1 // Copyright 2022 The Abseil Authors
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 // Simultaneous memcopy and CRC-32C for x86-64. Uses integer registers because
16 // XMM registers do not support the CRC instruction (yet). While copying,
17 // compute the running CRC of the data being copied.
18 //
19 // It is assumed that any CPU running this code has SSE4.2 instructions
20 // available (for CRC32C). This file will do nothing if that is not true.
21 //
22 // The CRC instruction has a 3-byte latency, and we are stressing the ALU ports
23 // here (unlike a traditional memcopy, which has almost no ALU use), so we will
24 // need to copy in such a way that the CRC unit is used efficiently. We have two
25 // regimes in this code:
26 // 1. For operations of size < kCrcSmallSize, do the CRC then the memcpy
27 // 2. For operations of size > kCrcSmallSize:
28 // a) compute an initial CRC + copy on a small amount of data to align the
29 // destination pointer on a 16-byte boundary.
30 // b) Split the data into 3 main regions and a tail (smaller than 48 bytes)
31 // c) Do the copy and CRC of the 3 main regions, interleaving (start with
32 // full cache line copies for each region, then move to single 16 byte
33 // pieces per region).
34 // d) Combine the CRCs with CRC32C::Concat.
35 // e) Copy the tail and extend the CRC with the CRC of the tail.
36 // This method is not ideal for op sizes between ~1k and ~8k because CRC::Concat
37 // takes a significant amount of time. A medium-sized approach could be added
38 // using 3 CRCs over fixed-size blocks where the zero-extensions required for
39 // CRC32C::Concat can be precomputed.
40
41 #ifdef __SSE4_2__
42 #include <immintrin.h>
43 #endif
44
45 #ifdef _MSC_VER
46 #include <intrin.h>
47 #endif
48
49 #include <array>
50 #include <cstddef>
51 #include <cstdint>
52 #include <type_traits>
53
54 #include "absl/base/dynamic_annotations.h"
55 #include "absl/base/internal/prefetch.h"
56 #include "absl/base/optimization.h"
57 #include "absl/crc/crc32c.h"
58 #include "absl/crc/internal/cpu_detect.h"
59 #include "absl/crc/internal/crc_memcpy.h"
60 #include "absl/strings/string_view.h"
61
62 #ifdef ABSL_INTERNAL_HAVE_X86_64_ACCELERATED_CRC_MEMCPY_ENGINE
63
64 namespace absl {
65 ABSL_NAMESPACE_BEGIN
66 namespace crc_internal {
67
68 namespace {
69
ShortCrcCopy(char * dst,const char * src,std::size_t length,crc32c_t crc)70 inline crc32c_t ShortCrcCopy(char* dst, const char* src, std::size_t length,
71 crc32c_t crc) {
72 // Small copy: just go 1 byte at a time: being nice to the branch predictor
73 // is more important here than anything else
74 uint32_t crc_uint32 = static_cast<uint32_t>(crc);
75 for (std::size_t i = 0; i < length; i++) {
76 uint8_t data = *reinterpret_cast<const uint8_t*>(src);
77 crc_uint32 = _mm_crc32_u8(crc_uint32, data);
78 *reinterpret_cast<uint8_t*>(dst) = data;
79 ++src;
80 ++dst;
81 }
82 return crc32c_t{crc_uint32};
83 }
84
85 constexpr size_t kIntLoadsPerVec = sizeof(__m128i) / sizeof(uint64_t);
86
87 // Common function for copying the tails of multiple large regions.
