typename Int>
MultiplyBy10WithCarry(Int * v,char carry)97 inline char MultiplyBy10WithCarry(Int* v, char carry) {
98   using BiggerInt = absl::conditional_t<sizeof(Int) == 4, uint64_t, uint128>;
99   BiggerInt tmp =
100       10 * static_cast<BiggerInt>(*v) + static_cast<BiggerInt>(carry);
101   *v = static_cast<Int>(tmp);
102   return static_cast<char>(tmp >> (sizeof(Int) * 8));
103 }
104 
105 // Calculates `(2^64 * carry + *v) / 10`.
106 // Stores the quotient in `*v` and returns the remainder.
107 // Requires: `0 <= carry <= 9`
DivideBy10WithCarry(uint64_t * v,char carry)108 inline char DivideBy10WithCarry(uint64_t* v, char carry) {
109   constexpr uint64_t divisor = 10;
110   // 2^64 / divisor = chunk_quotient + chunk_remainder / divisor
111   constexpr uint64_t chunk_quotient = (uint64_t{1} << 63) / (divisor / 2);
112   constexpr uint64_t chunk_remainder = uint64_t{} - chunk_quotient * divisor;
113 
114   const uint64_t carry_u64 = static_cast<uint64_t>(carry);
115   const uint64_t mod = *v % divisor;
116   const uint64_t next_carry = chunk_remainder * carry_u64 + mod;
117   *v = *v / divisor + carry_u64 * chunk_quotient + next_carry / divisor;
118   return static_cast<char>(next_carry % divisor);
119 }
120 
121 using MaxFloatType =
122     typename std::conditional<IsDoubleDouble(), double, long double>::type;
123 
124 // Generates the decimal representation for an integer of the form `v * 2^exp`,
125 // where `v` and `exp` are both positive integers.
126 // It generates the digits from the left (ie the most significant digit first)
127 // to allow for direct printing into the sink.
128 //
129 // Requires `0 <= exp` and `exp <= numeric_limits<MaxFloatType>::max_exponent`.
130 class BinaryToDecimal {
ChunksNeeded(int exp)131   static constexpr size_t ChunksNeeded(int exp) {
132     // We will left shift a uint128 by `exp` bits, so we need `128+exp` total
133     // bits. Round up to 32.
134     // See constructor for details about adding `10%` to the value.
135     return static_cast<size_t>((128 + exp + 31) / 32 * 11 / 10);
136   }
137 
138  public:
139   // Run the conversion for `v * 2^exp` and call `f(binary_to_decimal)`.
140   // This function will allocate enough stack space to perform the conversion.
RunConversion(uint128 v,int exp,absl::FunctionRef<void (BinaryToDecimal)> f)141   static void RunConversion(uint128 v, int exp,
142                             absl::FunctionRef<void(BinaryToDecimal)> f) {
143     assert(exp > 0);
144     assert(exp <= std::numeric_limits<MaxFloatType>::max_exponent);
145     static_assert(
146         StackArray::kMaxCapacity >=
147             ChunksNeeded(std::numeric_limits<MaxFloatType>::max_exponent),
148         "");
149 
150     StackArray::RunWithCapacity(
151         ChunksNeeded(exp),
152         [=](absl::Span<uint32_t> input) { f(BinaryToDecimal(input, v, exp)); });
153   }
154 
TotalDigits() const155   size_t TotalDigits() const {
156     return (decimal_end_ - decimal_start_) * kDigitsPerChunk +
157            CurrentDigits().size();
158   }
159 
160   // See the current block of digits.
CurrentDigits() const161   absl::string_view CurrentDigits() const {
162     return absl::string_view(digits_ + kDigitsPerChunk - size_, size_);
163   }
164 
165   // Advance the current view of digits.
166   // Returns `false` when no more digits are available.
AdvanceDigits()167   bool AdvanceDigits() {
168     if (decimal_start_ >= decimal_end_) return false;
169 
170     uint32_t w = data_[decimal_start_++];
171     for (size_ = 0; size_ < kDigitsPerChunk; w /= 10) {
172       digits_[kDigitsPerChunk - ++size_] = w % 10 + '0';
173     }
174     return true;
175   }
176 
177  private:
BinaryToDecimal(absl::Span<uint32_t> data,uint128 v,int exp)178   BinaryToDecimal(absl::Span<uint32_t> data, uint128 v, int exp) : data_(data) {
179     // We need to print the digits directly into the sink object without
180     // buffering them all first. To do this we need two things:
181     // - to know the total number of digits to do padding when necessary
182     // - to generate the decimal digits from the left.
183     //
184     // In order to do this, we do a two pass conversion.
185     // On the first pass we convert the binary representation of the value into
186     // a decimal representation in which each uint32_t chunk holds up to 9
187     // decimal digits.  In the second pass we take each decimal-holding-uint32_t
188     // value and generate the ascii decimal digits into `digits_`.
189     //
190     // The binary and decimal representations actually share the same memory
191     // region. As we go converting the chunks from binary to decimal we free
192     // them up and reuse them for the decimal representation. One caveat is that
193     // the decimal representation is around 7% less efficient in space than the
194     // binary one. We allocate an extra 10% memory to account for this. See
195     // ChunksNeeded for this calculation.
196     size_t after_chunk_index = static_cast<size_t>(exp / 32 + 1);
197     decimal_start_ = decimal_end_ = ChunksNeeded(exp);
198     const int offset = exp % 32;
199     // Left shift v by exp bits.
200     data_[after_chunk_index - 1] = static_cast<uint32_t>(v << offset);
201     for (v >>= (32 - offset); v; v >>= 32)
202       data_[++after_chunk_index - 1] = static_cast<uint32_t>(v);
203 
204     while (after_chunk_index > 0) {
205       // While we have more than one chunk available, go in steps of 1e9.
206       // `data_[after_chunk_index - 1]` holds the highest non-zero binary chunk,
207       // so keep the variable updated.
208       uint32_t carry = 0;
209       for (size_t i = after_chunk_index; i > 0; --i) {
210         uint64_t tmp = uint64_t{data_[i - 1]} + (uint64_t{carry} << 32);
211         data_[i - 1] = static_cast<uint32_t>(tmp / uint64_t{1000000000});
212         carry = static_cast<uint32_t>(tmp % uint64_t{1000000000});
213       }
214 
215       // If the highest chunk is now empty, remove it from view.
216       if (data_[after_chunk_index - 1] == 0)
217         --after_chunk_index;
218 
219       --decimal_start_;
220       assert(decimal_start_ != after_chunk_index - 1);
221       data_[decimal_start_] = carry;
222     }
223 
224     // Fill the first set of digits. The first chunk might not be complete, so
225     // handle differently.
226     for (uint32_t first = data_[decimal_start_++]; first != 0; first /= 10) {
227       digits_[kDigitsPerChunk - ++size_] = first % 10 + '0';
228     }
229   }
230 
231  private:
232   static constexpr size_t kDigitsPerChunk = 9;
233 
234   size_t decimal_start_;
235   size_t decimal_end_;
236 
237   char digits_[kDigitsPerChunk];
238   size_t size_ = 0;
239 
240   absl::Span<uint32_t> data_;
241 };
242 
243 // Converts a value of the form `x * 2^-exp` into a sequence of decimal digits.
244 // Requires `-exp < 0` and
245 // `-exp >= limits<MaxFloatType>::min_exponent - limits<MaxFloatType>::digits`.
246 class FractionalDigitGenerator {
247  public:
248   // Run the conversion for `v * 2^exp` and call `f(generator)`.
249   // This function will allocate enough stack space to perform the conversion.
