1 /*
2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 /*
12 * The purpose of this test is to compute metrics to characterize the properties
13 * and efficiency of the packets masks used in the generic XOR FEC code.
14 *
15 * The metrics measure the efficiency (recovery potential or residual loss) of
16 * the FEC code, under various statistical loss models for the packet/symbol
17 * loss events. Various constraints on the behavior of these metrics are
18 * verified, and compared to the reference RS (Reed-Solomon) code. This serves
19 * in some way as a basic check/benchmark for the packet masks.
20 *
21 * By an FEC code, we mean an erasure packet/symbol code, characterized by:
22 * (1) The code size parameters (k,m), where k = number of source/media packets,
23 * and m = number of FEC packets,
24 * (2) The code type: XOR or RS.
25 * In the case of XOR, the residual loss is determined via the set of packet
26 * masks (generator matrix). In the case of RS, the residual loss is determined
27 * directly from the MDS (maximum distance separable) property of RS.
28 *
29 * Currently two classes of packets masks are available (random type and bursty
30 * type), so three codes are considered below: RS, XOR-random, and XOR-bursty.
31 * The bursty class is defined up to k=12, so (k=12,m=12) is largest code size
32 * considered in this test.
33 *
34 * The XOR codes are defined via the RFC 5109 and correspond to the class of
35 * LDGM (low density generator matrix) codes, which is a subset of the LDPC
36 * (low density parity check) codes. Future implementation will consider
37 * extending our XOR codes to include LDPC codes, which explicitly include
38 * protection of FEC packets.
39 *
40 * The type of packet/symbol loss models considered in this test are:
41 * (1) Random loss: Bernoulli process, characterized by the average loss rate.
42 * (2) Bursty loss: Markov chain (Gilbert-Elliot model), characterized by two
43 * parameters: average loss rate and average burst length.
44 */
45
46 #include <cmath>
47 #include <memory>
48
49 #include "modules/rtp_rtcp/source/forward_error_correction_internal.h"
50 #include "modules/rtp_rtcp/test/testFec/average_residual_loss_xor_codes.h"
51 #include "test/gtest.h"
52 #include "test/testsupport/file_utils.h"
53
54 namespace webrtc {
55
56 // Maximum number of media packets allows for XOR (RFC 5109) code.
57 enum { kMaxNumberMediaPackets = 48 };
58
59 // Maximum number of media packets allowed for each mask type.
60 const uint16_t kMaxMediaPackets[] = {kMaxNumberMediaPackets, 12};
61
62 // Maximum gap size for characterizing the consecutiveness of the loss.
63 const int kMaxGapSize = 2 * kMaxMediaPacketsTest;
64
65 // Number of gap levels written to file/output.
66 const int kGapSizeOutput = 5;
67
68 // Maximum number of states for characterizing the residual loss distribution.
69 const int kNumStatesDistribution = 2 * kMaxMediaPacketsTest * kMaxGapSize + 1;
70
71 // The code type.
72 enum CodeType {
73 xor_random_code, // XOR with random mask type.
74 xor_bursty_code, // XOR with bursty mask type.
75 rs_code // Reed_solomon.
76 };
77
78 // The code size parameters.
79 struct CodeSizeParams {
80 int num_media_packets;
81 int num_fec_packets;
82 // Protection level: num_fec_packets / (num_media_packets + num_fec_packets).
83 float protection_level;
84 // Number of loss configurations, for a given loss number and gap number.
85 // The gap number refers to the maximum gap/hole of a loss configuration
86 // (used to measure the "consecutiveness" of the loss).
87 int configuration_density[kNumStatesDistribution];
88 };
89
90 // The type of loss models.
91 enum LossModelType { kRandomLossModel, kBurstyLossModel };
92
93 struct LossModel {
94 LossModelType loss_type;
95 float average_loss_rate;
96 float average_burst_length;
97 };
98
99 // Average loss rates.
100 const float kAverageLossRate[] = {0.025f, 0.05f, 0.1f, 0.25f};
101
102 // Average burst lengths. The case of |kAverageBurstLength = 1.0| refers to
103 // the random model. Note that for the random (Bernoulli) model, the average
104 // burst length is determined by the average loss rate, i.e.,
105 // AverageBurstLength = 1 / (1 - AverageLossRate) for random model.
106 const float kAverageBurstLength[] = {1.0f, 2.0f, 4.0f};
107
108 // Total number of loss models: For each burst length case, there are
109 // a number of models corresponding to the loss rates.
110 const int kNumLossModels =
111 (sizeof(kAverageBurstLength) / sizeof(*kAverageBurstLength)) *
112 (sizeof(kAverageLossRate) / sizeof(*kAverageLossRate));
113
114 // Thresholds on the average loss rate of the packet loss model, below which
115 // certain properties of the codes are expected.
116 float loss_rate_upper_threshold = 0.20f;
117 float loss_rate_lower_threshold = 0.025f;
118
119 // Set of thresholds on the expected average recovery rate, for each code type.
120 // These are global thresholds for now; in future version we may condition them
121 // on the code length/size and protection level.
122 const float kRecoveryRateXorRandom[3] = {0.94f, 0.50f, 0.19f};
123 const float kRecoveryRateXorBursty[3] = {0.90f, 0.54f, 0.22f};
124
125 // Metrics for a given FEC code; each code is defined by the code type
126 // (RS, XOR-random/bursty), and the code size parameters (k,m), where
127 // k = num_media_packets, m = num_fec_packets.
128 struct MetricsFecCode {
129 // The average and variance of the residual loss, as a function of the
130 // packet/symbol loss model. The average/variance is computed by averaging
131 // over all loss configurations wrt the loss probability given by the
132 // underlying loss model.
133 double average_residual_loss[kNumLossModels];
134 double variance_residual_loss[kNumLossModels];
135 // The residual loss, as a function of the loss number and the gap number of
136 // the loss configurations. The gap number refers to the maximum gap/hole of
137 // a loss configuration (used to measure the "consecutiveness" of the loss).
138 double residual_loss_per_loss_gap[kNumStatesDistribution];
139 // The recovery rate as a function of the loss number.
140 double recovery_rate_per_loss[2 * kMaxMediaPacketsTest + 1];
141 };
142
143 MetricsFecCode kMetricsXorRandom[kNumberCodes];
144 MetricsFecCode kMetricsXorBursty[kNumberCodes];
145 MetricsFecCode kMetricsReedSolomon[kNumberCodes];
146
147 class FecPacketMaskMetricsTest : public ::testing::Test {
148 protected:
FecPacketMaskMetricsTest()149 FecPacketMaskMetricsTest() {}
150
151 int max_num_codes_;
152 LossModel loss_model_[kNumLossModels];
153 CodeSizeParams code_params_[kNumberCodes];
154
155 uint8_t fec_packet_masks_[kMaxNumberMediaPackets][kMaxNumberMediaPackets];
156 FILE* fp_mask_;
157
158 // Measure of the gap of the loss for configuration given by `state`.