88 template <size_t vec_regions, size_t int_regions>
LargeTailCopy(crc32c_t * crcs,char ** dst,const char ** src,size_t region_size,size_t copy_rounds)89 inline void LargeTailCopy(crc32c_t* crcs, char** dst, const char** src,
90 size_t region_size, size_t copy_rounds) {
91 std::array<__m128i, vec_regions> data;
92 std::array<uint64_t, kIntLoadsPerVec * int_regions> int_data;
93
94 while (copy_rounds > 0) {
95 for (size_t i = 0; i < vec_regions; i++) {
96 size_t region = i;
97
98 auto* vsrc =
99 reinterpret_cast<const __m128i*>(*src + region_size * region);
100 auto* vdst = reinterpret_cast<__m128i*>(*dst + region_size * region);
101
102 // Load the blocks, unaligned
103 data[i] = _mm_loadu_si128(vsrc);
104
105 // Store the blocks, aligned
106 _mm_store_si128(vdst, data[i]);
107
108 // Compute the running CRC
109 crcs[region] = crc32c_t{static_cast<uint32_t>(
110 _mm_crc32_u64(static_cast<uint32_t>(crcs[region]),
111 static_cast<uint64_t>(_mm_extract_epi64(data[i], 0))))};
112 crcs[region] = crc32c_t{static_cast<uint32_t>(
113 _mm_crc32_u64(static_cast<uint32_t>(crcs[region]),
114 static_cast<uint64_t>(_mm_extract_epi64(data[i], 1))))};
115 }
116
117 for (size_t i = 0; i < int_regions; i++) {
118 size_t region = vec_regions + i;
119
120 auto* usrc =
121 reinterpret_cast<const uint64_t*>(*src + region_size * region);
122 auto* udst = reinterpret_cast<uint64_t*>(*dst + region_size * region);
123
124 for (size_t j = 0; j < kIntLoadsPerVec; j++) {
125 size_t data_index = i * kIntLoadsPerVec + j;
126
127 int_data[data_index] = *(usrc + j);
128 crcs[region] = crc32c_t{static_cast<uint32_t>(_mm_crc32_u64(
129 static_cast<uint32_t>(crcs[region]), int_data[data_index]))};
130
131 *(udst + j) = int_data[data_index];
132 }
133 }
134
135 // Increment pointers
136 *src += sizeof(__m128i);
137 *dst += sizeof(__m128i);
138 --copy_rounds;
139 }
140 }
141
142 } // namespace
143
144 template <size_t vec_regions, size_t int_regions>
145 class AcceleratedCrcMemcpyEngine : public CrcMemcpyEngine {
146 public:
147 AcceleratedCrcMemcpyEngine() = default;
148 AcceleratedCrcMemcpyEngine(const AcceleratedCrcMemcpyEngine&) = delete;
149 AcceleratedCrcMemcpyEngine operator=(const AcceleratedCrcMemcpyEngine&) =
150 delete;
151
152 crc32c_t Compute(void* __restrict dst, const void* __restrict src,
153 std::size_t length, crc32c_t initial_crc) const override;
154 };
155
156 template <size_t vec_regions, size_t int_regions>
Compute(void * __restrict dst,const void * __restrict src,std::size_t length,crc32c_t initial_crc) const157 crc32c_t AcceleratedCrcMemcpyEngine<vec_regions, int_regions>::Compute(
158 void* __restrict dst, const void* __restrict src, std::size_t length,
159 crc32c_t initial_crc) const {
160 constexpr std::size_t kRegions = vec_regions + int_regions;
161 constexpr uint32_t kCrcDataXor = uint32_t{0xffffffff};
162 constexpr std::size_t kBlockSize = sizeof(__m128i);
163 constexpr std::size_t kCopyRoundSize = kRegions * kBlockSize;
164
165 // Number of blocks per cacheline.
166 constexpr std::size_t kBlocksPerCacheLine = ABSL_CACHELINE_SIZE / kBlockSize;
167
168 char* dst_bytes = static_cast<char*>(dst);
169 const char* src_bytes = static_cast<const char*>(src);
170
171 // Make sure that one prefetch per big block is enough to cover the whole
172 // dataset, and we don't prefetch too much.
173 static_assert(ABSL_CACHELINE_SIZE % kBlockSize == 0,
174 "Cache lines are not divided evenly into blocks, may have "
175 "unintended behavior!");
176
177 // Experimentally-determined boundary between a small and large copy.
178 // Below this number, spin-up and concatenation of CRCs takes enough time that
179 // it kills the throughput gains of using 3 regions and wide vectors.
180 constexpr size_t kCrcSmallSize = 256;
181
182 // Experimentally-determined prefetch distance. Main loop copies will
183 // prefeth data 2 cache lines ahead.
