xref: /aosp_15_r20/external/ComputeLibrary/tests/validation/reference/Convolution3d.h (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2017-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef ARM_COMPUTE_TEST_VALIDATION_CONVOLUTION_H
25 #define ARM_COMPUTE_TEST_VALIDATION_CONVOLUTION_H
26 
27 #include "arm_compute/core/utils/quantization/AsymmHelpers.h"
28 #include "support/Requires.h"
29 #include "tests/validation/Helpers.h"
30 #include "tests/validation/reference/UtilsQuantizedAsymm.h"
31 
32 namespace arm_compute
33 {
34 namespace test
35 {
36 namespace convolution_3d
37 {
38 namespace detail
39 {
is_valid_pixel(int i,int min,int max)40 inline bool is_valid_pixel(int i, int min, int max)
41 {
42     return (i >= min && i < max);
43 }
44 
45 // 3D convolution for floating point type
46 template < typename T, typename TW, typename TB, typename std::enable_if < validation::is_floating_point<T>::value &&validation::is_floating_point<TW>::value
47                                                                            &&validation::is_floating_point<TB>::value,
48                                                                            int >::type = 0 >
49 inline void convolution3d(const SimpleTensor<T> &in, const SimpleTensor<TW> &weights, const SimpleTensor<TB> &bias, SimpleTensor<T> &out,
50                           int i_offset, int w_offset, int b_offset, int o_offset,
51                           int xi, int yi, int width_in, int height_in, int depth_in, int width_weights, int height_weights, int dilation_x = 1, int dilation_y = 1, int filter_id = 0)
52 {
53     ARM_COMPUTE_UNUSED(filter_id);
54     const T *in_ptr  = in.data() + i_offset;
55     const TW *w_ptr   = weights.data() + w_offset;
56     const TB *b_ptr   = bias.data() + b_offset;
57     T        *out_ptr = out.data() + o_offset;
58 
59     const int half_width_weights_start  = width_weights / 2;
60     const int half_width_weights_end    = ((width_weights % 2) == 0) ? (half_width_weights_start - 1) : half_width_weights_start;
61     const int half_height_weights_start = height_weights / 2;
62     const int half_height_weights_end   = ((height_weights % 2) == 0) ? (half_height_weights_start - 1) : half_height_weights_start;
63 
64     // Reset accumulator
65     T acc(0);
66 
67     // Compute a 2D convolution for each IFM and accumulate the result
68     for(int ifm = 0; ifm < depth_in; ++ifm)
69     {
70         // Compute the offset for the input slice
71         const int offset_slice_in = xi + yi * width_in + ifm * width_in * height_in;
72 
73         // Compute 2D convolution
74         for(int yk = -half_height_weights_start; yk <= half_height_weights_end; ++yk)
75         {
76             for(int xk = -half_width_weights_start; xk <= half_width_weights_end; ++xk)
77             {
78                 // Check if the pixel is out-of-bound
79                 if(is_valid_pixel(xi + xk * dilation_x, 0, width_in) && is_valid_pixel(yi + yk * dilation_y, 0, height_in))
80                 {
81                     const int idx = xk + half_width_weights_start;
82                     const int idy = yk + half_height_weights_start;
83 
84                     const T  i_value = in_ptr[offset_slice_in + xk * dilation_x + yk * dilation_y * width_in];
85                     const TW w_value = w_ptr[idx + idy * width_weights + ifm * width_weights * height_weights];
86 
87                     acc += i_value * w_value;
88                 }
89             }
90         }
91     }
92 
93     // Accumulate the bias and store the result
94     *out_ptr = acc + (*b_ptr);
95 }
96 
97 // 3D convolution for QASYMM8 type
98 template < typename T, typename TW, typename TB, ARM_COMPUTE_REQUIRES_TA((std::is_same<T, uint8_t>::value || std::is_same<T, int8_t>::value) &&(std::is_same<TW, uint8_t>::value
99                                                                          || std::is_same<TW, int8_t>::value)) >
100 inline void convolution3d(const SimpleTensor<T> &in, const SimpleTensor<TW> &weights, const SimpleTensor<TB> &bias, SimpleTensor<T> &out,