159 // This is to measure degree of consecutiveness for the loss configuration.
160 // Useful if the packets are sent out in order of sequence numbers and there
161 // is little/no re-ordering during transmission.
GapLoss(int tot_num_packets,uint8_t * state)162 int GapLoss(int tot_num_packets, uint8_t* state) {
163 int max_gap_loss = 0;
164 // Find the first loss.
165 int first_loss = 0;
166 for (int i = 0; i < tot_num_packets; i++) {
167 if (state[i] == 1) {
168 first_loss = i;
169 break;
170 }
171 }
172 int prev_loss = first_loss;
173 for (int i = first_loss + 1; i < tot_num_packets; i++) {
174 if (state[i] == 1) { // Lost state.
175 int gap_loss = (i - prev_loss) - 1;
176 if (gap_loss > max_gap_loss) {
177 max_gap_loss = gap_loss;
178 }
179 prev_loss = i;
180 }
181 }
182 return max_gap_loss;
183 }
184
185 // Returns the number of recovered media packets for the XOR code, given the
186 // packet mask `fec_packet_masks_`, for the loss state/configuration given by
187 // `state`.
RecoveredMediaPackets(int num_media_packets,int num_fec_packets,uint8_t * state)188 int RecoveredMediaPackets(int num_media_packets,
189 int num_fec_packets,
190 uint8_t* state) {
191 std::unique_ptr<uint8_t[]> state_tmp(
192 new uint8_t[num_media_packets + num_fec_packets]);
193 memcpy(state_tmp.get(), state, num_media_packets + num_fec_packets);
194 int num_recovered_packets = 0;
195 bool loop_again = true;
196 while (loop_again) {
197 loop_again = false;
198 bool recovered_new_packet = false;
199 // Check if we can recover anything: loop over all possible FEC packets.
200 for (int i = 0; i < num_fec_packets; i++) {
201 if (state_tmp[i + num_media_packets] == 0) {
202 // We have this FEC packet.
203 int num_packets_in_mask = 0;
204 int num_received_packets_in_mask = 0;
205 for (int j = 0; j < num_media_packets; j++) {
206 if (fec_packet_masks_[i][j] == 1) {
207 num_packets_in_mask++;
208 if (state_tmp[j] == 0) {
209 num_received_packets_in_mask++;
210 }
211 }
212 }
213 if ((num_packets_in_mask - 1) == num_received_packets_in_mask) {
214 // We can recover the missing media packet for this FEC packet.
215 num_recovered_packets++;
216 recovered_new_packet = true;
217 int jsel = -1;
218 int check_num_recovered = 0;
219 // Update the state with newly recovered media packet.
220 for (int j = 0; j < num_media_packets; j++) {
221 if (fec_packet_masks_[i][j] == 1 && state_tmp[j] == 1) {
222 // This is the lost media packet we will recover.
223 jsel = j;
224 check_num_recovered++;
225 }
226 }
227 // Check that we can only recover 1 packet.
228 RTC_DCHECK_EQ(check_num_recovered, 1);
229 // Update the state with the newly recovered media packet.
230 state_tmp[jsel] = 0;
231 }
232 }
233 } // Go to the next FEC packet in the loop.
234 // If we have recovered at least one new packet in this FEC loop,
235 // go through loop again, otherwise we leave loop.
236 if (recovered_new_packet) {
237 loop_again = true;
238 }
239 }
240 return num_recovered_packets;
241 }
242
243 // Compute the probability of occurence of the loss state/configuration,
244 // given by `state`, for all the loss models considered in this test.
ComputeProbabilityWeight(double * prob_weight,uint8_t * state,int tot_num_packets)245 void ComputeProbabilityWeight(double* prob_weight,
246 uint8_t* state,
247 int tot_num_packets) {
248 // Loop over the loss models.
249 for (int k = 0; k < kNumLossModels; k++) {
250 double loss_rate = static_cast<double>(loss_model_[k].average_loss_rate);
251 double burst_length =
252 static_cast<double>(loss_model_[k].average_burst_length);
253 double result = 1.0;
254 if (loss_model_[k].loss_type == kRandomLossModel) {
255 for (int i = 0; i < tot_num_packets; i++) {
256 if (state[i] == 0) {
257 result *= (1.0 - loss_rate);
258 } else {
259 result *= loss_rate;
260 }
261 }
262 } else { // Gilbert-Elliot model for burst model.
263 RTC_DCHECK_EQ(loss_model_[k].loss_type, kBurstyLossModel);
264 // Transition probabilities: from previous to current state.
265 // Prob. of previous = lost --> current = received.
266 double prob10 = 1.0 / burst_length;
267 // Prob. of previous = lost --> currrent = lost.
268 double prob11 = 1.0 - prob10;
269 // Prob. of previous = received --> current = lost.
270 double prob01 = prob10 * (loss_rate / (1.0 - loss_rate));
271 // Prob. of previous = received --> current = received.
272 double prob00 = 1.0 - prob01;
273
274 // Use stationary probability for first state/packet.
275 if (state[0] == 0) { // Received
276 result = (1.0 - loss_rate);
277 } else { // Lost
278 result = loss_rate;
279 }
280
281 // Subsequent states: use transition probabilities.
282 for (int i = 1; i < tot_num_packets; i++) {
283 // Current state is received
284 if (state[i] == 0) {
285 if (state[i - 1] == 0) {
286 result *= prob00; // Previous received, current received.
287 } else {
288 result *= prob10; // Previous lost, current received.
289 }
290 } else { // Current state is lost
291 if (state[i - 1] == 0) {
292 result *= prob01; // Previous received, current lost.
293 } else {
294 result *= prob11; // Previous lost, current lost.
295 }
296 }
297 }
298 }
299 prob_weight[k] = result;
300 }
301 }
302
CopyMetrics(MetricsFecCode * metrics_output,MetricsFecCode metrics_input)303 void CopyMetrics(MetricsFecCode* metrics_output,
304 MetricsFecCode metrics_input) {
305 memcpy(metrics_output->average_residual_loss,
306 metrics_input.average_residual_loss,
307 sizeof(double) * kNumLossModels);
308 memcpy(metrics_output->variance_residual_loss,
309 metrics_input.variance_residual_loss,
310 sizeof(double) * kNumLossModels);
311 memcpy(metrics_output->residual_loss_per_loss_gap,
312 metrics_input.residual_loss_per_loss_gap,
313 sizeof(double) * kNumStatesDistribution);
314 memcpy(metrics_output->recovery_rate_per_loss,
315 metrics_input.recovery_rate_per_loss,
316 sizeof(double) * 2 * kMaxMediaPacketsTest);
317 }
318
319 // Compute the residual loss per gap, by summing the
320 // `residual_loss_per_loss_gap` over all loss configurations up to loss number
321 // = `num_fec_packets`.