RunConversion(uint128 v,int exp,absl::FunctionRef<void (FractionalDigitGenerator)> f)250   static void RunConversion(
251       uint128 v, int exp, absl::FunctionRef<void(FractionalDigitGenerator)> f) {
252     using Limits = std::numeric_limits<MaxFloatType>;
253     assert(-exp < 0);
254     assert(-exp >= Limits::min_exponent - 128);
255     static_assert(StackArray::kMaxCapacity >=
256                       (Limits::digits + 128 - Limits::min_exponent + 31) / 32,
257                   "");
258     StackArray::RunWithCapacity(
259         static_cast<size_t>((Limits::digits + exp + 31) / 32),
260         [=](absl::Span<uint32_t> input) {
261           f(FractionalDigitGenerator(input, v, exp));
262         });
263   }
264 
265   // Returns true if there are any more non-zero digits left.
HasMoreDigits() const266   bool HasMoreDigits() const { return next_digit_ != 0 || after_chunk_index_; }
267 
268   // Returns true if the remainder digits are greater than 5000...
IsGreaterThanHalf() const269   bool IsGreaterThanHalf() const {
270     return next_digit_ > 5 || (next_digit_ == 5 && after_chunk_index_);
271   }
272   // Returns true if the remainder digits are exactly 5000...
IsExactlyHalf() const273   bool IsExactlyHalf() const { return next_digit_ == 5 && !after_chunk_index_; }
274 
275   struct Digits {
276     char digit_before_nine;
277     size_t num_nines;
278   };
279 
280   // Get the next set of digits.
281   // They are composed by a non-9 digit followed by a runs of zero or more 9s.
GetDigits()282   Digits GetDigits() {
283     Digits digits{next_digit_, 0};
284 
285     next_digit_ = GetOneDigit();
286     while (next_digit_ == 9) {
287       ++digits.num_nines;
288       next_digit_ = GetOneDigit();
289     }
290 
291     return digits;
292   }
293 
294  private:
295   // Return the next digit.
GetOneDigit()296   char GetOneDigit() {
297     if (!after_chunk_index_)
298       return 0;
299 
300     char carry = 0;
301     for (size_t i = after_chunk_index_; i > 0; --i) {
302       carry = MultiplyBy10WithCarry(&data_[i - 1], carry);
303     }
304     // If the lowest chunk is now empty, remove it from view.
305     if (data_[after_chunk_index_ - 1] == 0)
306       --after_chunk_index_;
307     return carry;
308   }
309 
FractionalDigitGenerator(absl::Span<uint32_t> data,uint128 v,int exp)310   FractionalDigitGenerator(absl::Span<uint32_t> data, uint128 v, int exp)
311       : after_chunk_index_(static_cast<size_t>(exp / 32 + 1)), data_(data) {
312     const int offset = exp % 32;
313     // Right shift `v` by `exp` bits.
314     data_[after_chunk_index_ - 1] = static_cast<uint32_t>(v << (32 - offset));
315     v >>= offset;
316     // Make sure we don't overflow the data. We already calculated that
317     // non-zero bits fit, so we might not have space for leading zero bits.
318     for (size_t pos = after_chunk_index_ - 1; v; v >>= 32)
319       data_[--pos] = static_cast<uint32_t>(v);
320 
321     // Fill next_digit_, as GetDigits expects it to be populated always.
322     next_digit_ = GetOneDigit();
323   }
324 
325   char next_digit_;
326   size_t after_chunk_index_;
327   absl::Span<uint32_t> data_;
328 };
329 
330 // Count the number of leading zero bits.
LeadingZeros(uint64_t v)331 int LeadingZeros(uint64_t v) { return countl_zero(v); }
LeadingZeros(uint128 v)332 int LeadingZeros(uint128 v) {
333   auto high = static_cast<uint64_t>(v >> 64);
334   auto low = static_cast<uint64_t>(v);
335   return high != 0 ? countl_zero(high) : 64 + countl_zero(low);
336 }
337 
338 // Round up the text digits starting at `p`.
339 // The buffer must have an extra digit that is known to not need rounding.
340 // This is done below by having an extra '0' digit on the left.
RoundUp(char * p)341 void RoundUp(char *p) {
342   while (*p == '9' || *p == '.') {
343     if (*p == '9') *p = '0';
344     --p;
345   }
346   ++*p;
347 }
348 
349 // Check the previous digit and round up or down to follow the round-to-even
350 // policy.
RoundToEven(char * p)351 void RoundToEven(char *p) {
352   if (*p == '.') --p;
353   if (*p % 2 == 1) RoundUp(p);
354 }
355 
356 // Simple integral decimal digit printing for values that fit in 64-bits.
357 // Returns the pointer to the last written digit.
PrintIntegralDigitsFromRightFast(uint64_t v,char * p)358 char *PrintIntegralDigitsFromRightFast(uint64_t v, char *p) {
359   do {
360     *--p = DivideBy10WithCarry(&v, 0) + '0';
361   } while (v != 0);
362   return p;
363 }
364 
365 // Simple integral decimal digit printing for values that fit in 128-bits.
366 // Returns the pointer to the last written digit.
PrintIntegralDigitsFromRightFast(uint128 v,char * p)367 char *PrintIntegralDigitsFromRightFast(uint128 v, char *p) {
368   auto high = static_cast<uint64_t>(v >> 64);
369   auto low = static_cast<uint64_t>(v);
370 
371   while (high != 0) {
372     char carry = DivideBy10WithCarry(&high, 0);
373     carry = DivideBy10WithCarry(&low, carry);
374     *--p = carry + '0';
375   }
376   return PrintIntegralDigitsFromRightFast(low, p);
377 }
378 
379 // Simple fractional decimal digit printing for values that fir in 64-bits after
380 // shifting.
381 // Performs rounding if necessary to fit within `precision`.
382 // Returns the pointer to one after the last character written.
PrintFractionalDigitsFast(uint64_t v,char * start,int exp,size_t precision)383 char* PrintFractionalDigitsFast(uint64_t v,
384                                 char* start,
385                                 int exp,
386                                 size_t precision) {
387   char *p = start;
388   v <<= (64 - exp);
389   while (precision > 0) {
390     if (!v) return p;
391     *p++ = MultiplyBy10WithCarry(&v, 0) + '0';
392     --precision;
393   }
394 
395   // We need to round.
396   if (v < 0x8000000000000000) {
397     // We round down, so nothing to do.
398   } else if (v > 0x8000000000000000) {
399     // We round up.
400     RoundUp(p - 1);
401   } else {
402     RoundToEven(p - 1);
403   }
404 
405   return p;
406 }
407 
408 // Simple fractional decimal digit printing for values that fir in 128-bits
409 // after shifting.
410 // Performs rounding if necessary to fit within `precision`.
411 // Returns the pointer to one after the last character written.
PrintFractionalDigitsFast(uint128 v,char * start,int exp,size_t precision)412 char* PrintFractionalDigitsFast(uint128 v,
413                                 char* start,
414                                 int exp,
415                                 size_t precision) {
416   char *p = start;
417   v <<= (128 - exp);
418   auto high = static_cast<uint64_t>(v >> 64);
419   auto low = static_cast<uint64_t>(v);
420 
421   // While we have digits to print and `low` is not empty, do the long
422   // multiplication.
423   while (precision > 0 && low != 0) {
424     char carry = MultiplyBy10WithCarry(&low, 0);
425     carry = MultiplyBy10WithCarry(&high, carry);
426 
427     *p++ = carry + '0';
428     --precision;
429   }
430 
431   // Now `low` is empty, so use a faster approach for the rest of the digits.
432   // This block is pretty much the same as the main loop for the 64-bit case
433   // above.
434   while (precision > 0) {
435     if (!high) return p;
436     *p++ = MultiplyBy10WithCarry(&high, 0) + '0';
437     --precision;
438   }
439 
440   // We need to round.