184 constexpr std::size_t kPrefetchAhead = 2 * ABSL_CACHELINE_SIZE;
185
186 // Small-size CRC-memcpy : just do CRC + memcpy
187 if (length < kCrcSmallSize) {
188 crc32c_t crc =
189 ExtendCrc32c(initial_crc, absl::string_view(src_bytes, length));
190 memcpy(dst, src, length);
191 return crc;
192 }
193
194 // Start work on the CRC: undo the XOR from the previous calculation or set up
195 // the initial value of the CRC.
196 // initial_crc ^= kCrcDataXor;
197 initial_crc = crc32c_t{static_cast<uint32_t>(initial_crc) ^ kCrcDataXor};
198
199 // Do an initial alignment copy, so we can use aligned store instructions to
200 // the destination pointer. We align the destination pointer because the
201 // penalty for an unaligned load is small compared to the penalty of an
202 // unaligned store on modern CPUs.
203 std::size_t bytes_from_last_aligned =
204 reinterpret_cast<uintptr_t>(dst) & (kBlockSize - 1);
205 if (bytes_from_last_aligned != 0) {
206 std::size_t bytes_for_alignment = kBlockSize - bytes_from_last_aligned;
207
208 // Do the short-sized copy and CRC.
209 initial_crc =
210 ShortCrcCopy(dst_bytes, src_bytes, bytes_for_alignment, initial_crc);
211 src_bytes += bytes_for_alignment;
212 dst_bytes += bytes_for_alignment;
213 length -= bytes_for_alignment;
214 }
215
216 // We are going to do the copy and CRC in kRegions regions to make sure that
217 // we can saturate the CRC unit. The CRCs will be combined at the end of the
218 // run. Copying will use the SSE registers, and we will extract words from
219 // the SSE registers to add to the CRC. Initially, we run the loop one full
220 // cache line per region at a time, in order to insert prefetches.
221
222 // Initialize CRCs for kRegions regions.
223 crc32c_t crcs[kRegions];
224 crcs[0] = initial_crc;
225 for (size_t i = 1; i < kRegions; i++) {
226 crcs[i] = crc32c_t{kCrcDataXor};
227 }
228
229 // Find the number of rounds to copy and the region size. Also compute the
230 // tail size here.
231 size_t copy_rounds = length / kCopyRoundSize;
232
233 // Find the size of each region and the size of the tail.
234 const std::size_t region_size = copy_rounds * kBlockSize;
235 const std::size_t tail_size = length - (kRegions * region_size);
236
237 // Holding registers for data in each region.
238 std::array<__m128i, vec_regions> vec_data;
239 std::array<uint64_t, int_regions * kIntLoadsPerVec> int_data;
240
241 // Main loop.
242 while (copy_rounds > kBlocksPerCacheLine) {
243 // Prefetch kPrefetchAhead bytes ahead of each pointer.
244 for (size_t i = 0; i < kRegions; i++) {
245 absl::base_internal::PrefetchT0(src_bytes + kPrefetchAhead +
246 region_size * i);
247 absl::base_internal::PrefetchT0(dst_bytes + kPrefetchAhead +
248 region_size * i);
249 }
250
251 // Load and store data, computing CRC on the way.
252 for (size_t i = 0; i < kBlocksPerCacheLine; i++) {
253 // Copy and CRC the data for the CRC regions.
254 for (size_t j = 0; j < vec_regions; j++) {
255 // Cycle which regions get vector load/store and integer load/store, to
256 // engage prefetching logic around vector load/stores and save issue
257 // slots by using the integer registers.
258 size_t region = (j + i) % kRegions;
259
260 auto* vsrc =
261 reinterpret_cast<const __m128i*>(src_bytes + region_size * region);
262 auto* vdst =
263 reinterpret_cast<__m128i*>(dst_bytes + region_size * region);
264
265 // Load and CRC data.
