xref: /aosp_15_r20/external/ComputeLibrary/tests/validation/fixtures/dynamic_fusion/operators/MulFixture.h (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2 * Copyright (c) 2023 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24 #ifndef TESTS_VALIDATION_FIXTURES_DYNAMIC_FUSION_OPERATORS_MULFIXTURE
25 #define TESTS_VALIDATION_FIXTURES_DYNAMIC_FUSION_OPERATORS_MULFIXTURE
26 
27 #include "arm_compute/core/CL/CLKernelLibrary.h"
28 #include "arm_compute/core/TensorInfo.h"
29 #include "arm_compute/core/Types.h"
30 #include "arm_compute/dynamic_fusion/runtime/gpu/cl/ClWorkloadRuntime.h"
31 #include "arm_compute/dynamic_fusion/sketch/gpu/GpuWorkloadSketch.h"
32 #include "arm_compute/dynamic_fusion/sketch/gpu/operators/GpuOutput.h"
33 
34 #include "tests/Globals.h"
35 #include "tests/framework/Fixture.h"
36 #include "tests/framework/Macros.h"
37 #include "tests/validation/reference/PixelWiseMultiplication.h"
38 
39 using namespace arm_compute::experimental::dynamic_fusion;
40 
41 namespace arm_compute
42 {
43 namespace test
44 {
45 namespace validation
46 {
47 /* We use a separate test fixture for Multiplication op instead of reusing ElementwiseBinaryFixture to avoid exposing
48  * the internal enum ElementwiseOp to the public utils/TypePrinters.h as required by the data test case macros
49  * to print the test data.
50  */
51 template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
52 class DynamicFusionMulValidationFixture : public framework::Fixture
53 {
54 public:
55    template <typename...>
56    void setup(const TensorShape &shape0, const TensorShape &shape1, const TensorShape &shape2, DataType data_type, bool is_inplace, bool fuse_two_ops = false)
57    {
58        _data_type  = data_type;
59        _is_inplace = is_inplace;
60        _fuse       = fuse_two_ops;
61        ARM_COMPUTE_ERROR_ON_MSG(_fuse && shape2.total_size() == 0, "No shape2 provided for fusion of two ops.");
62        ARM_COMPUTE_ERROR_ON_MSG(_fuse && _is_inplace, "In place for fusing case not supported yet.");
63        _target    = compute_target(shape0, shape1, shape2);
64        _reference = compute_reference(shape0, shape1, shape2);
65    }
66 
67 protected:
68    template <typename U>
fill(U && tensor,int i)69    void fill(U &&tensor, int i)
70    {
71        library->fill_tensor_uniform(tensor, i);
72    }
73 
compute_target(const TensorShape & shape0,const TensorShape & shape1,const TensorShape & shape2)74    TensorType compute_target(const TensorShape &shape0, const TensorShape &shape1, const TensorShape &shape2)
75    {
76        // Create a new workload sketch
77        auto              cl_compile_ctx = CLKernelLibrary::get().get_compile_context();
78        auto              gpu_ctx        = GpuWorkloadContext{ &cl_compile_ctx };
79        GpuWorkloadSketch sketch{ &gpu_ctx };
80 
81        // Fuse first multiplication op
82        TensorInfo lhs_info = sketch.create_tensor_info(TensorInfo(shape0, 1, _data_type));
83        TensorInfo rhs_info = sketch.create_tensor_info(TensorInfo(shape1, 1, _data_type));
84        TensorInfo dst_info = sketch.create_tensor_info();
85 
86        TensorInfo rhs_info_fuse;
87 
88        ITensorInfo *ans_info = FunctionType::create_op(sketch, &lhs_info, &rhs_info);
89 
90        if(_fuse)
91        {
92            rhs_info_fuse          = sketch.create_tensor_info(TensorInfo(shape2, 1, _data_type));
93            ITensorInfo *ans2_info = FunctionType::create_op(sketch, ans_info, &rhs_info_fuse);
94            GpuOutput::create_op(sketch, ans2_info, &dst_info);
95        }
96        else
97        {
98            GpuOutput::create_op(sketch, ans_info, &dst_info);
99        }
100 
101        // Configure runtime
102        ClWorkloadRuntime runtime;
103        runtime.configure(sketch);
104 
105        // (Important) Allocate auxiliary tensor memory if there are any
106        for(auto &data : runtime.get_auxiliary_tensors())
107        {
108            CLTensor     *tensor      = std::get<0>(data);
109            TensorInfo    info        = std::get<1>(data);
110            AuxMemoryInfo aux_mem_req = std::get<2>(data);
111            tensor->allocator()->init(info, aux_mem_req.alignment);
112            tensor->allocator()->allocate(); // Use ACL allocated memory
113        }
114 
115        // Construct user tensors
116        TensorType t_lhs{};
117        TensorType t_rhs{};
118        TensorType t_rhs_fuse{};
119        TensorType t_dst{};
120 
121        // Initialize user tensors
122        t_lhs.allocator()->init(lhs_info);
123        t_rhs.allocator()->init(rhs_info);
124        t_dst.allocator()->init(dst_info);
125        if(_fuse)
126        {
127            t_rhs_fuse.allocator()->init(rhs_info_fuse);
128        }
129 
130        // Allocate and fill user tensors
131        // Instead of using ACL allocator, the user can choose to import memory into the tensors
132        t_lhs.allocator()->allocate();
133        t_rhs.allocator()->allocate();
134        t_dst.allocator()->allocate();
135        if(_fuse)
136        {