441   if (high < 0x8000000000000000) {
442     // We round down, so nothing to do.
443   } else if (high > 0x8000000000000000 || low != 0) {
444     // We round up.
445     RoundUp(p - 1);
446   } else {
447     RoundToEven(p - 1);
448   }
449 
450   return p;
451 }
452 
453 struct FormatState {
454   char sign_char;
455   size_t precision;
456   const FormatConversionSpecImpl &conv;
457   FormatSinkImpl *sink;
458 
459   // In `alt` mode (flag #) we keep the `.` even if there are no fractional
460   // digits. In non-alt mode, we strip it.
ShouldPrintDotabsl::str_format_internal::__anon3124a7b10111::FormatState461   bool ShouldPrintDot() const { return precision != 0 || conv.has_alt_flag(); }
462 };
463 
464 struct Padding {
465   size_t left_spaces;
466   size_t zeros;
467   size_t right_spaces;
468 };
469 
ExtraWidthToPadding(size_t total_size,const FormatState & state)470 Padding ExtraWidthToPadding(size_t total_size, const FormatState &state) {
471   if (state.conv.width() < 0 ||
472       static_cast<size_t>(state.conv.width()) <= total_size) {
473     return {0, 0, 0};
474   }
475   size_t missing_chars = static_cast<size_t>(state.conv.width()) - total_size;
476   if (state.conv.has_left_flag()) {
477     return {0, 0, missing_chars};
478   } else if (state.conv.has_zero_flag()) {
479     return {0, missing_chars, 0};
480   } else {
481     return {missing_chars, 0, 0};
482   }
483 }
484 
FinalPrint(const FormatState & state,absl::string_view data,size_t padding_offset,size_t trailing_zeros,absl::string_view data_postfix)485 void FinalPrint(const FormatState& state,
486                 absl::string_view data,
487                 size_t padding_offset,
488                 size_t trailing_zeros,
489                 absl::string_view data_postfix) {
490   if (state.conv.width() < 0) {
491     // No width specified. Fast-path.
492     if (state.sign_char != '\0') state.sink->Append(1, state.sign_char);
493     state.sink->Append(data);
494     state.sink->Append(trailing_zeros, '0');
495     state.sink->Append(data_postfix);
496     return;
497   }
498 
499   auto padding =
500       ExtraWidthToPadding((state.sign_char != '\0' ? 1 : 0) + data.size() +
501                               data_postfix.size() + trailing_zeros,
502                           state);
503 
504   state.sink->Append(padding.left_spaces, ' ');
505   if (state.sign_char != '\0') state.sink->Append(1, state.sign_char);
506   // Padding in general needs to be inserted somewhere in the middle of `data`.
507   state.sink->Append(data.substr(0, padding_offset));
508   state.sink->Append(padding.zeros, '0');
509   state.sink->Append(data.substr(padding_offset));
510   state.sink->Append(trailing_zeros, '0');
511   state.sink->Append(data_postfix);
512   state.sink->Append(padding.right_spaces, ' ');
513 }
514 
515 // Fastpath %f formatter for when the shifted value fits in a simple integral
516 // type.
517 // Prints `v*2^exp` with the options from `state`.
518 template <typename Int>
FormatFFast(Int v,int exp,const FormatState & state)519 void FormatFFast(Int v, int exp, const FormatState &state) {
520   constexpr int input_bits = sizeof(Int) * 8;
521 
522   static constexpr size_t integral_size =
523       /* in case we need to round up an extra digit */ 1 +
524       /* decimal digits for uint128 */ 40 + 1;
525   char buffer[integral_size + /* . */ 1 + /* max digits uint128 */ 128];
526   buffer[integral_size] = '.';
527   char *const integral_digits_end = buffer + integral_size;
528   char *integral_digits_start;
529   char *const fractional_digits_start = buffer + integral_size + 1;
530   char *fractional_digits_end = fractional_digits_start;
531 
532   if (exp >= 0) {
533     const int total_bits = input_bits - LeadingZeros(v) + exp;
534     integral_digits_start =
535         total_bits <= 64
536             ? PrintIntegralDigitsFromRightFast(static_cast<uint64_t>(v) << exp,
537                                                integral_digits_end)
538             : PrintIntegralDigitsFromRightFast(static_cast<uint128>(v) << exp,
539                                                integral_digits_end);
540   } else {
541     exp = -exp;
542 
543     integral_digits_start = PrintIntegralDigitsFromRightFast(
544         exp < input_bits ? v >> exp : 0, integral_digits_end);
545     // PrintFractionalDigits may pull a carried 1 all the way up through the
546     // integral portion.
547     integral_digits_start[-1] = '0';
548 
549     fractional_digits_end =
550         exp <= 64 ? PrintFractionalDigitsFast(v, fractional_digits_start, exp,
551                                               state.precision)
552                   : PrintFractionalDigitsFast(static_cast<uint128>(v),
553                                               fractional_digits_start, exp,
554                                               state.precision);
555     // There was a carry, so include the first digit too.
556     if (integral_digits_start[-1] != '0') --integral_digits_start;
557   }
558 
559   size_t size =
560       static_cast<size_t>(fractional_digits_end - integral_digits_start);
561 
562   // In `alt` mode (flag #) we keep the `.` even if there are no fractional
563   // digits. In non-alt mode, we strip it.
564   if (!state.ShouldPrintDot()) --size;
565   FinalPrint(state, absl::string_view(integral_digits_start, size),
566              /*padding_offset=*/0,
567              state.precision - static_cast<size_t>(fractional_digits_end -
568                                                    fractional_digits_start),
569              /*data_postfix=*/"");
570 }
571 
572 // Slow %f formatter for when the shifted value does not fit in a uint128, and
573 // `exp > 0`.
574 // Prints `v*2^exp` with the options from `state`.
575 // This one is guaranteed to not have fractional digits, so we don't have to
576 // worry about anything after the `.`.
FormatFPositiveExpSlow(uint128 v,int exp,const FormatState & state)577 void FormatFPositiveExpSlow(uint128 v, int exp, const FormatState &state) {
578   BinaryToDecimal::RunConversion(v, exp, [&](BinaryToDecimal btd) {
579     const size_t total_digits =
580         btd.TotalDigits() + (state.ShouldPrintDot() ? state.precision + 1 : 0);
581 
582     const auto padding = ExtraWidthToPadding(
583         total_digits + (state.sign_char != '\0' ? 1 : 0), state);
584 
585     state.sink->Append(padding.left_spaces, ' ');
586     if (state.sign_char != '\0')
587       state.sink->Append(1, state.sign_char);
588     state.sink->Append(padding.zeros, '0');
589 
590     do {
591       state.sink->Append(btd.CurrentDigits());
592     } while (btd.AdvanceDigits());
593 
594     if (state.ShouldPrintDot())
595       state.sink->Append(1, '.');
596     state.sink->Append(state.precision, '0');
597     state.sink->Append(padding.right_spaces, ' ');
598   });
599 }
600 
601 // Slow %f formatter for when the shifted value does not fit in a uint128, and
602 // `exp < 0`.
603 // Prints `v*2^exp` with the options from `state`.
604 // This one is guaranteed to be < 1.0, so we don't have to worry about integral
605 // digits.
