xref: /aosp_15_r20/external/XNNPACK/test/average-pooling-2d.cc (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Copyright 2022 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #include <algorithm>
7 #include <array>
8 #include <cstddef>
9 #include <cstdint>
10 #include <limits>
11 #include <memory>
12 #include <random>
13 
14 #include <xnnpack.h>
15 #include <xnnpack/node-type.h>
16 #include <xnnpack/operator.h>
17 #include <xnnpack/subgraph.h>
18 
19 #include <gtest/gtest.h>
20 
21 class AveragePoolingTestF32 : public ::testing::Test {
22 protected:
AveragePoolingTestF32()23   AveragePoolingTestF32()
24   {
25     random_device = std::unique_ptr<std::random_device>(new std::random_device());
26     rng = std::mt19937((*random_device)());
27     input_size_dist = std::uniform_int_distribution<uint32_t>(10, 15);
28     pooling_size_dist = std::uniform_int_distribution<uint32_t>(2, 5);
29     stride_dist = std::uniform_int_distribution<uint32_t>(1, 2);
30     batch_size = input_size_dist(rng);
31     input_height = input_size_dist(rng);
32     input_width = input_size_dist(rng);
33     channels = input_size_dist(rng);
34     pooling_height = pooling_size_dist(rng);
35     pooling_width = pooling_size_dist(rng);
36     // Avoid padding == pooling dimension because it will result in NaNs and cause comparison to fail.
37     input_padding_top = std::uniform_int_distribution<uint32_t>(0, pooling_height - 1)(rng);
38     input_padding_right = std::uniform_int_distribution<uint32_t>(0, pooling_width - 1)(rng);
39     input_padding_bottom = std::uniform_int_distribution<uint32_t>(0, pooling_height - 1)(rng);
40     input_padding_left = std::uniform_int_distribution<uint32_t>(0, pooling_width - 1)(rng);
41     stride_height = stride_dist(rng);
42     stride_width = stride_dist(rng);
43     output_height = xnn_compute_convolution_output_dimension(
44       input_padding_top + input_height + input_padding_bottom, pooling_height, 1, stride_height);
45     output_width = xnn_compute_convolution_output_dimension(
46       input_padding_left + input_width + input_padding_right, pooling_width, 1, stride_width);
47     output_min = std::uniform_real_distribution<float>(-255.0f, 0.0f)(rng);
48     output_max = std::uniform_real_distribution<float>(0.1f, 255.0f)(rng);
49     input_dims = {batch_size, input_height, input_width, channels};
50     output_dims = {batch_size, output_height, output_width, channels};
51     input = std::vector<float>(XNN_EXTRA_BYTES / sizeof(float) + batch_size * input_height * input_width * channels);
52     operator_output = std::vector<float>(batch_size * output_height * output_width * channels);
53     subgraph_output = std::vector<float>(batch_size * output_height * output_width * channels);
54   }
55 
56   std::unique_ptr<std::random_device> random_device;
57   std::mt19937 rng;
58   std::uniform_int_distribution<uint32_t> input_size_dist;
59   std::uniform_int_distribution<uint32_t> pooling_size_dist;
60   std::uniform_int_distribution<uint32_t> stride_dist;
61   uint32_t batch_size;
62   uint32_t input_height;
63   uint32_t input_width;
64   uint32_t channels;
65   uint32_t pooling_height;
66   uint32_t pooling_width;
67   uint32_t output_height;
68   uint32_t output_width;
69   uint32_t stride_height;
70   uint32_t stride_width;
71   std::array<size_t, 4> input_dims;
72   std::array<size_t, 4> output_dims;
73   uint32_t input_padding_top;
74   uint32_t input_padding_right;
75   uint32_t input_padding_bottom;
76   uint32_t input_padding_left;
77   float output_min;
78   float output_max;
79 
80   uint32_t input_id;
81   uint32_t output_id;
82 
83   std::vector<float> input;
84   std::vector<float> operator_output;
85   std::vector<float> subgraph_output;
86 };
87 
TEST_F(AveragePoolingTestF32,define)88 TEST_F(AveragePoolingTestF32, define)
89 {
90   ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
91 
92   xnn_subgraph_t subgraph = nullptr;
93   ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/2, /*flags=*/0, &subgraph));
94   std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph);
95 
96   input_id = XNN_INVALID_NODE_ID;
97   ASSERT_EQ(
98     xnn_status_success, xnn_define_tensor_value(
99                           subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr, 0,
100                           /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id));
101   ASSERT_NE(input_id, XNN_INVALID_NODE_ID);
102 
103   output_id = XNN_INVALID_NODE_ID;
104   ASSERT_EQ(
105     xnn_status_success, xnn_define_tensor_value(
106                           subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, 1,