266 vec_data[j] = _mm_loadu_si128(vsrc + i);
267 crcs[region] = crc32c_t{static_cast<uint32_t>(_mm_crc32_u64(
268 static_cast<uint32_t>(crcs[region]),
269 static_cast<uint64_t>(_mm_extract_epi64(vec_data[j], 0))))};
270 crcs[region] = crc32c_t{static_cast<uint32_t>(_mm_crc32_u64(
271 static_cast<uint32_t>(crcs[region]),
272 static_cast<uint64_t>(_mm_extract_epi64(vec_data[j], 1))))};
273
274 // Store the data.
275 _mm_store_si128(vdst + i, vec_data[j]);
276 }
277
278 // Preload the partial CRCs for the CLMUL subregions.
279 for (size_t j = 0; j < int_regions; j++) {
280 // Cycle which regions get vector load/store and integer load/store, to
281 // engage prefetching logic around vector load/stores and save issue
282 // slots by using the integer registers.
283 size_t region = (j + vec_regions + i) % kRegions;
284
285 auto* usrc =
286 reinterpret_cast<const uint64_t*>(src_bytes + region_size * region);
287 auto* udst =
288 reinterpret_cast<uint64_t*>(dst_bytes + region_size * region);
289
290 for (size_t k = 0; k < kIntLoadsPerVec; k++) {
291 size_t data_index = j * kIntLoadsPerVec + k;
292
293 // Load and CRC the data.
294 int_data[data_index] = *(usrc + i * kIntLoadsPerVec + k);
295 crcs[region] = crc32c_t{static_cast<uint32_t>(_mm_crc32_u64(
296 static_cast<uint32_t>(crcs[region]), int_data[data_index]))};
297
298 // Store the data.
299 *(udst + i * kIntLoadsPerVec + k) = int_data[data_index];
300 }
301 }
302 }
303
304 // Increment pointers
305 src_bytes += kBlockSize * kBlocksPerCacheLine;
306 dst_bytes += kBlockSize * kBlocksPerCacheLine;
307 copy_rounds -= kBlocksPerCacheLine;
308 }
309
310 // Copy and CRC the tails of each region.
311 LargeTailCopy<vec_regions, int_regions>(crcs, &dst_bytes, &src_bytes,
312 region_size, copy_rounds);
313
314 // Move the source and destination pointers to the end of the region
315 src_bytes += region_size * (kRegions - 1);
316 dst_bytes += region_size * (kRegions - 1);
317
318 // Finalize the first CRCs: XOR the internal CRCs by the XOR mask to undo the
319 // XOR done before doing block copy + CRCs.
320 for (size_t i = 0; i + 1 < kRegions; i++) {
321 crcs[i] = crc32c_t{static_cast<uint32_t>(crcs[i]) ^ kCrcDataXor};
322 }
323
324 // Build a CRC of the first kRegions - 1 regions.
325 crc32c_t full_crc = crcs[0];
326 for (size_t i = 1; i + 1 < kRegions; i++) {
327 full_crc = ConcatCrc32c(full_crc, crcs[i], region_size);
328 }
329
330 // Copy and CRC the tail through the XMM registers.
331 std::size_t tail_blocks = tail_size / kBlockSize;
332 LargeTailCopy<0, 1>(&crcs[kRegions - 1], &dst_bytes, &src_bytes, 0,
333 tail_blocks);
334
335 // Final tail copy for under 16 bytes.
336 crcs[kRegions - 1] =
337 ShortCrcCopy(dst_bytes, src_bytes, tail_size - tail_blocks * kBlockSize,
338 crcs[kRegions - 1]);
339
340 // Finalize and concatenate the final CRC, then return.
341 crcs[kRegions - 1] =
342 crc32c_t{static_cast<uint32_t>(crcs[kRegions - 1]) ^ kCrcDataXor};
343 return ConcatCrc32c(full_crc, crcs[kRegions - 1], region_size + tail_size);
344 }
345
GetArchSpecificEngines()346 CrcMemcpy::ArchSpecificEngines CrcMemcpy::GetArchSpecificEngines() {
347 #ifdef UNDEFINED_BEHAVIOR_SANITIZER
348 // UBSAN does not play nicely with unaligned loads (which we use a lot).
349 // Get the underlying architecture.