FormatFNegativeExpSlow(uint128 v,int exp,const FormatState & state)606 void FormatFNegativeExpSlow(uint128 v, int exp, const FormatState &state) {
607   const size_t total_digits =
608       /* 0 */ 1 + (state.ShouldPrintDot() ? state.precision + 1 : 0);
609   auto padding =
610       ExtraWidthToPadding(total_digits + (state.sign_char ? 1 : 0), state);
611   padding.zeros += 1;
612   state.sink->Append(padding.left_spaces, ' ');
613   if (state.sign_char != '\0') state.sink->Append(1, state.sign_char);
614   state.sink->Append(padding.zeros, '0');
615 
616   if (state.ShouldPrintDot()) state.sink->Append(1, '.');
617 
618   // Print digits
619   size_t digits_to_go = state.precision;
620 
621   FractionalDigitGenerator::RunConversion(
622       v, exp, [&](FractionalDigitGenerator digit_gen) {
623         // There are no digits to print here.
624         if (state.precision == 0) return;
625 
626         // We go one digit at a time, while keeping track of runs of nines.
627         // The runs of nines are used to perform rounding when necessary.
628 
629         while (digits_to_go > 0 && digit_gen.HasMoreDigits()) {
630           auto digits = digit_gen.GetDigits();
631 
632           // Now we have a digit and a run of nines.
633           // See if we can print them all.
634           if (digits.num_nines + 1 < digits_to_go) {
635             // We don't have to round yet, so print them.
636             state.sink->Append(1, digits.digit_before_nine + '0');
637             state.sink->Append(digits.num_nines, '9');
638             digits_to_go -= digits.num_nines + 1;
639 
640           } else {
641             // We can't print all the nines, see where we have to truncate.
642 
643             bool round_up = false;
644             if (digits.num_nines + 1 > digits_to_go) {
645               // We round up at a nine. No need to print them.
646               round_up = true;
647             } else {
648               // We can fit all the nines, but truncate just after it.
649               if (digit_gen.IsGreaterThanHalf()) {
650                 round_up = true;
651               } else if (digit_gen.IsExactlyHalf()) {
652                 // Round to even
653                 round_up =
654                     digits.num_nines != 0 || digits.digit_before_nine % 2 == 1;
655               }
656             }
657 
658             if (round_up) {
659               state.sink->Append(1, digits.digit_before_nine + '1');
660               --digits_to_go;
661               // The rest will be zeros.
662             } else {
663               state.sink->Append(1, digits.digit_before_nine + '0');
664               state.sink->Append(digits_to_go - 1, '9');
665               digits_to_go = 0;
666             }
667             return;
668           }
669         }
670       });
671 
672   state.sink->Append(digits_to_go, '0');
673   state.sink->Append(padding.right_spaces, ' ');
674 }
675 
676 template <typename Int>
FormatF(Int mantissa,int exp,const FormatState & state)677 void FormatF(Int mantissa, int exp, const FormatState &state) {
678   if (exp >= 0) {
679     const int total_bits =
680         static_cast<int>(sizeof(Int) * 8) - LeadingZeros(mantissa) + exp;
681 
682     // Fallback to the slow stack-based approach if we can't do it in a 64 or
683     // 128 bit state.
684     if (ABSL_PREDICT_FALSE(total_bits > 128)) {
685       return FormatFPositiveExpSlow(mantissa, exp, state);
686     }
687   } else {
688     // Fallback to the slow stack-based approach if we can't do it in a 64 or
689     // 128 bit state.
690     if (ABSL_PREDICT_FALSE(exp < -128)) {
691       return FormatFNegativeExpSlow(mantissa, -exp, state);
692     }
693   }
694   return FormatFFast(mantissa, exp, state);
695 }
696 
697 // Grab the group of four bits (nibble) from `n`. E.g., nibble 1 corresponds to
698 // bits 4-7.
699 template <typename Int>
GetNibble(Int n,size_t nibble_index)700 uint8_t GetNibble(Int n, size_t nibble_index) {
701   constexpr Int mask_low_nibble = Int{0xf};
702   int shift = static_cast<int>(nibble_index * 4);
703   n &= mask_low_nibble << shift;
704   return static_cast<uint8_t>((n >> shift) & 0xf);
705 }
706 
707 // Add one to the given nibble, applying carry to higher nibbles. Returns true
708 // if overflow, false otherwise.
709 template <typename Int>
IncrementNibble(size_t nibble_index,Int * n)710 bool IncrementNibble(size_t nibble_index, Int* n) {
711   constexpr size_t kShift = sizeof(Int) * 8 - 1;
712   constexpr size_t kNumNibbles = sizeof(Int) * 8 / 4;
713   Int before = *n >> kShift;
714   // Here we essentially want to take the number 1 and move it into the requsted
715   // nibble, then add it to *n to effectively increment the nibble. However,
716   // ASan will complain if we try to shift the 1 beyond the limits of the Int,
717   // i.e., if the nibble_index is out of range. So therefore we check for this
718   // and if we are out of range we just add 0 which leaves *n unchanged, which
719   // seems like the reasonable thing to do in that case.
720   *n += ((nibble_index >= kNumNibbles)
721              ? 0
722              : (Int{1} << static_cast<int>(nibble_index * 4)));
723   Int after = *n >> kShift;
724   return (before && !after) || (nibble_index >= kNumNibbles);
725 }
726 
727 // Return a mask with 1's in the given nibble and all lower nibbles.
728 template <typename Int>
MaskUpToNibbleInclusive(size_t nibble_index)729 Int MaskUpToNibbleInclusive(size_t nibble_index) {
730   constexpr size_t kNumNibbles = sizeof(Int) * 8 / 4;
731   static const Int ones = ~Int{0};
732   ++nibble_index;
733   return ones >> static_cast<int>(
734                      4 * (std::max(kNumNibbles, nibble_index) - nibble_index));
735 }
736 
737 // Return a mask with 1's below the given nibble.
738 template <typename Int>
MaskUpToNibbleExclusive(size_t nibble_index)739 Int MaskUpToNibbleExclusive(size_t nibble_index) {
740   return nibble_index == 0 ? 0 : MaskUpToNibbleInclusive<Int>(nibble_index - 1);
741 }
742 
743 template <typename Int>
MoveToNibble(uint8_t nibble,size_t nibble_index)744 Int MoveToNibble(uint8_t nibble, size_t nibble_index) {
745   return Int{nibble} << static_cast<int>(4 * nibble_index);
746 }
747 
748 // Given mantissa size, find optimal # of mantissa bits to put in initial digit.
749 //
750 // In the hex representation we keep a single hex digit to the left of the dot.
751 // However, the question as to how many bits of the mantissa should be put into
752 // that hex digit in theory is arbitrary, but in practice it is optimal to
753 // choose based on the size of the mantissa. E.g., for a `double`, there are 53
754 // mantissa bits, so that means that we should put 1 bit to the left of the dot,
755 // thereby leaving 52 bits to the right, which is evenly divisible by four and
756 // thus all fractional digits represent actual precision. For a `long double`,
757 // on the other hand, there are 64 bits of mantissa, thus we can use all four
758 // bits for the initial hex digit and still have a number left over (60) that is
759 // a multiple of four. Once again, the goal is to have all fractional digits
760 // represent real precision.
761 template <typename Float>
HexFloatLeadingDigitSizeInBits()762 constexpr size_t HexFloatLeadingDigitSizeInBits() {
763   return std::numeric_limits<Float>::digits % 4 > 0
764              ? static_cast<size_t>(std::numeric_limits<Float>::digits % 4)
765              : size_t{4};
766 }
767 
768 // This function captures the rounding behavior of glibc for hex float
769 // representations. E.g. when rounding 0x1.ab800000 to a precision of .2
770 // ("%.2a") glibc will round up because it rounds toward the even number (since
771 // 0xb is an odd number, it will round up to 0xc). However, when rounding at a
772 // point that is not followed by 800000..., it disregards the parity and rounds
773 // up if > 8 and rounds down if < 8.