ComputeResidualLossPerGap(MetricsFecCode metrics,int gap_number,int num_fec_packets,int code_index)322 double ComputeResidualLossPerGap(MetricsFecCode metrics,
323 int gap_number,
324 int num_fec_packets,
325 int code_index) {
326 double residual_loss_gap = 0.0;
327 int tot_num_configs = 0;
328 for (int loss = 1; loss <= num_fec_packets; loss++) {
329 int index = gap_number * (2 * kMaxMediaPacketsTest) + loss;
330 residual_loss_gap += metrics.residual_loss_per_loss_gap[index];
331 tot_num_configs += code_params_[code_index].configuration_density[index];
332 }
333 // Normalize, to compare across code sizes.
334 if (tot_num_configs > 0) {
335 residual_loss_gap =
336 residual_loss_gap / static_cast<double>(tot_num_configs);
337 }
338 return residual_loss_gap;
339 }
340
341 // Compute the recovery rate per loss number, by summing the
342 // `residual_loss_per_loss_gap` over all gap configurations.
ComputeRecoveryRatePerLoss(MetricsFecCode * metrics,int num_media_packets,int num_fec_packets,int code_index)343 void ComputeRecoveryRatePerLoss(MetricsFecCode* metrics,
344 int num_media_packets,
345 int num_fec_packets,
346 int code_index) {
347 for (int loss = 1; loss <= num_media_packets + num_fec_packets; loss++) {
348 metrics->recovery_rate_per_loss[loss] = 0.0;
349 int tot_num_configs = 0;
350 double arl = 0.0;
351 for (int gap = 0; gap < kMaxGapSize; gap++) {
352 int index = gap * (2 * kMaxMediaPacketsTest) + loss;
353 arl += metrics->residual_loss_per_loss_gap[index];
354 tot_num_configs +=
355 code_params_[code_index].configuration_density[index];
356 }
357 // Normalize, to compare across code sizes.
358 if (tot_num_configs > 0) {
359 arl = arl / static_cast<double>(tot_num_configs);
360 }
361 // Recovery rate for a given loss `loss` is 1 minus the scaled `arl`,
362 // where the scale factor is relative to code size/parameters.
363 double scaled_loss =
364 static_cast<double>(loss * num_media_packets) /
365 static_cast<double>(num_media_packets + num_fec_packets);
366 metrics->recovery_rate_per_loss[loss] = 1.0 - arl / scaled_loss;
367 }
368 }
369
SetMetricsZero(MetricsFecCode * metrics)370 void SetMetricsZero(MetricsFecCode* metrics) {
371 memset(metrics->average_residual_loss, 0, sizeof(double) * kNumLossModels);
372 memset(metrics->variance_residual_loss, 0, sizeof(double) * kNumLossModels);
373 memset(metrics->residual_loss_per_loss_gap, 0,
374 sizeof(double) * kNumStatesDistribution);
375 memset(metrics->recovery_rate_per_loss, 0,
376 sizeof(double) * 2 * kMaxMediaPacketsTest + 1);
377 }
378
379 // Compute the metrics for an FEC code, given by the code type `code_type`
380 // (XOR-random/ bursty or RS), and by the code index `code_index`
381 // (which containes the code size parameters/protection length).
ComputeMetricsForCode(CodeType code_type,int code_index)382 void ComputeMetricsForCode(CodeType code_type, int code_index) {
383 std::unique_ptr<double[]> prob_weight(new double[kNumLossModels]);
384 memset(prob_weight.get(), 0, sizeof(double) * kNumLossModels);
385 MetricsFecCode metrics_code;
386 SetMetricsZero(&metrics_code);
387
388 int num_media_packets = code_params_[code_index].num_media_packets;
389 int num_fec_packets = code_params_[code_index].num_fec_packets;
390 int tot_num_packets = num_media_packets + num_fec_packets;
391 std::unique_ptr<uint8_t[]> state(new uint8_t[tot_num_packets]);
392 memset(state.get(), 0, tot_num_packets);
393
394 int num_loss_configurations = 1 << tot_num_packets;
395 // Loop over all loss configurations for the symbol sequence of length
396 // `tot_num_packets`. In this version we process up to (k=12, m=12) codes,
397 // and get exact expressions for the residual loss.
398 // TODO(marpan): For larger codes, loop over some random sample of loss
399 // configurations, sampling driven by the underlying statistical loss model
400 // (importance sampling).
401
402 // The symbols/packets are arranged as a sequence of source/media packets
403 // followed by FEC packets. This is the sequence ordering used in the RTP.
404 // A configuration refers to a sequence of received/lost (0/1 bit) states
405 // for the string of packets/symbols. For example, for a (k=4,m=3) code
406 // (4 media packets, 3 FEC packets), with 2 losses (one media and one FEC),
407 // the loss configurations is:
408 // Media1 Media2 Media3 Media4 FEC1 FEC2 FEC3
409 // 0 0 1 0 0 1 0
410 for (int i = 1; i < num_loss_configurations; i++) {
411 // Counter for number of packets lost.
412 int num_packets_lost = 0;
413 // Counters for the number of media packets lost.
414 int num_media_packets_lost = 0;
415
416 // Map configuration number to a loss state.
417 for (int j = 0; j < tot_num_packets; j++) {
418 state[j] = 0; // Received state.
419 int bit_value = i >> (tot_num_packets - j - 1) & 1;
420 if (bit_value == 1) {
421 state[j] = 1; // Lost state.
422 num_packets_lost++;
423 if (j < num_media_packets) {
424 num_media_packets_lost++;
425 }
426 }
427 } // Done with loop over total number of packets.
428 RTC_DCHECK_LE(num_media_packets_lost, num_media_packets);
429 RTC_DCHECK_LE(num_packets_lost, tot_num_packets && num_packets_lost > 0);
430 double residual_loss = 0.0;
431 // Only need to compute residual loss (number of recovered packets) for
432 // configurations that have at least one media packet lost.
433 if (num_media_packets_lost >= 1) {
434 // Compute the number of recovered packets.