137            t_rhs_fuse.allocator()->allocate();
138        }
139 
140        fill(AccessorType(t_lhs), 0);
141        fill(AccessorType(t_rhs), 1);
142        if(_fuse)
143        {
144            fill(AccessorType(t_rhs_fuse), 2);
145        }
146 
147        // Run runtime
148        if(_fuse)
149        {
150            runtime.run({ &t_lhs, &t_rhs, &t_rhs_fuse, &t_dst });
151        }
152        else
153        {
154            runtime.run({ &t_lhs, &t_rhs, &t_dst });
155        }
156 
157        return t_dst;
158    }
159 
compute_reference(const TensorShape & shape0,const TensorShape & shape1,const TensorShape & shape2)160    SimpleTensor<T> compute_reference(const TensorShape &shape0, const TensorShape &shape1, const TensorShape &shape2)
161    {
162        // Create reference
163        SimpleTensor<T> ref_lhs{ shape0, _data_type, 1, QuantizationInfo() };
164        SimpleTensor<T> ref_rhs{ shape1, _data_type, 1, QuantizationInfo() };
165        SimpleTensor<T> ref_rhs_fuse{ shape2, _data_type, 1, QuantizationInfo() };
166 
167        // Fill reference
168        fill(ref_lhs, 0);
169        fill(ref_rhs, 1);
170        SimpleTensor<T> ref_dst = reference::pixel_wise_multiplication<T, T, T>(ref_lhs,
171                                                                                ref_rhs,
172                                                                                1.f,
173                                                                                ConvertPolicy::SATURATE,
174                                                                                RoundingPolicy::TO_NEAREST_UP,
175                                                                                _data_type,
176                                                                                QuantizationInfo());
177        if(_fuse)
178        {
179            fill(ref_rhs_fuse, 2);
180            SimpleTensor<T> ref_dst_fuse = reference::pixel_wise_multiplication<T, T, T>(ref_dst,
181                                                                                         ref_rhs_fuse,
182                                                                                         1.f,
183                                                                                         ConvertPolicy::SATURATE,
184                                                                                         RoundingPolicy::TO_NEAREST_UP,
185                                                                                         _data_type,
186                                                                                         QuantizationInfo());
187            return ref_dst_fuse;
188        }
189        return ref_dst;
190    }
191 
192    TensorType      _target{};
193    SimpleTensor<T> _reference{};
194    DataType        _data_type{};
195    bool            _is_inplace{ false };
196    bool            _fuse{ false };
197 };
198 
199 template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
200 class DynamicFusionMulOneOpValidationFixture : public DynamicFusionMulValidationFixture<TensorType, AccessorType, FunctionType, T>
201 {
202 public:
203    template <typename...>
setup(const TensorShape & shape0,DataType data_type,bool is_inplace)204    void setup(const TensorShape &shape0, DataType data_type, bool is_inplace)
205    {
206        DynamicFusionMulValidationFixture<TensorType, AccessorType, FunctionType, T>::setup(shape0, shape0, TensorShape(), data_type, is_inplace);
207    }
208 };
209 
210 template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
211 class DynamicFusionMulBroadcastValidationFixture : public DynamicFusionMulValidationFixture<TensorType, AccessorType, FunctionType, T>
212 {
213 public:
214    template <typename...>
setup(const TensorShape & shape0,const TensorShape & shape1,DataType data_type,bool is_inplace)215    void setup(const TensorShape &shape0, const TensorShape &shape1, DataType data_type, bool is_inplace)
216    {
217        DynamicFusionMulValidationFixture<TensorType, AccessorType, FunctionType, T>::setup(shape0, shape1, TensorShape(), data_type, is_inplace);
218    }
219 };
220 
221 template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
222 class DynamicFusionMulTwoOpsValidationFixture : public DynamicFusionMulValidationFixture<TensorType, AccessorType, FunctionType, T>
223 {
224 public:
225    template <typename...>
setup(const TensorShape & shape0,const TensorShape & shape1,const TensorShape & shape2,DataType data_type,bool is_inplace,bool fuse_two_ops)226    void setup(const TensorShape &shape0, const TensorShape &shape1, const TensorShape &shape2, DataType data_type, bool is_inplace, bool fuse_two_ops)
227    {
228        DynamicFusionMulValidationFixture<TensorType, AccessorType, FunctionType, T>::setup(shape0, shape1, shape2, data_type, is_inplace, fuse_two_ops);
229    }
230 };
231 
232 } // namespace validation
233 } // namespace test
234 } // namespace arm_compute
235 #endif /* TESTS_VALIDATION_FIXTURES_DYNAMIC_FUSION_OPERATORS_MULFIXTURE */
236