774 template <typename Int>
HexFloatNeedsRoundUp(Int mantissa,size_t final_nibble_displayed,uint8_t leading)775 bool HexFloatNeedsRoundUp(Int mantissa,
776                           size_t final_nibble_displayed,
777                           uint8_t leading) {
778   // If the last nibble (hex digit) to be displayed is the lowest on in the
779   // mantissa then that means that we don't have any further nibbles to inform
780   // rounding, so don't round.
781   if (final_nibble_displayed == 0) {
782     return false;
783   }
784   size_t rounding_nibble_idx = final_nibble_displayed - 1;
785   constexpr size_t kTotalNibbles = sizeof(Int) * 8 / 4;
786   assert(final_nibble_displayed <= kTotalNibbles);
787   Int mantissa_up_to_rounding_nibble_inclusive =
788       mantissa & MaskUpToNibbleInclusive<Int>(rounding_nibble_idx);
789   Int eight = MoveToNibble<Int>(8, rounding_nibble_idx);
790   if (mantissa_up_to_rounding_nibble_inclusive != eight) {
791     return mantissa_up_to_rounding_nibble_inclusive > eight;
792   }
793   // Nibble in question == 8.
794   uint8_t round_if_odd = (final_nibble_displayed == kTotalNibbles)
795                              ? leading
796                              : GetNibble(mantissa, final_nibble_displayed);
797   return round_if_odd % 2 == 1;
798 }
799 
800 // Stores values associated with a Float type needed by the FormatA
801 // implementation in order to avoid templatizing that function by the Float
802 // type.
803 struct HexFloatTypeParams {
804   template <typename Float>
HexFloatTypeParamsabsl::str_format_internal::__anon3124a7b10111::HexFloatTypeParams805   explicit HexFloatTypeParams(Float)
806       : min_exponent(std::numeric_limits<Float>::min_exponent - 1),
807         leading_digit_size_bits(HexFloatLeadingDigitSizeInBits<Float>()) {
808     assert(leading_digit_size_bits >= 1 && leading_digit_size_bits <= 4);
809   }
810 
811   int min_exponent;
812   size_t leading_digit_size_bits;
813 };
814 
815 // Hex Float Rounding. First check if we need to round; if so, then we do that
816 // by manipulating (incrementing) the mantissa, that way we can later print the
817 // mantissa digits by iterating through them in the same way regardless of
818 // whether a rounding happened.
819 template <typename Int>
FormatARound(bool precision_specified,const FormatState & state,uint8_t * leading,Int * mantissa,int * exp)820 void FormatARound(bool precision_specified, const FormatState &state,
821                   uint8_t *leading, Int *mantissa, int *exp) {
822   constexpr size_t kTotalNibbles = sizeof(Int) * 8 / 4;
823   // Index of the last nibble that we could display given precision.
824   size_t final_nibble_displayed =
825       precision_specified
826           ? (std::max(kTotalNibbles, state.precision) - state.precision)
827           : 0;
828   if (HexFloatNeedsRoundUp(*mantissa, final_nibble_displayed, *leading)) {
829     // Need to round up.
830     bool overflow = IncrementNibble(final_nibble_displayed, mantissa);
831     *leading += (overflow ? 1 : 0);
832     if (ABSL_PREDICT_FALSE(*leading > 15)) {
833       // We have overflowed the leading digit. This would mean that we would
834       // need two hex digits to the left of the dot, which is not allowed. So
835       // adjust the mantissa and exponent so that the result is always 1.0eXXX.
836       *leading = 1;
837       *mantissa = 0;
838       *exp += 4;
839     }
840   }
841   // Now that we have handled a possible round-up we can go ahead and zero out
842   // all the nibbles of the mantissa that we won't need.
843   if (precision_specified) {
844     *mantissa &= ~MaskUpToNibbleExclusive<Int>(final_nibble_displayed);
845   }
846 }
847 
848 template <typename Int>
FormatANormalize(const HexFloatTypeParams float_traits,uint8_t * leading,Int * mantissa,int * exp)849 void FormatANormalize(const HexFloatTypeParams float_traits, uint8_t *leading,
850                       Int *mantissa, int *exp) {
851   constexpr size_t kIntBits = sizeof(Int) * 8;
852   static const Int kHighIntBit = Int{1} << (kIntBits - 1);
853   const size_t kLeadDigitBitsCount = float_traits.leading_digit_size_bits;
854   // Normalize mantissa so that highest bit set is in MSB position, unless we
855   // get interrupted by the exponent threshold.
856   while (*mantissa && !(*mantissa & kHighIntBit)) {
857     if (ABSL_PREDICT_FALSE(*exp - 1 < float_traits.min_exponent)) {
858       *mantissa >>= (float_traits.min_exponent - *exp);
859       *exp = float_traits.min_exponent;
860       return;
861     }
862     *mantissa <<= 1;
863     --*exp;
864   }
865   // Extract bits for leading digit then shift them away leaving the
866   // fractional part.
867   *leading = static_cast<uint8_t>(
868       *mantissa >> static_cast<int>(kIntBits - kLeadDigitBitsCount));
869   *exp -= (*mantissa != 0) ? static_cast<int>(kLeadDigitBitsCount) : *exp;
870   *mantissa <<= static_cast<int>(kLeadDigitBitsCount);
871 }
872 
873 template <typename Int>
FormatA(const HexFloatTypeParams float_traits,Int mantissa,int exp,bool uppercase,const FormatState & state)874 void FormatA(const HexFloatTypeParams float_traits, Int mantissa, int exp,
875              bool uppercase, const FormatState &state) {
876   // Int properties.
877   constexpr size_t kIntBits = sizeof(Int) * 8;
878   constexpr size_t kTotalNibbles = sizeof(Int) * 8 / 4;
879   // Did the user specify a precision explicitly?
880   const bool precision_specified = state.conv.precision() >= 0;
881 
882   // ========== Normalize/Denormalize ==========
883   exp += kIntBits;  // make all digits fractional digits.
884   // This holds the (up to four) bits of leading digit, i.e., the '1' in the
885   // number 0x1.e6fp+2. It's always > 0 unless number is zero or denormal.
886   uint8_t leading = 0;
887   FormatANormalize(float_traits, &leading, &mantissa, &exp);
888 
889   // =============== Rounding ==================
890   // Check if we need to round; if so, then we do that by manipulating
891   // (incrementing) the mantissa before beginning to print characters.
892   FormatARound(precision_specified, state, &leading, &mantissa, &exp);
893 
894   // ============= Format Result ===============
895   // This buffer holds the "0x1.ab1de3" portion of "0x1.ab1de3pe+2". Compute the
896   // size with long double which is the largest of the floats.
897   constexpr size_t kBufSizeForHexFloatRepr =
898       2                                                // 0x
899       + std::numeric_limits<MaxFloatType>::digits / 4  // number of hex digits
900       + 1                                              // round up
901       + 1;                                             // "." (dot)
902   char digits_buffer[kBufSizeForHexFloatRepr];
903   char *digits_iter = digits_buffer;
904   const char *const digits =
905       static_cast<const char *>("0123456789ABCDEF0123456789abcdef") +
906       (uppercase ? 0 : 16);
907 
908   // =============== Hex Prefix ================
909   *digits_iter++ = '0';
910   *digits_iter++ = uppercase ? 'X' : 'x';
911 
912   // ========== Non-Fractional Digit ===========
913   *digits_iter++ = digits[leading];
914 
915   // ================== Dot ====================
916   // There are three reasons we might need a dot. Keep in mind that, at this
917   // point, the mantissa holds only the fractional part.
