1 /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6
7 http://www.apache.org/licenses/LICENSE-2.0
8
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 #ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_CONV_H_
16 #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_CONV_H_
17
18 #include <algorithm>
19
20 #include "tensorflow/lite/kernels/internal/common.h"
21
22 namespace tflite {
23 namespace reference_integer_ops {
24
25 // Fixed-point per-channel-quantization convolution reference kernel.
ConvPerChannel(const ConvParams & params,const int32_t * output_multiplier,const int32_t * output_shift,const RuntimeShape & input_shape,const int8_t * input_data,const RuntimeShape & filter_shape,const int8_t * filter_data,const RuntimeShape & bias_shape,const int32_t * bias_data,const RuntimeShape & output_shape,int8_t * output_data)26 inline void ConvPerChannel(
27 const ConvParams& params, const int32_t* output_multiplier,
28 const int32_t* output_shift, const RuntimeShape& input_shape,
29 const int8_t* input_data, const RuntimeShape& filter_shape,
30 const int8_t* filter_data, const RuntimeShape& bias_shape,
31 const int32_t* bias_data, const RuntimeShape& output_shape,
32 int8_t* output_data) {
33 // Get parameters.
34 const int32_t input_offset = params.input_offset; // r = s(q - Z)
35 const int stride_width = params.stride_width;
36 const int stride_height = params.stride_height;
37 const int dilation_width_factor = params.dilation_width_factor;
38 const int dilation_height_factor = params.dilation_height_factor;
39 const int pad_width = params.padding_values.width;
40 const int pad_height = params.padding_values.height;
41 const int32_t output_offset = params.output_offset;
42
43 // Set min and max value of the output.
44 const int32_t output_activation_min = params.quantized_activation_min;
45 const int32_t output_activation_max = params.quantized_activation_max;
46
47 // Consistency check.
48 TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
49 TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
50 TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4);
51 TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
52 const int batches = MatchingDim(input_shape, 0, output_shape, 0);
53 const int input_depth = input_shape.Dims(3);
54 const int output_depth = MatchingDim(filter_shape, 0, output_shape, 3);
55 if (bias_data) {
56 TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth);
57 }
58
59 // Check dimensions of the tensors.
60 const int input_height = input_shape.Dims(1);
61 const int input_width = input_shape.Dims(2);
62 const int filter_height = filter_shape.Dims(1);
63 const int filter_width = filter_shape.Dims(2);
64 const int filter_input_depth = filter_shape.Dims(3);
65 const int groups = input_depth / filter_input_depth;
66 TFLITE_DCHECK_EQ(input_depth % filter_input_depth, 0);
67 const int filters_per_group = output_depth / groups;
68 const int output_height = output_shape.Dims(1);
69 const int output_width = output_shape.Dims(2);
70 for (int batch = 0; batch < batches; ++batch) {
71 for (int out_y = 0; out_y < output_height; ++out_y) {
72 const int in_y_origin = (out_y * stride_height) - pad_height;
73 for (int out_x = 0; out_x < output_width; ++out_x) {
74 const int in_x_origin = (out_x * stride_width) - pad_width;
75 for (int out_channel = 0; out_channel < output_depth; ++out_channel) {
76 auto group = out_channel / filters_per_group;
77 int32_t acc = 0;
78 for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
79 const int in_y = in_y_origin + dilation_height_factor * filter_y;
80 for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
81 const int in_x = in_x_origin + dilation_width_factor * filter_x;
82
83 // Zero padding by omitting the areas outside the image.
84 const bool is_point_inside_image =
85 (in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
86 (in_y < input_height);
87
88 if (!is_point_inside_image) {
89 continue;
90 }
91
92 for (int in_channel = 0; in_channel < filter_input_depth;
93 ++in_channel) {
94 int32_t input_val =
95 input_data[Offset(input_shape, batch, in_y, in_x,
96 in_channel + group * filter_input_depth)];
97 int32_t filter_val = filter_data[Offset(
98 filter_shape, out_channel, filter_y, filter_x, in_channel)];
99 // Accumulate with 32 bits accumulator.
100 // In the nudging process during model quantization, we force
101 // real value of 0.0 be represented by a quantized value. This
102 // guarantees that the input_offset is a int8_t, even though
103 // it is represented using int32_t. int32_t += int8_t *
104 // (int8_t - int8_t) so the highest value we can get from each
105 // accumulation is [-127, 127] * ([-128, 127] -
106 // [-128, 127]), which is [-32512, 32512]. log2(32512)
107 // = 14.98, which means we can accumulate at least 2^16
108 // multiplications without overflow. The accumulator is
109 // applied to a filter so the accumulation logic will hold as
110 // long as the filter size (filter_y * filter_x * in_channel)
111 // does not exceed 2^16, which is the case in all the models
112 // we have seen so far.
113 // TODO(b/174275578): Add a check to make sure the
114 // accumulator depth is smaller than 2^16.