435 int num_recovered_packets = 0;
436 if (code_type == xor_random_code || code_type == xor_bursty_code) {
437 num_recovered_packets = RecoveredMediaPackets(
438 num_media_packets, num_fec_packets, state.get());
439 } else {
440 // For the RS code, we can either completely recover all the packets
441 // if the loss is less than or equal to the number of FEC packets,
442 // otherwise we can recover none of the missing packets. This is the
443 // all or nothing (MDS) property of the RS code.
444 if (num_packets_lost <= num_fec_packets) {
445 num_recovered_packets = num_media_packets_lost;
446 }
447 }
448 RTC_DCHECK_LE(num_recovered_packets, num_media_packets);
449 // Compute the residual loss. We only care about recovering media/source
450 // packets, so residual loss is based on lost/recovered media packets.
451 residual_loss =
452 static_cast<double>(num_media_packets_lost - num_recovered_packets);
453 // Compute the probability weights for this configuration.
454 ComputeProbabilityWeight(prob_weight.get(), state.get(),
455 tot_num_packets);
456 // Update the average and variance of the residual loss.
457 for (int k = 0; k < kNumLossModels; k++) {
458 metrics_code.average_residual_loss[k] +=
459 residual_loss * prob_weight[k];
460 metrics_code.variance_residual_loss[k] +=
461 residual_loss * residual_loss * prob_weight[k];
462 }
463 } // Done with processing for num_media_packets_lost >= 1.
464 // Update the distribution statistics.
465 // Compute the gap of the loss (the "consecutiveness" of the loss).
466 int gap_loss = GapLoss(tot_num_packets, state.get());
467 RTC_DCHECK_LT(gap_loss, kMaxGapSize);
468 int index = gap_loss * (2 * kMaxMediaPacketsTest) + num_packets_lost;
469 RTC_DCHECK_LT(index, kNumStatesDistribution);
470 metrics_code.residual_loss_per_loss_gap[index] += residual_loss;
471 if (code_type == xor_random_code) {
472 // The configuration density is only a function of the code length and
473 // only needs to computed for the first `code_type` passed here.
474 code_params_[code_index].configuration_density[index]++;
475 }
476 } // Done with loop over configurations.
477 // Normalize the average residual loss and compute/normalize the variance.
478 for (int k = 0; k < kNumLossModels; k++) {
479 // Normalize the average residual loss by the total number of packets
480 // `tot_num_packets` (i.e., the code length). For a code with no (zero)
481 // recovery, the average residual loss for that code would be reduced like
482 // ~`average_loss_rate` * `num_media_packets` / `tot_num_packets`. This is
483 // the expected reduction in the average residual loss just from adding
484 // FEC packets to the symbol sequence.
485 metrics_code.average_residual_loss[k] =
486 metrics_code.average_residual_loss[k] /
487 static_cast<double>(tot_num_packets);
488 metrics_code.variance_residual_loss[k] =
489 metrics_code.variance_residual_loss[k] /
490 static_cast<double>(num_media_packets * num_media_packets);
491 metrics_code.variance_residual_loss[k] =
492 metrics_code.variance_residual_loss[k] -
493 (metrics_code.average_residual_loss[k] *
494 metrics_code.average_residual_loss[k]);
495 RTC_DCHECK_GE(metrics_code.variance_residual_loss[k], 0.0);
496 RTC_DCHECK_GT(metrics_code.average_residual_loss[k], 0.0);
497 metrics_code.variance_residual_loss[k] =
498 std::sqrt(metrics_code.variance_residual_loss[k]) /
499 metrics_code.average_residual_loss[k];
500 }
501
502 // Compute marginal distribution as a function of loss parameter.
503 ComputeRecoveryRatePerLoss(&metrics_code, num_media_packets,
504 num_fec_packets, code_index);
505 if (code_type == rs_code) {
506 CopyMetrics(&kMetricsReedSolomon[code_index], metrics_code);
507 } else if (code_type == xor_random_code) {
508 CopyMetrics(&kMetricsXorRandom[code_index], metrics_code);
509 } else if (code_type == xor_bursty_code) {
510 CopyMetrics(&kMetricsXorBursty[code_index], metrics_code);
511 } else {
512 RTC_DCHECK_NOTREACHED();
513 }
514 }
515
WriteOutMetricsAllFecCodes()516 void WriteOutMetricsAllFecCodes() {
517 std::string filename = test::OutputPath() + "data_metrics_all_codes";
518 FILE* fp = fopen(filename.c_str(), "wb");
519 // Loop through codes up to `kMaxMediaPacketsTest`.
520 int code_index = 0;
521 for (int num_media_packets = 1; num_media_packets <= kMaxMediaPacketsTest;
522 num_media_packets++) {
523 for (int num_fec_packets = 1; num_fec_packets <= num_media_packets;
524 num_fec_packets++) {
525 fprintf(fp, "FOR CODE: (%d, %d) \n", num_media_packets,
526 num_fec_packets);
527 for (int k = 0; k < kNumLossModels; k++) {
528 float loss_rate = loss_model_[k].average_loss_rate;
529 float burst_length = loss_model_[k].average_burst_length;
530 fprintf(
531 fp,
532 "Loss rate = %.2f, Burst length = %.2f: %.4f %.4f %.4f"
533 " **** %.4f %.4f %.4f \n",
534 loss_rate, burst_length,
535 100 * kMetricsReedSolomon[code_index].average_residual_loss[k],
536 100 * kMetricsXorRandom[code_index].average_residual_loss[k],
537 100 * kMetricsXorBursty[code_index].average_residual_loss[k],
538 kMetricsReedSolomon[code_index].variance_residual_loss[k],
539 kMetricsXorRandom[code_index].variance_residual_loss[k],
540 kMetricsXorBursty[code_index].variance_residual_loss[k]);
541 }
542 for (int gap = 0; gap < kGapSizeOutput; gap++) {
543 double rs_residual_loss =
544 ComputeResidualLossPerGap(kMetricsReedSolomon[code_index], gap,
545 num_fec_packets, code_index);
546 double xor_random_residual_loss = ComputeResidualLossPerGap(
547 kMetricsXorRandom[code_index], gap, num_fec_packets, code_index);
548 double xor_bursty_residual_loss = ComputeResidualLossPerGap(
549 kMetricsXorBursty[code_index], gap, num_fec_packets, code_index);
550 fprintf(fp,
551 "Residual loss as a function of gap "
552 "%d: %.4f %.4f %.4f \n",
553 gap, rs_residual_loss, xor_random_residual_loss,
554 xor_bursty_residual_loss);
555 }
556 fprintf(fp, "Recovery rate as a function of loss number \n");
557 for (int loss = 1; loss <= num_media_packets + num_fec_packets;
558 loss++) {
559 fprintf(fp, "For loss number %d: %.4f %.4f %.4f \n", loss,
560 kMetricsReedSolomon[code_index].recovery_rate_per_loss[loss],
561 kMetricsXorRandom[code_index].recovery_rate_per_loss[loss],
562 kMetricsXorBursty[code_index].recovery_rate_per_loss[loss]);
563 }
564 fprintf(fp, "******************\n");
565 fprintf(fp, "\n");
566 code_index++;
567 }
568 }
569 fclose(fp);
570 }
571
SetLossModels()572 void SetLossModels() {
573 int num_loss_rates = sizeof(kAverageLossRate) / sizeof(*kAverageLossRate);
574 int num_burst_lengths =
575 sizeof(kAverageBurstLength) / sizeof(*kAverageBurstLength);
576 int num_loss_models = 0;
577 for (int k = 0; k < num_burst_lengths; k++) {
578 for (int k2 = 0; k2 < num_loss_rates; k2++) {
579 loss_model_[num_loss_models].average_loss_rate = kAverageLossRate[k2];
580 loss_model_[num_loss_models].average_burst_length =
581 kAverageBurstLength[k];
582 // First set of loss models are of random type.