918   if ((precision_specified && state.precision > 0) ||
919       (!precision_specified && mantissa > 0) || state.conv.has_alt_flag()) {
920     *digits_iter++ = '.';
921   }
922 
923   // ============ Fractional Digits ============
924   size_t digits_emitted = 0;
925   while (mantissa > 0) {
926     *digits_iter++ = digits[GetNibble(mantissa, kTotalNibbles - 1)];
927     mantissa <<= 4;
928     ++digits_emitted;
929   }
930   size_t trailing_zeros = 0;
931   if (precision_specified) {
932     assert(state.precision >= digits_emitted);
933     trailing_zeros = state.precision - digits_emitted;
934   }
935   auto digits_result = string_view(
936       digits_buffer, static_cast<size_t>(digits_iter - digits_buffer));
937 
938   // =============== Exponent ==================
939   constexpr size_t kBufSizeForExpDecRepr =
940       numbers_internal::kFastToBufferSize  // requred for FastIntToBuffer
941       + 1                                  // 'p' or 'P'
942       + 1;                                 // '+' or '-'
943   char exp_buffer[kBufSizeForExpDecRepr];
944   exp_buffer[0] = uppercase ? 'P' : 'p';
945   exp_buffer[1] = exp >= 0 ? '+' : '-';
946   numbers_internal::FastIntToBuffer(exp < 0 ? -exp : exp, exp_buffer + 2);
947 
948   // ============ Assemble Result ==============
949   FinalPrint(state,
950              digits_result,                        // 0xN.NNN...
951              2,                                    // offset of any padding
952              static_cast<size_t>(trailing_zeros),  // remaining mantissa padding
953              exp_buffer);                          // exponent
954 }
955 
CopyStringTo(absl::string_view v,char * out)956 char *CopyStringTo(absl::string_view v, char *out) {
957   std::memcpy(out, v.data(), v.size());
958   return out + v.size();
959 }
960 
961 template <typename Float>
FallbackToSnprintf(const Float v,const FormatConversionSpecImpl & conv,FormatSinkImpl * sink)962 bool FallbackToSnprintf(const Float v, const FormatConversionSpecImpl &conv,
963                         FormatSinkImpl *sink) {
964   int w = conv.width() >= 0 ? conv.width() : 0;
965   int p = conv.precision() >= 0 ? conv.precision() : -1;
966   char fmt[32];
967   {
968     char *fp = fmt;
969     *fp++ = '%';
970     fp = CopyStringTo(FormatConversionSpecImplFriend::FlagsToString(conv), fp);
971     fp = CopyStringTo("*.*", fp);
972     if (std::is_same<long double, Float>()) {
973       *fp++ = 'L';
974     }
975     *fp++ = FormatConversionCharToChar(conv.conversion_char());
976     *fp = 0;
977     assert(fp < fmt + sizeof(fmt));
978   }
979   std::string space(512, '\0');
980   absl::string_view result;
981   while (true) {
982     int n = snprintf(&space[0], space.size(), fmt, w, p, v);
983     if (n < 0) return false;
984     if (static_cast<size_t>(n) < space.size()) {
985       result = absl::string_view(space.data(), static_cast<size_t>(n));
986       break;
987     }
988     space.resize(static_cast<size_t>(n) + 1);
989   }
990   sink->Append(result);
991   return true;
992 }
993 
994 // 128-bits in decimal: ceil(128*log(2)/log(10))
995 //   or std::numeric_limits<__uint128_t>::digits10
996 constexpr size_t kMaxFixedPrecision = 39;
997 
998 constexpr size_t kBufferLength = /*sign*/ 1 +
999                                  /*integer*/ kMaxFixedPrecision +
1000                                  /*point*/ 1 +
1001                                  /*fraction*/ kMaxFixedPrecision +
1002                                  /*exponent e+123*/ 5;
1003 
1004 struct Buffer {
push_frontabsl::str_format_internal::__anon3124a7b10111::Buffer1005   void push_front(char c) {
1006     assert(begin > data);
1007     *--begin = c;
1008   }
push_backabsl::str_format_internal::__anon3124a7b10111::Buffer1009   void push_back(char c) {
1010     assert(end < data + sizeof(data));
1011     *end++ = c;
1012   }
pop_backabsl::str_format_internal::__anon3124a7b10111::Buffer1013   void pop_back() {
1014     assert(begin < end);
1015     --end;
1016   }
1017 
backabsl::str_format_internal::__anon3124a7b10111::Buffer1018   char &back() {
1019     assert(begin < end);
1020     return end[-1];
1021   }
1022 
last_digitabsl::str_format_internal::__anon3124a7b10111::Buffer1023   char last_digit() const { return end[-1] == '.' ? end[-2] : end[-1]; }
1024 
sizeabsl::str_format_internal::__anon3124a7b10111::Buffer1025   size_t size() const { return static_cast<size_t>(end - begin); }
1026 
1027   char data[kBufferLength];
1028   char *begin;
1029   char *end;
1030 };
1031 
1032 enum class FormatStyle { Fixed, Precision };
1033 
1034 // If the value is Inf or Nan, print it and return true.
1035 // Otherwise, return false.
1036 template <typename Float>
ConvertNonNumericFloats(char sign_char,Float v,const FormatConversionSpecImpl & conv,FormatSinkImpl * sink)1037 bool ConvertNonNumericFloats(char sign_char, Float v,
1038                              const FormatConversionSpecImpl &conv,
1039                              FormatSinkImpl *sink) {
1040   char text[4], *ptr = text;
1041   if (sign_char != '\0') *ptr++ = sign_char;
1042   if (std::isnan(v)) {
1043     ptr = std::copy_n(
1044         FormatConversionCharIsUpper(conv.conversion_char()) ? "NAN" : "nan", 3,
1045         ptr);
1046   } else if (std::isinf(v)) {
1047     ptr = std::copy_n(
1048         FormatConversionCharIsUpper(conv.conversion_char()) ? "INF" : "inf", 3,
1049         ptr);
1050   } else {
1051     return false;
1052   }
1053 
1054   return sink->PutPaddedString(
1055       string_view(text, static_cast<size_t>(ptr - text)), conv.width(), -1,
1056       conv.has_left_flag());
1057 }
1058 
1059 // Round up the last digit of the value.
1060 // It will carry over and potentially overflow. 'exp' will be adjusted in that
1061 // case.
1062 template <FormatStyle mode>
RoundUp(Buffer * buffer,int * exp)1063 void RoundUp(Buffer *buffer, int *exp) {
1064   char *p = &buffer->back();
1065   while (p >= buffer->begin && (*p == '9' || *p == '.')) {
1066     if (*p == '9') *p = '0';
1067     --p;
1068   }
1069 
1070   if (p < buffer->begin) {
1071     *p = '1';
1072     buffer->begin = p;
1073     if (mode == FormatStyle::Precision) {
1074       std::swap(p[1], p[2]);  // move the .
1075       ++*exp;
1076       buffer->pop_back();
1077     }
1078   } else {
1079     ++*p;
1080   }
1081 }
1082 
PrintExponent(int exp,char e,Buffer * out)1083 void PrintExponent(int exp, char e, Buffer *out) {
1084   out->push_back(e);
1085   if (exp < 0) {
1086     out->push_back('-');
1087     exp = -exp;
1088   } else {
1089     out->push_back('+');
1090   }
1091   // Exponent digits.
1092   if (exp > 99) {
1093     out->push_back(static_cast<char>(exp / 100 + '0'));
1094     out->push_back(static_cast<char>(exp / 10 % 10 + '0'));
1095     out->push_back(static_cast<char>(exp % 10 + '0'));
1096   } else {
1097     out->push_back(static_cast<char>(exp / 10 + '0'));
1098     out->push_back(static_cast<char>(exp % 10 + '0'));
1099   }
1100 }
1101 
1102 template <typename Float, typename Int>
CanFitMantissa()1103 constexpr bool CanFitMantissa() {
1104   return
1105 #if defined(__clang__) && !defined(__SSE3__)
1106       // Workaround for clang bug: https://bugs.llvm.org/show_bug.cgi?id=38289
1107       // Casting from long double to uint64_t is miscompiled and drops bits.