107                           /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id));
108   ASSERT_NE(output_id, XNN_INVALID_NODE_ID);
109 
110   ASSERT_EQ(
111     xnn_status_success,
112     xnn_define_average_pooling_2d(
113       subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, pooling_height,
114       pooling_width, stride_height, stride_width, output_min, output_max, input_id, output_id,
115       /*flags=*/0));
116 
117   ASSERT_EQ(subgraph->num_nodes, 1);
118   const struct xnn_node* node = &subgraph->nodes[0];
119   ASSERT_EQ(node->type, xnn_node_type_average_pooling_2d);
120   ASSERT_EQ(node->compute_type, xnn_compute_type_fp32);
121 
122   ASSERT_EQ(node->params.pooling_2d.padding_top, input_padding_top);
123   ASSERT_EQ(node->params.pooling_2d.padding_right, input_padding_right);
124   ASSERT_EQ(node->params.pooling_2d.padding_bottom, input_padding_bottom);
125   ASSERT_EQ(node->params.pooling_2d.padding_left, input_padding_left);
126   ASSERT_EQ(node->params.pooling_2d.pooling_height, pooling_height);
127   ASSERT_EQ(node->params.pooling_2d.pooling_width, pooling_width);
128   ASSERT_EQ(node->params.pooling_2d.stride_height, stride_height);
129   ASSERT_EQ(node->params.pooling_2d.stride_width, stride_width);
130   ASSERT_EQ(node->activation.output_min, output_min);
131   ASSERT_EQ(node->activation.output_max, output_max);
132   ASSERT_EQ(node->num_inputs, 1);
133   ASSERT_EQ(node->inputs[0], input_id);
134   ASSERT_EQ(node->num_outputs, 1);
135   ASSERT_EQ(node->outputs[0], output_id);
136   ASSERT_EQ(node->flags, 0);
137 }
138 
TEST_F(AveragePoolingTestF32,matches_operator_api)139 TEST_F(AveragePoolingTestF32, matches_operator_api)
140 {
141   std::uniform_real_distribution<float> f32dist;
142   std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
143   std::fill(operator_output.begin(), operator_output.end(), nanf(""));
144   std::fill(subgraph_output.begin(), subgraph_output.end(), nanf(""));
145 
146   ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
147 
148   // Call operator API.
149   xnn_operator_t op = nullptr;
150   const xnn_status status = xnn_create_average_pooling2d_nhwc_f32(
151     input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, pooling_height, pooling_width,
152     stride_height, stride_width, channels, channels, channels, output_min, output_max, /*flags=*/0, &op);
153   if (status == xnn_status_unsupported_hardware) {
154     GTEST_SKIP();
155   }
156 
157   ASSERT_EQ(xnn_status_success, status);
158   ASSERT_NE(nullptr, op);
159   std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_op(op, xnn_delete_operator);
160 
161   ASSERT_EQ(
162     xnn_status_success, xnn_setup_average_pooling2d_nhwc_f32(
163                           op, batch_size, input_height, input_width, input.data(), operator_output.data(),
164                           /*threadpool=*/nullptr));
165 
166   ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr));
167 
168   // Call subgraph API.
169   xnn_subgraph_t subgraph = nullptr;
170   ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/2, /*flags=*/0, &subgraph));
171   std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph);
172   input_id = XNN_INVALID_NODE_ID;
173   ASSERT_EQ(
174     xnn_status_success, xnn_define_tensor_value(
175                           subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0,
176                           /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id));
177   ASSERT_NE(input_id, XNN_INVALID_NODE_ID);
178 
179   output_id = XNN_INVALID_NODE_ID;
180   ASSERT_EQ(
181     xnn_status_success,
182     xnn_define_tensor_value(
183       subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/1,
184       /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id));
185   ASSERT_NE(output_id, XNN_INVALID_NODE_ID);
186 
187   xnn_runtime_t runtime = nullptr;
188   ASSERT_EQ(
189     xnn_status_success,
190     xnn_define_average_pooling_2d(
191       subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, pooling_height,
192       pooling_width, stride_height, stride_width, output_min, output_max, input_id, output_id,
193       /*flags=*/0));
194   ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime));
195   ASSERT_NE(nullptr, runtime);
196   std::unique_ptr<xnn_runtime, decltype(&xnn_delete_runtime)> auto_runtime(runtime, xnn_delete_runtime);
197   std::array<xnn_external_value, 2> external = {
198     xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}};
199   ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data()));
200   ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime));
201 
202   ASSERT_EQ(subgraph_output, operator_output);
203 }
204