115 acc += filter_val * (input_val + input_offset);
116 }
117 }
118 }
119
120 if (bias_data) {
121 acc += bias_data[out_channel];
122 }
123 acc = MultiplyByQuantizedMultiplier(
124 acc, output_multiplier[out_channel], output_shift[out_channel]);
125 acc += output_offset;
126 acc = std::max(acc, output_activation_min);
127 acc = std::min(acc, output_activation_max);
128 output_data[Offset(output_shape, batch, out_y, out_x, out_channel)] =
129 static_cast<int8_t>(acc);
130 }
131 }
132 }
133 }
134 }
135
136 // Fixed-point per-channel-quantization convolution reference kernel.
137 // 16-bit data and 8-bit filter
138 template <typename AccumScalar>
ConvPerChannel(const ConvParams & params,const int32_t * output_multiplier,const int32_t * output_shift,const RuntimeShape & input_shape,const int16_t * input_data,const RuntimeShape & filter_shape,const int8_t * filter_data,const RuntimeShape & bias_shape,const AccumScalar * bias_data,const RuntimeShape & output_shape,int16_t * output_data)139 inline void ConvPerChannel(
140 const ConvParams& params, const int32_t* output_multiplier,
141 const int32_t* output_shift, const RuntimeShape& input_shape,
142 const int16_t* input_data, const RuntimeShape& filter_shape,
143 const int8_t* filter_data, const RuntimeShape& bias_shape,
144 const AccumScalar* bias_data, const RuntimeShape& output_shape,
145 int16_t* output_data) {
146 // Get parameters.
147 const int stride_width = params.stride_width;
148 const int stride_height = params.stride_height;
149 const int dilation_width_factor = params.dilation_width_factor;
150 const int dilation_height_factor = params.dilation_height_factor;
151 const int pad_width = params.padding_values.width;
152 const int pad_height = params.padding_values.height;
153
154 // Set min and max value of the output.
155 const int32_t output_activation_min = params.quantized_activation_min;
156 const int32_t output_activation_max = params.quantized_activation_max;
157
158 // Consistency check.
159 TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
160 TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
161 TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4);
162 TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
163 const int batches = MatchingDim(input_shape, 0, output_shape, 0);
164 const int input_depth = input_shape.Dims(3);
165 const int output_depth = MatchingDim(filter_shape, 0, output_shape, 3);
166 if (bias_data) {
167 TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth);
168 }
169
170 // Check dimensions of the tensors.
171 const int input_height = input_shape.Dims(1);
172 const int input_width = input_shape.Dims(2);
173 const int filter_height = filter_shape.Dims(1);
174 const int filter_width = filter_shape.Dims(2);
175 const int filter_input_depth = filter_shape.Dims(3);
176 const int groups = input_depth / filter_input_depth;
177 TFLITE_DCHECK_EQ(input_depth % filter_input_depth, 0);
178 const int filters_per_group = output_depth / groups;
179 const int output_height = output_shape.Dims(1);
180 const int output_width = output_shape.Dims(2);
181 for (int batch = 0; batch < batches; ++batch) {
182 for (int out_y = 0; out_y < output_height; ++out_y) {
183 const int in_y_origin = (out_y * stride_height) - pad_height;
184 for (int out_x = 0; out_x < output_width; ++out_x) {
185 const int in_x_origin = (out_x * stride_width) - pad_width;
186 for (int out_channel = 0; out_channel < output_depth; ++out_channel) {
187 auto group = out_channel / filters_per_group;
188 AccumScalar acc = 0;
189 for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
190 const int in_y = in_y_origin + dilation_height_factor * filter_y;
191 for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
192 const int in_x = in_x_origin + dilation_width_factor * filter_x;
193
194 // Zero padding by omitting the areas outside the image.
195 const bool is_point_inside_image =
196 (in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
197 (in_y < input_height);
198
199 if (!is_point_inside_image) {
200 continue;
201 }
202
203 for (int in_channel = 0; in_channel < filter_input_depth;
204 ++in_channel) {
205 int32_t input_val =
206 input_data[Offset(input_shape, batch, in_y, in_x,
207 in_channel + group * filter_input_depth)];
208 int32_t filter_val = filter_data[Offset(
209 filter_shape, out_channel, filter_y, filter_x, in_channel)];
210 // Accumulate with 64 bits accumulator.
211 // int64_t += int8_t * int16_t so the highest value we can
212 // get from each accumulation is [-127, 127] * ([-32768,
213 // 32767] -
214 // [-32768, 32767]), which is [-8322945, 8322945].
215 // log2(8322945) = 22.99.
216 acc += filter_val * input_val;
217 }
218 }
219 }
220 if (bias_data) {
221 acc += bias_data[out_channel];
222 }
223 int32_t scaled_acc = MultiplyByQuantizedMultiplier(
224 acc, output_multiplier[out_channel], output_shift[out_channel]);
225 scaled_acc = std::max(scaled_acc, output_activation_min);
226 scaled_acc = std::min(scaled_acc, output_activation_max);
227 output_data[Offset(output_shape, batch, out_y, out_x, out_channel)] =
228 static_cast<int16_t>(scaled_acc);
229 }
230 }
231 }
232 }
233 }
234
235 } // namespace reference_integer_ops
236 } // namespace tflite
237
238 #endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_CONV_H_
239