583 if (k == 0) {
584 loss_model_[num_loss_models].loss_type = kRandomLossModel;
585 } else {
586 loss_model_[num_loss_models].loss_type = kBurstyLossModel;
587 }
588 num_loss_models++;
589 }
590 }
591 RTC_DCHECK_EQ(num_loss_models, kNumLossModels);
592 }
593
SetCodeParams()594 void SetCodeParams() {
595 int code_index = 0;
596 for (int num_media_packets = 1; num_media_packets <= kMaxMediaPacketsTest;
597 num_media_packets++) {
598 for (int num_fec_packets = 1; num_fec_packets <= num_media_packets;
599 num_fec_packets++) {
600 code_params_[code_index].num_media_packets = num_media_packets;
601 code_params_[code_index].num_fec_packets = num_fec_packets;
602 code_params_[code_index].protection_level =
603 static_cast<float>(num_fec_packets) /
604 static_cast<float>(num_media_packets + num_fec_packets);
605 for (int k = 0; k < kNumStatesDistribution; k++) {
606 code_params_[code_index].configuration_density[k] = 0;
607 }
608 code_index++;
609 }
610 }
611 max_num_codes_ = code_index;
612 }
613
614 // Make some basic checks on the packet masks. Return -1 if any of these
615 // checks fail.
RejectInvalidMasks(int num_media_packets,int num_fec_packets)616 int RejectInvalidMasks(int num_media_packets, int num_fec_packets) {
617 // Make sure every FEC packet protects something.
618 for (int i = 0; i < num_fec_packets; i++) {
619 int row_degree = 0;
620 for (int j = 0; j < num_media_packets; j++) {
621 if (fec_packet_masks_[i][j] == 1) {
622 row_degree++;
623 }
624 }
625 if (row_degree == 0) {
626 printf(
627 "Invalid mask: FEC packet has empty mask (does not protect "
628 "anything) %d %d %d \n",
629 i, num_media_packets, num_fec_packets);
630 return -1;
631 }
632 }
633 // Mask sure every media packet has some protection.
634 for (int j = 0; j < num_media_packets; j++) {
635 int column_degree = 0;
636 for (int i = 0; i < num_fec_packets; i++) {
637 if (fec_packet_masks_[i][j] == 1) {
638 column_degree++;
639 }
640 }
641 if (column_degree == 0) {
642 printf(
643 "Invalid mask: Media packet has no protection at all %d %d %d "
644 "\n",
645 j, num_media_packets, num_fec_packets);
646 return -1;
647 }
648 }
649 // Make sure we do not have two identical FEC packets.
650 for (int i = 0; i < num_fec_packets; i++) {
651 for (int i2 = i + 1; i2 < num_fec_packets; i2++) {
652 int overlap = 0;
653 for (int j = 0; j < num_media_packets; j++) {
654 if (fec_packet_masks_[i][j] == fec_packet_masks_[i2][j]) {
655 overlap++;
656 }
657 }
658 if (overlap == num_media_packets) {
659 printf("Invalid mask: Two FEC packets are identical %d %d %d %d \n",
660 i, i2, num_media_packets, num_fec_packets);
661 return -1;
662 }
663 }
664 }
665 // Avoid codes that have two media packets with full protection (all 1s in
666 // their corresponding columns). This would mean that if we lose those
667 // two packets, we can never recover them even if we receive all the other
668 // packets. Exclude the special cases of 1 or 2 FEC packets.
669 if (num_fec_packets > 2) {
670 for (int j = 0; j < num_media_packets; j++) {
671 for (int j2 = j + 1; j2 < num_media_packets; j2++) {
672 int degree = 0;
673 for (int i = 0; i < num_fec_packets; i++) {
674 if (fec_packet_masks_[i][j] == fec_packet_masks_[i][j2] &&
675 fec_packet_masks_[i][j] == 1) {
676 degree++;
677 }
678 }
679 if (degree == num_fec_packets) {
680 printf(
681 "Invalid mask: Two media packets are have full degree "
682 "%d %d %d %d \n",
683 j, j2, num_media_packets, num_fec_packets);
684 return -1;
685 }
686 }
687 }
688 }
689 return 0;
690 }
691
GetPacketMaskConvertToBitMask(uint8_t * packet_mask,int num_media_packets,int num_fec_packets,int mask_bytes_fec_packet,CodeType code_type)692 void GetPacketMaskConvertToBitMask(uint8_t* packet_mask,
693 int num_media_packets,
694 int num_fec_packets,
695 int mask_bytes_fec_packet,
696 CodeType code_type) {
697 for (int i = 0; i < num_fec_packets; i++) {
698 for (int j = 0; j < num_media_packets; j++) {
699 const uint8_t byte_mask =
700 packet_mask[i * mask_bytes_fec_packet + j / 8];
701 const int bit_position = (7 - j % 8);
702 fec_packet_masks_[i][j] =
703 (byte_mask & (1 << bit_position)) >> bit_position;
704 fprintf(fp_mask_, "%d ", fec_packet_masks_[i][j]);
705 }
706 fprintf(fp_mask_, "\n");
707 }
708 fprintf(fp_mask_, "\n");
709 }
710
ProcessXORPacketMasks(CodeType code_type,FecMaskType fec_mask_type)711 int ProcessXORPacketMasks(CodeType code_type, FecMaskType fec_mask_type) {
712 int code_index = 0;
713 // Maximum number of media packets allowed for the mask type.