350 CpuType cpu_type = GetCpuType();
351 switch (cpu_type) {
352 case CpuType::kUnknown:
353 case CpuType::kAmdRome:
354 case CpuType::kAmdNaples:
355 case CpuType::kIntelCascadelakeXeon:
356 case CpuType::kIntelSkylakeXeon:
357 case CpuType::kIntelSkylake:
358 case CpuType::kIntelBroadwell:
359 case CpuType::kIntelHaswell:
360 case CpuType::kIntelIvybridge:
361 return {
362 .temporal = new FallbackCrcMemcpyEngine(),
363 .non_temporal = new CrcNonTemporalMemcpyAVXEngine(),
364 };
365 // INTEL_SANDYBRIDGE performs better with SSE than AVX.
366 case CpuType::kIntelSandybridge:
367 return {
368 .temporal = new FallbackCrcMemcpyEngine(),
369 .non_temporal = new CrcNonTemporalMemcpyEngine(),
370 };
371 default:
372 return {.temporal = new FallbackCrcMemcpyEngine(),
373 .non_temporal = new FallbackCrcMemcpyEngine()};
374 }
375 #else
376 // Get the underlying architecture.
377 CpuType cpu_type = GetCpuType();
378 switch (cpu_type) {
379 // On Zen 2, PEXTRQ uses 2 micro-ops, including one on the vector store port
380 // which data movement from the vector registers to the integer registers
381 // (where CRC32C happens) to crowd the same units as vector stores. As a
382 // result, using that path exclusively causes bottlenecking on this port.
383 // We can avoid this bottleneck by using the integer side of the CPU for
384 // most operations rather than the vector side. We keep a vector region to
385 // engage some of the prefetching logic in the cache hierarchy which seems
386 // to give vector instructions special treatment. These prefetch units see
387 // strided access to each region, and do the right thing.
388 case CpuType::kAmdRome:
389 case CpuType::kAmdNaples:
390 return {
391 .temporal = new AcceleratedCrcMemcpyEngine<1, 2>(),
392 .non_temporal = new CrcNonTemporalMemcpyAVXEngine(),
393 };
394 // PCLMULQDQ is slow and we don't have wide enough issue width to take
395 // advantage of it. For an unknown architecture, don't risk using CLMULs.
396 case CpuType::kIntelCascadelakeXeon:
397 case CpuType::kIntelSkylakeXeon:
398 case CpuType::kIntelSkylake:
399 case CpuType::kIntelBroadwell:
400 case CpuType::kIntelHaswell:
401 case CpuType::kIntelIvybridge:
402 return {
403 .temporal = new AcceleratedCrcMemcpyEngine<3, 0>(),
404 .non_temporal = new CrcNonTemporalMemcpyAVXEngine(),
405 };
406 // INTEL_SANDYBRIDGE performs better with SSE than AVX.
407 case CpuType::kIntelSandybridge:
408 return {
409 .temporal = new AcceleratedCrcMemcpyEngine<3, 0>(),
410 .non_temporal = new CrcNonTemporalMemcpyEngine(),
411 };
412 default:
413 return {.temporal = new FallbackCrcMemcpyEngine(),
414 .non_temporal = new FallbackCrcMemcpyEngine()};
415 }
416 #endif // UNDEFINED_BEHAVIOR_SANITIZER
417 }
418
419 // For testing, allow the user to specify which engine they want.
GetTestEngine(int vector,int integer)420 std::unique_ptr<CrcMemcpyEngine> CrcMemcpy::GetTestEngine(int vector,
421 int integer) {
422 if (vector == 3 && integer == 0) {
423 return std::make_unique<AcceleratedCrcMemcpyEngine<3, 0>>();
424 } else if (vector == 1 && integer == 2) {
425 return std::make_unique<AcceleratedCrcMemcpyEngine<1, 2>>();
426 }
427 return nullptr;
428 }
429
430 } // namespace crc_internal
431 ABSL_NAMESPACE_END
432 } // namespace absl
433
434 #endif // ABSL_INTERNAL_HAVE_X86_64_ACCELERATED_CRC_MEMCPY_ENGINE
435