1108       (!std::is_same<Float, long double>::value ||
1109        !std::is_same<Int, uint64_t>::value) &&
1110 #endif
1111       std::numeric_limits<Float>::digits <= std::numeric_limits<Int>::digits;
1112 }
1113 
1114 template <typename Float>
1115 struct Decomposed {
1116   using MantissaType =
1117       absl::conditional_t<std::is_same<long double, Float>::value, uint128,
1118                           uint64_t>;
1119   static_assert(std::numeric_limits<Float>::digits <= sizeof(MantissaType) * 8,
1120                 "");
1121   MantissaType mantissa;
1122   int exponent;
1123 };
1124 
1125 // Decompose the double into an integer mantissa and an exponent.
1126 template <typename Float>
Decompose(Float v)1127 Decomposed<Float> Decompose(Float v) {
1128   int exp;
1129   Float m = std::frexp(v, &exp);
1130   m = std::ldexp(m, std::numeric_limits<Float>::digits);
1131   exp -= std::numeric_limits<Float>::digits;
1132 
1133   return {static_cast<typename Decomposed<Float>::MantissaType>(m), exp};
1134 }
1135 
1136 // Print 'digits' as decimal.
1137 // In Fixed mode, we add a '.' at the end.
1138 // In Precision mode, we add a '.' after the first digit.
1139 template <FormatStyle mode, typename Int>
PrintIntegralDigits(Int digits,Buffer * out)1140 size_t PrintIntegralDigits(Int digits, Buffer* out) {
1141   size_t printed = 0;
1142   if (digits) {
1143     for (; digits; digits /= 10) out->push_front(digits % 10 + '0');
1144     printed = out->size();
1145     if (mode == FormatStyle::Precision) {
1146       out->push_front(*out->begin);
1147       out->begin[1] = '.';
1148     } else {
1149       out->push_back('.');
1150     }
1151   } else if (mode == FormatStyle::Fixed) {
1152     out->push_front('0');
1153     out->push_back('.');
1154     printed = 1;
1155   }
1156   return printed;
1157 }
1158 
1159 // Back out 'extra_digits' digits and round up if necessary.
RemoveExtraPrecision(size_t extra_digits,bool has_leftover_value,Buffer * out,int * exp_out)1160 void RemoveExtraPrecision(size_t extra_digits,
1161                           bool has_leftover_value,
1162                           Buffer* out,
1163                           int* exp_out) {
1164   // Back out the extra digits
1165   out->end -= extra_digits;
1166 
1167   bool needs_to_round_up = [&] {
1168     // We look at the digit just past the end.
1169     // There must be 'extra_digits' extra valid digits after end.
1170     if (*out->end > '5') return true;
1171     if (*out->end < '5') return false;
1172     if (has_leftover_value || std::any_of(out->end + 1, out->end + extra_digits,
1173                                           [](char c) { return c != '0'; }))
1174       return true;
1175 
1176     // Ends in ...50*, round to even.
1177     return out->last_digit() % 2 == 1;
1178   }();
1179 
1180   if (needs_to_round_up) {
1181     RoundUp<FormatStyle::Precision>(out, exp_out);
1182   }
1183 }
1184 
1185 // Print the value into the buffer.
1186 // This will not include the exponent, which will be returned in 'exp_out' for
1187 // Precision mode.
1188 template <typename Int, typename Float, FormatStyle mode>
FloatToBufferImpl(Int int_mantissa,int exp,size_t precision,Buffer * out,int * exp_out)1189 bool FloatToBufferImpl(Int int_mantissa,
1190                        int exp,
1191                        size_t precision,
1192                        Buffer* out,
1193                        int* exp_out) {
1194   assert((CanFitMantissa<Float, Int>()));
1195 
1196   const int int_bits = std::numeric_limits<Int>::digits;
1197 
1198   // In precision mode, we start printing one char to the right because it will
1199   // also include the '.'
1200   // In fixed mode we put the dot afterwards on the right.
1201   out->begin = out->end =
1202       out->data + 1 + kMaxFixedPrecision + (mode == FormatStyle::Precision);
1203 
1204   if (exp >= 0) {
1205     if (std::numeric_limits<Float>::digits + exp > int_bits) {
1206       // The value will overflow the Int
1207       return false;
1208     }
1209     size_t digits_printed = PrintIntegralDigits<mode>(int_mantissa << exp, out);
1210     size_t digits_to_zero_pad = precision;
1211     if (mode == FormatStyle::Precision) {
1212       *exp_out = static_cast<int>(digits_printed - 1);
1213       if (digits_to_zero_pad < digits_printed - 1) {
1214         RemoveExtraPrecision(digits_printed - 1 - digits_to_zero_pad, false,
1215                              out, exp_out);
1216         return true;
1217       }
1218       digits_to_zero_pad -= digits_printed - 1;
1219     }
1220     for (; digits_to_zero_pad-- > 0;) out->push_back('0');
1221     return true;
1222   }
1223 
1224   exp = -exp;
1225   // We need at least 4 empty bits for the next decimal digit.
1226   // We will multiply by 10.
1227   if (exp > int_bits - 4) return false;
1228 
1229   const Int mask = (Int{1} << exp) - 1;
1230 
1231   // Print the integral part first.
1232   size_t digits_printed = PrintIntegralDigits<mode>(int_mantissa >> exp, out);
1233   int_mantissa &= mask;
1234 
1235   size_t fractional_count = precision;
1236   if (mode == FormatStyle::Precision) {
1237     if (digits_printed == 0) {
1238       // Find the first non-zero digit, when in Precision mode.
1239       *exp_out = 0;
1240       if (int_mantissa) {
1241         while (int_mantissa <= mask) {
1242           int_mantissa *= 10;
1243           --*exp_out;
1244         }
1245       }
1246       out->push_front(static_cast<char>(int_mantissa >> exp) + '0');
1247       out->push_back('.');
1248       int_mantissa &= mask;
1249     } else {
1250       // We already have a digit, and a '.'
1251       *exp_out = static_cast<int>(digits_printed - 1);
1252       if (fractional_count < digits_printed - 1) {
1253         // If we had enough digits, return right away.
1254         // The code below will try to round again otherwise.
1255         RemoveExtraPrecision(digits_printed - 1 - fractional_count,
1256                              int_mantissa != 0, out, exp_out);
1257         return true;
1258       }
1259       fractional_count -= digits_printed - 1;
1260     }
1261   }
1262 
1263   auto get_next_digit = [&] {
1264     int_mantissa *= 10;
1265     char digit = static_cast<char>(int_mantissa >> exp);
1266     int_mantissa &= mask;
1267     return digit;
1268   };
1269 
1270   // Print fractional_count more digits, if available.
1271   for (; fractional_count > 0; --fractional_count) {
1272     out->push_back(get_next_digit() + '0');
1273   }
1274 
1275   char next_digit = get_next_digit();
1276   if (next_digit > 5 ||
1277       (next_digit == 5 && (int_mantissa || out->last_digit() % 2 == 1))) {
1278     RoundUp<mode>(out, exp_out);
1279   }
1280 
1281   return true;
1282 }
1283 
1284 template <FormatStyle mode, typename Float>
FloatToBuffer(Decomposed<Float> decomposed,size_t precision,Buffer * out,int * exp)1285 bool FloatToBuffer(Decomposed<Float> decomposed,
1286                    size_t precision,
1287                    Buffer* out,
1288                    int* exp) {
1289   if (precision > kMaxFixedPrecision) return false;
1290 
1291   // Try with uint64_t.