714 const int packet_mask_max = kMaxMediaPackets[fec_mask_type];
715 std::unique_ptr<uint8_t[]> packet_mask(
716 new uint8_t[packet_mask_max * kUlpfecMaxPacketMaskSize]);
717 // Loop through codes up to `kMaxMediaPacketsTest`.
718 for (int num_media_packets = 1; num_media_packets <= kMaxMediaPacketsTest;
719 ++num_media_packets) {
720 const int mask_bytes_fec_packet =
721 static_cast<int>(internal::PacketMaskSize(num_media_packets));
722 internal::PacketMaskTable mask_table(fec_mask_type, num_media_packets);
723 for (int num_fec_packets = 1; num_fec_packets <= num_media_packets;
724 num_fec_packets++) {
725 memset(packet_mask.get(), 0, num_media_packets * mask_bytes_fec_packet);
726 rtc::ArrayView<const uint8_t> mask =
727 mask_table.LookUp(num_media_packets, num_fec_packets);
728 memcpy(packet_mask.get(), &mask[0], mask.size());
729 // Convert to bit mask.
730 GetPacketMaskConvertToBitMask(packet_mask.get(), num_media_packets,
731 num_fec_packets, mask_bytes_fec_packet,
732 code_type);
733 if (RejectInvalidMasks(num_media_packets, num_fec_packets) < 0) {
734 return -1;
735 }
736 // Compute the metrics for this code/mask.
737 ComputeMetricsForCode(code_type, code_index);
738 code_index++;
739 }
740 }
741 RTC_DCHECK_EQ(code_index, kNumberCodes);
742 return 0;
743 }
744
ProcessRS(CodeType code_type)745 void ProcessRS(CodeType code_type) {
746 int code_index = 0;
747 for (int num_media_packets = 1; num_media_packets <= kMaxMediaPacketsTest;
748 num_media_packets++) {
749 for (int num_fec_packets = 1; num_fec_packets <= num_media_packets;
750 num_fec_packets++) {
751 // Compute the metrics for this code type.
752 ComputeMetricsForCode(code_type, code_index);
753 code_index++;
754 }
755 }
756 }
757
758 // Compute metrics for all code types and sizes.
ComputeMetricsAllCodes()759 void ComputeMetricsAllCodes() {
760 SetLossModels();
761 SetCodeParams();
762 // Get metrics for XOR code with packet masks of random type.
763 std::string filename = test::OutputPath() + "data_packet_masks";
764 fp_mask_ = fopen(filename.c_str(), "wb");
765 fprintf(fp_mask_, "MASK OF TYPE RANDOM: \n");
766 EXPECT_EQ(ProcessXORPacketMasks(xor_random_code, kFecMaskRandom), 0);
767 // Get metrics for XOR code with packet masks of bursty type.
768 fprintf(fp_mask_, "MASK OF TYPE BURSTY: \n");
769 EXPECT_EQ(ProcessXORPacketMasks(xor_bursty_code, kFecMaskBursty), 0);
770 fclose(fp_mask_);
771 // Get metrics for Reed-Solomon code.
772 ProcessRS(rs_code);
773 }
774 };
775
776 // Verify that the average residual loss, averaged over loss models
777 // appropriate to each mask type, is below some maximum acceptable level. The
778 // acceptable levels are read in from a file, and correspond to a current set
779 // of packet masks. The levels for each code may be updated over time.
TEST_F(FecPacketMaskMetricsTest,FecXorMaxResidualLoss)780 TEST_F(FecPacketMaskMetricsTest, FecXorMaxResidualLoss) {
781 SetLossModels();
782 SetCodeParams();
783 ComputeMetricsAllCodes();
784 WriteOutMetricsAllFecCodes();
785 int num_loss_rates = sizeof(kAverageLossRate) / sizeof(*kAverageLossRate);
786 int num_burst_lengths =
787 sizeof(kAverageBurstLength) / sizeof(*kAverageBurstLength);
788 for (int code_index = 0; code_index < max_num_codes_; code_index++) {
789 double sum_residual_loss_random_mask_random_loss = 0.0;
790 double sum_residual_loss_bursty_mask_bursty_loss = 0.0;
791 // Compute the sum residual loss across the models, for each mask type.
792 for (int k = 0; k < kNumLossModels; k++) {
793 if (loss_model_[k].loss_type == kRandomLossModel) {
794 sum_residual_loss_random_mask_random_loss +=
795 kMetricsXorRandom[code_index].average_residual_loss[k];
796 } else if (loss_model_[k].loss_type == kBurstyLossModel) {
797 sum_residual_loss_bursty_mask_bursty_loss +=
798 kMetricsXorBursty[code_index].average_residual_loss[k];
799 }
800 }
801 float average_residual_loss_random_mask_random_loss =
802 sum_residual_loss_random_mask_random_loss / num_loss_rates;
803 float average_residual_loss_bursty_mask_bursty_loss =
804 sum_residual_loss_bursty_mask_bursty_loss /
805 (num_loss_rates * (num_burst_lengths - 1));
806 const float ref_random_mask = kMaxResidualLossRandomMask[code_index];
807 const float ref_bursty_mask = kMaxResidualLossBurstyMask[code_index];
808 EXPECT_LE(average_residual_loss_random_mask_random_loss, ref_random_mask);
809 EXPECT_LE(average_residual_loss_bursty_mask_bursty_loss, ref_bursty_mask);
810 }
811 }
812
813 // Verify the behavior of the XOR codes vs the RS codes.
814 // For random loss model with average loss rates <= the code protection level,
815 // the RS code (optimal MDS code) is more efficient than XOR codes.
816 // However, for larger loss rates (above protection level) and/or bursty
817 // loss models, the RS is not always more efficient than XOR (though in most
818 // cases it still is).
TEST_F(FecPacketMaskMetricsTest,FecXorVsRS)819 TEST_F(FecPacketMaskMetricsTest, FecXorVsRS) {
820 SetLossModels();
821 SetCodeParams();
822 for (int code_index = 0; code_index < max_num_codes_; code_index++) {
823 for (int k = 0; k < kNumLossModels; k++) {
824 float loss_rate = loss_model_[k].average_loss_rate;
825 float protection_level = code_params_[code_index].protection_level;
826 // Under these conditions we expect XOR to not be better than RS.