101                           int i_offset, int w_offset, int b_offset, int o_offset,
102                           int xi, int yi, int width_in, int height_in, int depth_in, int width_weights, int height_weights, int dilation_x = 1, int dilation_y = 1, int filter_id = 0)
103 {
104     const T *in_ptr  = in.data() + i_offset;
105     const TW *w_ptr   = weights.data() + w_offset;
106     const TB *b_ptr   = bias.data() + b_offset;
107     T        *out_ptr = out.data() + o_offset;
108 
109     const UniformQuantizationInfo iq_info = in.quantization_info().uniform();
110     const UniformQuantizationInfo wq_info = weights.quantization_info().uniform();
111     const UniformQuantizationInfo oq_info = out.quantization_info().uniform();
112 
113     const int   input_offset   = -iq_info.offset;
114     const float input_scale    = iq_info.scale;
115     int         weights_offset = -wq_info.offset;
116     float       weights_scale  = wq_info.scale;
117     if(is_data_type_quantized_per_channel(weights.data_type()))
118     {
119         if(is_data_type_quantized_asymmetric(weights.data_type()))
120         {
121             weights_offset = weights.quantization_info().offset()[filter_id];
122         }
123         else
124         {
125             weights_offset = 0;
126         }
127         weights_scale = weights.quantization_info().scale()[filter_id];
128     }
129     const int   output_offset = oq_info.offset;
130     const float output_scale  = oq_info.scale;
131 
132     int         output_multiplier = 0;
133     int         output_shift      = 0;
134     const float multiplier        = input_scale * weights_scale / output_scale;
135     arm_compute::quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift);
136 
137     const int half_width_weights_start  = width_weights / 2;
138     const int half_width_weights_end    = ((width_weights % 2) == 0) ? (half_width_weights_start - 1) : half_width_weights_start;
139     const int half_height_weights_start = height_weights / 2;
140     const int half_height_weights_end   = ((height_weights % 2) == 0) ? (half_height_weights_start - 1) : half_height_weights_start;
141 
142     // Reset accumulator
143     int32_t acc(0);
144 
145     // Compute a 2D convolution for each IFM and accumulate the result
146     for(int ifm = 0; ifm < depth_in; ++ifm)
147     {
148         // Compute the offset for the input slice
149         const int offset_slice_in = xi + yi * width_in + ifm * width_in * height_in;
150 
151         // Compute 2D convolution
152         for(int yk = -half_height_weights_start; yk <= half_height_weights_end; ++yk)
153         {
154             for(int xk = -half_width_weights_start; xk <= half_width_weights_end; ++xk)
155             {
156                 // Check if the pixel is out-of-bound
157                 if(is_valid_pixel(xi + xk * dilation_x, 0, width_in) && is_valid_pixel(yi + yk * dilation_y, 0, height_in))
158                 {
159                     const int idx = xk + half_width_weights_start;
160                     const int idy = yk + half_height_weights_start;
161 
162                     const int32_t i_value = in_ptr[offset_slice_in + xk * dilation_x + yk * dilation_y * width_in];
163                     const int32_t w_value = w_ptr[idx + idy * width_weights + ifm * width_weights * height_weights];
164                     acc += (i_value + input_offset) * (w_value + weights_offset);
165                 }
166             }
167         }
168     }
169 
170     // Accumulate the bias
171     acc += (*b_ptr);
172 
173     // Quantize down
174     acc = validation::quantize_down_scale_by_fixedpoint(acc, output_multiplier, output_shift, output_offset,
175                                                         std::numeric_limits<T>::lowest(), std::numeric_limits<T>::max());
176 
177     // Store the result
178     *out_ptr = acc;
179 }
180 } // namespace detail
181 } // namespace convolution_3d
182 } // namespace test
183 } // namespace arm_compute
184 #endif /* ARM_COMPUTE_TEST_VALIDATION_CONVOLUTION_H */
185