1292   if (CanFitMantissa<Float, std::uint64_t>() &&
1293       FloatToBufferImpl<std::uint64_t, Float, mode>(
1294           static_cast<std::uint64_t>(decomposed.mantissa), decomposed.exponent,
1295           precision, out, exp))
1296     return true;
1297 
1298 #if defined(ABSL_HAVE_INTRINSIC_INT128)
1299   // If that is not enough, try with __uint128_t.
1300   return CanFitMantissa<Float, __uint128_t>() &&
1301          FloatToBufferImpl<__uint128_t, Float, mode>(
1302              static_cast<__uint128_t>(decomposed.mantissa), decomposed.exponent,
1303              precision, out, exp);
1304 #endif
1305   return false;
1306 }
1307 
WriteBufferToSink(char sign_char,absl::string_view str,const FormatConversionSpecImpl & conv,FormatSinkImpl * sink)1308 void WriteBufferToSink(char sign_char, absl::string_view str,
1309                        const FormatConversionSpecImpl &conv,
1310                        FormatSinkImpl *sink) {
1311   size_t left_spaces = 0, zeros = 0, right_spaces = 0;
1312   size_t missing_chars = 0;
1313   if (conv.width() >= 0) {
1314     const size_t conv_width_size_t = static_cast<size_t>(conv.width());
1315     const size_t existing_chars =
1316         str.size() + static_cast<size_t>(sign_char != 0);
1317     if (conv_width_size_t > existing_chars)
1318       missing_chars = conv_width_size_t - existing_chars;
1319   }
1320   if (conv.has_left_flag()) {
1321     right_spaces = missing_chars;
1322   } else if (conv.has_zero_flag()) {
1323     zeros = missing_chars;
1324   } else {
1325     left_spaces = missing_chars;
1326   }
1327 
1328   sink->Append(left_spaces, ' ');
1329   if (sign_char != '\0') sink->Append(1, sign_char);
1330   sink->Append(zeros, '0');
1331   sink->Append(str);
1332   sink->Append(right_spaces, ' ');
1333 }
1334 
1335 template <typename Float>
FloatToSink(const Float v,const FormatConversionSpecImpl & conv,FormatSinkImpl * sink)1336 bool FloatToSink(const Float v, const FormatConversionSpecImpl &conv,
1337                  FormatSinkImpl *sink) {
1338   // Print the sign or the sign column.
1339   Float abs_v = v;
1340   char sign_char = 0;
1341   if (std::signbit(abs_v)) {
1342     sign_char = '-';
1343     abs_v = -abs_v;
1344   } else if (conv.has_show_pos_flag()) {
1345     sign_char = '+';
1346   } else if (conv.has_sign_col_flag()) {
1347     sign_char = ' ';
1348   }
1349 
1350   // Print nan/inf.
1351   if (ConvertNonNumericFloats(sign_char, abs_v, conv, sink)) {
1352     return true;
1353   }
1354 
1355   size_t precision =
1356       conv.precision() < 0 ? 6 : static_cast<size_t>(conv.precision());
1357 
1358   int exp = 0;
1359 
1360   auto decomposed = Decompose(abs_v);
1361 
1362   Buffer buffer;
1363 
1364   FormatConversionChar c = conv.conversion_char();
1365 
1366   if (c == FormatConversionCharInternal::f ||
1367       c == FormatConversionCharInternal::F) {
1368     FormatF(decomposed.mantissa, decomposed.exponent,
1369             {sign_char, precision, conv, sink});
1370     return true;
1371   } else if (c == FormatConversionCharInternal::e ||
1372              c == FormatConversionCharInternal::E) {
1373     if (!FloatToBuffer<FormatStyle::Precision>(decomposed, precision, &buffer,
1374                                                &exp)) {
1375       return FallbackToSnprintf(v, conv, sink);
1376     }
1377     if (!conv.has_alt_flag() && buffer.back() == '.') buffer.pop_back();
1378     PrintExponent(
1379         exp, FormatConversionCharIsUpper(conv.conversion_char()) ? 'E' : 'e',
1380         &buffer);
1381   } else if (c == FormatConversionCharInternal::g ||
1382              c == FormatConversionCharInternal::G) {
1383     precision = std::max(precision, size_t{1}) - 1;
1384     if (!FloatToBuffer<FormatStyle::Precision>(decomposed, precision, &buffer,
1385                                                &exp)) {
1386       return FallbackToSnprintf(v, conv, sink);
1387     }
1388     if ((exp < 0 || precision + 1 > static_cast<size_t>(exp)) && exp >= -4) {
1389       if (exp < 0) {
1390         // Have 1.23456, needs 0.00123456
1391         // Move the first digit
1392         buffer.begin[1] = *buffer.begin;
1393         // Add some zeros
1394         for (; exp < -1; ++exp) *buffer.begin-- = '0';
1395         *buffer.begin-- = '.';
1396         *buffer.begin = '0';
1397       } else if (exp > 0) {
1398         // Have 1.23456, needs 1234.56
1399         // Move the '.' exp positions to the right.
1400         std::rotate(buffer.begin + 1, buffer.begin + 2, buffer.begin + exp + 2);
1401       }
1402       exp = 0;
1403     }
1404     if (!conv.has_alt_flag()) {
1405       while (buffer.back() == '0') buffer.pop_back();
1406       if (buffer.back() == '.') buffer.pop_back();
1407     }
1408     if (exp) {
1409       PrintExponent(
1410           exp, FormatConversionCharIsUpper(conv.conversion_char()) ? 'E' : 'e',
1411           &buffer);
1412     }
1413   } else if (c == FormatConversionCharInternal::a ||
1414              c == FormatConversionCharInternal::A) {
1415     bool uppercase = (c == FormatConversionCharInternal::A);
1416     FormatA(HexFloatTypeParams(Float{}), decomposed.mantissa,
1417             decomposed.exponent, uppercase, {sign_char, precision, conv, sink});
1418     return true;
1419   } else {
1420     return false;
1421   }
1422 
1423   WriteBufferToSink(
1424       sign_char,
1425       absl::string_view(buffer.begin,
1426                         static_cast<size_t>(buffer.end - buffer.begin)),
1427       conv, sink);
1428 
1429   return true;
1430 }
1431 
1432 }  // namespace
1433 
ConvertFloatImpl(long double v,const FormatConversionSpecImpl & conv,FormatSinkImpl * sink)1434 bool ConvertFloatImpl(long double v, const FormatConversionSpecImpl &conv,
1435                       FormatSinkImpl *sink) {
1436   if (IsDoubleDouble()) {
1437     // This is the `double-double` representation of `long double`. We do not
1438     // handle it natively. Fallback to snprintf.
1439     return FallbackToSnprintf(v, conv, sink);
1440   }
1441 
1442   return FloatToSink(v, conv, sink);
1443 }
1444 
ConvertFloatImpl(float v,const FormatConversionSpecImpl & conv,FormatSinkImpl * sink)1445 bool ConvertFloatImpl(float v, const FormatConversionSpecImpl &conv,
1446                       FormatSinkImpl *sink) {
1447   return FloatToSink(static_cast<double>(v), conv, sink);
1448 }
1449 
ConvertFloatImpl(double v,const FormatConversionSpecImpl & conv,FormatSinkImpl * sink)1450 bool ConvertFloatImpl(double v, const FormatConversionSpecImpl &conv,
1451                       FormatSinkImpl *sink) {
1452   return FloatToSink(v, conv, sink);
1453 }
1454 
1455 }  // namespace str_format_internal
1456 ABSL_NAMESPACE_END
1457 }  // namespace absl
1458