827 if (loss_model_[k].loss_type == kRandomLossModel &&
828 loss_rate <= protection_level) {
829 EXPECT_GE(kMetricsXorRandom[code_index].average_residual_loss[k],
830 kMetricsReedSolomon[code_index].average_residual_loss[k]);
831 EXPECT_GE(kMetricsXorBursty[code_index].average_residual_loss[k],
832 kMetricsReedSolomon[code_index].average_residual_loss[k]);
833 }
834 // TODO(marpan): There are some cases (for high loss rates and/or
835 // burst loss models) where XOR is better than RS. Is there some pattern
836 // we can identify and enforce as a constraint?
837 }
838 }
839 }
840
841 // Verify the trend (change) in the average residual loss, as a function of
842 // loss rate, of the XOR code relative to the RS code.
843 // The difference between XOR and RS should not get worse as we increase
844 // the average loss rate.
TEST_F(FecPacketMaskMetricsTest,FecTrendXorVsRsLossRate)845 TEST_F(FecPacketMaskMetricsTest, FecTrendXorVsRsLossRate) {
846 SetLossModels();
847 SetCodeParams();
848 // TODO(marpan): Examine this further to see if the condition can be strictly
849 // satisfied (i.e., scale = 1.0) for all codes with different/better masks.
850 double scale = 0.90;
851 int num_loss_rates = sizeof(kAverageLossRate) / sizeof(*kAverageLossRate);
852 int num_burst_lengths =
853 sizeof(kAverageBurstLength) / sizeof(*kAverageBurstLength);
854 for (int code_index = 0; code_index < max_num_codes_; code_index++) {
855 for (int i = 0; i < num_burst_lengths; i++) {
856 for (int j = 0; j < num_loss_rates - 1; j++) {
857 int k = num_loss_rates * i + j;
858 // For XOR random.
859 if (kMetricsXorRandom[code_index].average_residual_loss[k] >
860 kMetricsReedSolomon[code_index].average_residual_loss[k]) {
861 double diff_rs_xor_random_loss1 =
862 (kMetricsXorRandom[code_index].average_residual_loss[k] -
863 kMetricsReedSolomon[code_index].average_residual_loss[k]) /
864 kMetricsXorRandom[code_index].average_residual_loss[k];
865 double diff_rs_xor_random_loss2 =
866 (kMetricsXorRandom[code_index].average_residual_loss[k + 1] -
867 kMetricsReedSolomon[code_index].average_residual_loss[k + 1]) /
868 kMetricsXorRandom[code_index].average_residual_loss[k + 1];
869 EXPECT_GE(diff_rs_xor_random_loss1, scale * diff_rs_xor_random_loss2);
870 }
871 // TODO(marpan): Investigate the cases for the bursty mask where
872 // this trend is not strictly satisfied.
873 }
874 }
875 }
876 }
877
878 // Verify the average residual loss behavior via the protection level and
879 // the code length. The average residual loss for a given (k1,m1) code
880 // should generally be higher than that of another code (k2,m2), which has
881 // either of the two conditions satisfied:
882 // 1) higher protection & code length at least as large: (k2+m2) >= (k1+m1),
883 // 2) equal protection and larger code length: (k2+m2) > (k1+m1).
884 // Currently does not hold for some cases of the XOR code with random mask.
TEST_F(FecPacketMaskMetricsTest,FecBehaviorViaProtectionLevelAndLength)885 TEST_F(FecPacketMaskMetricsTest, FecBehaviorViaProtectionLevelAndLength) {
886 SetLossModels();
887 SetCodeParams();
888 for (int code_index1 = 0; code_index1 < max_num_codes_; code_index1++) {
889 float protection_level1 = code_params_[code_index1].protection_level;
890 int length1 = code_params_[code_index1].num_media_packets +
891 code_params_[code_index1].num_fec_packets;
892 for (int code_index2 = 0; code_index2 < max_num_codes_; code_index2++) {
893 float protection_level2 = code_params_[code_index2].protection_level;
894 int length2 = code_params_[code_index2].num_media_packets +
895 code_params_[code_index2].num_fec_packets;
896 // Codes with higher protection are more efficient, conditioned on the
897 // length of the code (higher protection but shorter length codes are
898 // generally not more efficient). For two codes with equal protection,
899 // the longer code is generally more efficient. For high loss rate
900 // models, this condition may be violated for some codes with equal or
901 // very close protection levels. High loss rate case is excluded below.
902 if ((protection_level2 > protection_level1 && length2 >= length1) ||
903 (protection_level2 == protection_level1 && length2 > length1)) {
904 for (int k = 0; k < kNumLossModels; k++) {
905 float loss_rate = loss_model_[k].average_loss_rate;
906 if (loss_rate < loss_rate_upper_threshold) {
907 EXPECT_LT(
908 kMetricsReedSolomon[code_index2].average_residual_loss[k],
909 kMetricsReedSolomon[code_index1].average_residual_loss[k]);
910 // TODO(marpan): There are some corner cases where this is not
911 // satisfied with the current packet masks. Look into updating
912 // these cases to see if this behavior should/can be satisfied,
913 // with overall lower residual loss for those XOR codes.
914 // EXPECT_LT(
915 // kMetricsXorBursty[code_index2].average_residual_loss[k],
916 // kMetricsXorBursty[code_index1].average_residual_loss[k]);
917 // EXPECT_LT(
918 // kMetricsXorRandom[code_index2].average_residual_loss[k],
919 // kMetricsXorRandom[code_index1].average_residual_loss[k]);
920 }
921 }
922 }
923 }
924 }
925 }
926
927 // Verify the beheavior of the variance of the XOR codes.
928 // The partial recovery of the XOR versus the all or nothing behavior of the RS
929 // code means that the variance of the residual loss for XOR should generally
930 // not be worse than RS.
TEST_F(FecPacketMaskMetricsTest,FecVarianceBehaviorXorVsRs)931 TEST_F(FecPacketMaskMetricsTest, FecVarianceBehaviorXorVsRs) {
932 SetLossModels();
933 SetCodeParams();
934 // The condition is not strictly satisfied with the current masks,
935 // i.e., for some codes, the variance of XOR may be slightly higher than RS.
936 // TODO(marpan): Examine this further to see if the condition can be strictly
937 // satisfied (i.e., scale = 1.0) for all codes with different/better masks.
938 double scale = 0.95;
939 for (int code_index = 0; code_index < max_num_codes_; code_index++) {
940 for (int k = 0; k < kNumLossModels; k++) {
941 EXPECT_LE(scale * kMetricsXorRandom[code_index].variance_residual_loss[k],
942 kMetricsReedSolomon[code_index].variance_residual_loss[k]);
943 EXPECT_LE(scale * kMetricsXorBursty[code_index].variance_residual_loss[k],
944 kMetricsReedSolomon[code_index].variance_residual_loss[k]);
945 }
946 }
947 }
948
949 // For the bursty mask type, the residual loss must be strictly zero for all
950 // consecutive losses (i.e, gap = 0) with number of losses <= num_fec_packets.
951 // This is a design property of the bursty mask type.
TEST_F(FecPacketMaskMetricsTest,FecXorBurstyPerfectRecoveryConsecutiveLoss)952 TEST_F(FecPacketMaskMetricsTest, FecXorBurstyPerfectRecoveryConsecutiveLoss) {
953 SetLossModels();
954 SetCodeParams();
955 for (int code_index = 0; code_index < max_num_codes_; code_index++) {
956 int num_fec_packets = code_params_[code_index].num_fec_packets;
957 for (int loss = 1; loss <= num_fec_packets; loss++) {
958 int index = loss; // `gap` is zero.
959 EXPECT_EQ(kMetricsXorBursty[code_index].residual_loss_per_loss_gap[index],
960 0.0);
961 }
962 }
963 }
964
965 // The XOR codes with random mask type are generally better than the ones with
966 // bursty mask type, for random loss models at low loss rates.
967 // The XOR codes with bursty mask types are generally better than the one with
968 // random mask type, for bursty loss models and/or high loss rates.
969 // TODO(marpan): Enable this test when some of the packet masks are updated.
970 // Some isolated cases of the codes don't pass this currently.
971 /*
972 TEST_F(FecPacketMaskMetricsTest, FecXorRandomVsBursty) {
973 SetLossModels();
974 SetCodeParams();
975 for (int code_index = 0; code_index < max_num_codes_; code_index++) {
976 double sum_residual_loss_random_mask_random_loss = 0.0;
977 double sum_residual_loss_bursty_mask_random_loss = 0.0;
978 double sum_residual_loss_random_mask_bursty_loss = 0.0;
979 double sum_residual_loss_bursty_mask_bursty_loss = 0.0;
980 // Compute the sum residual loss across the models, for each mask type.
981 for (int k = 0; k < kNumLossModels; k++) {
982 float loss_rate = loss_model_[k].average_loss_rate;
983 if (loss_model_[k].loss_type == kRandomLossModel &&
984 loss_rate < loss_rate_upper_threshold) {
985 sum_residual_loss_random_mask_random_loss +=
986 kMetricsXorRandom[code_index].average_residual_loss[k];
987 sum_residual_loss_bursty_mask_random_loss +=
988 kMetricsXorBursty[code_index].average_residual_loss[k];
989 } else if (loss_model_[k].loss_type == kBurstyLossModel &&
990 loss_rate > loss_rate_lower_threshold) {
991 sum_residual_loss_random_mask_bursty_loss +=
992 kMetricsXorRandom[code_index].average_residual_loss[k];
993 sum_residual_loss_bursty_mask_bursty_loss +=
994 kMetricsXorBursty[code_index].average_residual_loss[k];
995 }
996 }
997 EXPECT_LE(sum_residual_loss_random_mask_random_loss,
998 sum_residual_loss_bursty_mask_random_loss);
999 EXPECT_LE(sum_residual_loss_bursty_mask_bursty_loss,
1000 sum_residual_loss_random_mask_bursty_loss);
1001 }
1002 }
1003 */
1004
1005 // Verify that the average recovery rate for each code is equal or above some
1006 // threshold, for certain loss number conditions.
TEST_F(FecPacketMaskMetricsTest,FecRecoveryRateUnderLossConditions)1007 TEST_F(FecPacketMaskMetricsTest, FecRecoveryRateUnderLossConditions) {
1008 SetLossModels();
1009 SetCodeParams();
1010 for (int code_index = 0; code_index < max_num_codes_; code_index++) {
1011 int num_media_packets = code_params_[code_index].num_media_packets;
1012 int num_fec_packets = code_params_[code_index].num_fec_packets;
1013 // Perfect recovery (`recovery_rate_per_loss` == 1) is expected for
1014 // `loss_number` = 1, for all codes.
1015 int loss_number = 1;
1016 EXPECT_EQ(
1017 kMetricsReedSolomon[code_index].recovery_rate_per_loss[loss_number],
1018 1.0);
1019 EXPECT_EQ(kMetricsXorRandom[code_index].recovery_rate_per_loss[loss_number],
1020 1.0);
1021 EXPECT_EQ(kMetricsXorBursty[code_index].recovery_rate_per_loss[loss_number],
1022 1.0);
1023 // For `loss_number` = `num_fec_packets` / 2, we expect the following:
1024 // Perfect recovery for RS, and recovery for XOR above the threshold.
1025 loss_number = num_fec_packets / 2 > 0 ? num_fec_packets / 2 : 1;
1026 EXPECT_EQ(
1027 kMetricsReedSolomon[code_index].recovery_rate_per_loss[loss_number],
1028 1.0);
1029 EXPECT_GE(kMetricsXorRandom[code_index].recovery_rate_per_loss[loss_number],
1030 kRecoveryRateXorRandom[0]);
1031 EXPECT_GE(kMetricsXorBursty[code_index].recovery_rate_per_loss[loss_number],
1032 kRecoveryRateXorBursty[0]);
1033 // For `loss_number` = `num_fec_packets`, we expect the following:
1034 // Perfect recovery for RS, and recovery for XOR above the threshold.
1035 loss_number = num_fec_packets;
1036 EXPECT_EQ(
1037 kMetricsReedSolomon[code_index].recovery_rate_per_loss[loss_number],
1038 1.0);
1039 EXPECT_GE(kMetricsXorRandom[code_index].recovery_rate_per_loss[loss_number],
1040 kRecoveryRateXorRandom[1]);
1041 EXPECT_GE(kMetricsXorBursty[code_index].recovery_rate_per_loss[loss_number],
1042 kRecoveryRateXorBursty[1]);
1043 // For `loss_number` = `num_fec_packets` + 1, we expect the following:
1044 // Zero recovery for RS, but non-zero recovery for XOR.
1045 if (num_fec_packets > 1 && num_media_packets > 2) {
1046 loss_number = num_fec_packets + 1;
1047 EXPECT_EQ(
1048 kMetricsReedSolomon[code_index].recovery_rate_per_loss[loss_number],
1049 0.0);
1050 EXPECT_GE(
1051 kMetricsXorRandom[code_index].recovery_rate_per_loss[loss_number],
1052 kRecoveryRateXorRandom[2]);
1053 EXPECT_GE(
1054 kMetricsXorBursty[code_index].recovery_rate_per_loss[loss_number],
1055 kRecoveryRateXorBursty[2]);
1056 }
1057 }
1058 }
1059
1060 } // namespace webrtc
1061