1 /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6
7 http://www.apache.org/licenses/LICENSE-2.0
8
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 #ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_ADD_H_
16 #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_ADD_H_
17
18 #include <algorithm>
19 #include <limits>
20
21 #include "tensorflow/lite/kernels/internal/common.h"
22 #include "tensorflow/lite/kernels/internal/types.h"
23
24 namespace tflite {
25 namespace reference_integer_ops {
26
CheckArithmeticParams(const ArithmeticParams & params)27 inline void CheckArithmeticParams(const ArithmeticParams& params) {
28 TFLITE_DCHECK_LE(params.quantized_activation_min,
29 params.quantized_activation_max);
30 // Input offset is negative input zero point. Activation tensors are
31 // asymmetric quantized so they span the full int8 range.
32 TFLITE_DCHECK_GE(-params.input1_offset, std::numeric_limits<int8_t>::min());
33 TFLITE_DCHECK_GE(-params.input2_offset, std::numeric_limits<int8_t>::min());
34 TFLITE_DCHECK_LE(-params.input1_offset, std::numeric_limits<int8_t>::max());
35 TFLITE_DCHECK_LE(-params.input2_offset, std::numeric_limits<int8_t>::max());
36 }
37
ElementWise(int size,const ArithmeticParams & params,const int8_t * input1_data,const int8_t * input2_data,int8_t * output_data,void (* check_arithmetic_params)(const ArithmeticParams &),int8_t (* binary_func)(int8_t,int8_t,const ArithmeticParams &))38 inline void ElementWise(
39 int size, const ArithmeticParams& params, const int8_t* input1_data,
40 const int8_t* input2_data, int8_t* output_data,
41 void (*check_arithmetic_params)(const ArithmeticParams&),
42 int8_t (*binary_func)(int8_t, int8_t, const ArithmeticParams&)) {
43 CheckArithmeticParams(params);
44 for (int i = 0; i < size; ++i) {
45 output_data[i] = binary_func(input1_data[i], input2_data[i], params);
46 }
47 }
48
BroadcastBinaryFunction4DSlow(const ArithmeticParams & params,const RuntimeShape & input1_shape,const int8_t * input1_data,const RuntimeShape & input2_shape,const int8_t * input2_data,const RuntimeShape & output_shape,int8_t * output_data,void (* check_arithmetic_params)(const ArithmeticParams &),int8_t (* binary_func)(int8_t,int8_t,const ArithmeticParams &))49 inline void BroadcastBinaryFunction4DSlow(
50 const ArithmeticParams& params, const RuntimeShape& input1_shape,
51 const int8_t* input1_data, const RuntimeShape& input2_shape,
52 const int8_t* input2_data, const RuntimeShape& output_shape,
53 int8_t* output_data,
54 void (*check_arithmetic_params)(const ArithmeticParams&),
55 int8_t (*binary_func)(int8_t, int8_t, const ArithmeticParams&)) {
56 NdArrayDesc<4> desc1;
57 NdArrayDesc<4> desc2;
58 NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
59 &desc2);
60 const RuntimeShape extended_output_shape =
61 RuntimeShape::ExtendedShape(4, output_shape);
62
63 // In Tensorflow, the dimensions are canonically named (batch_number, row,
64 // col, channel), with extents (batches, height, width, depth), with the
65 // trailing dimension changing most rapidly (channels has the smallest stride,
66 // typically 1 element).
67 //
68 // In generated C code, we store arrays with the dimensions reversed. The
69 // first dimension has smallest stride.
70 //
71 // We name our variables by their Tensorflow convention, but generate C code
72 // nesting loops such that the innermost loop has the smallest stride for the
73 // best cache behavior.
74 for (int b = 0; b < extended_output_shape.Dims(0); ++b) {
75 for (int y = 0; y < extended_output_shape.Dims(1); ++y) {
76 for (int x = 0; x < extended_output_shape.Dims(2); ++x) {
77 for (int c = 0; c < extended_output_shape.Dims(3); ++c) {
78 output_data[Offset(extended_output_shape, b, y, x, c)] = binary_func(
79 input1_data[SubscriptToIndex(desc1, b, y, x, c)],
80 input2_data[SubscriptToIndex(desc2, b, y, x, c)], params);
81 }
82 }
83 }
84 }
85 }
86
AddFunc(int8_t x,int8_t y,const ArithmeticParams & params)87 inline int8_t AddFunc(int8_t x, int8_t y, const ArithmeticParams& params) {
88 const int32_t input1_val = params.input1_offset + x;
89 const int32_t input2_val = params.input2_offset + y;
90 const int32_t shifted_input1_val = input1_val * (1 << params.left_shift);
91 const int32_t shifted_input2_val = input2_val * (1 << params.left_shift);
92 const int32_t scaled_input1_val =
93 MultiplyByQuantizedMultiplierSmallerThanOneExp(
94 shifted_input1_val, params.input1_multiplier, params.input1_shift);
95 const int32_t scaled_input2_val =
96 MultiplyByQuantizedMultiplierSmallerThanOneExp(
97 shifted_input2_val, params.input2_multiplier, params.input2_shift);
98 const int32_t raw_sum = scaled_input1_val + scaled_input2_val;
99 const int32_t raw_output =
100 MultiplyByQuantizedMultiplierSmallerThanOneExp(
101 raw_sum, params.output_multiplier, params.output_shift) +
102 params.output_offset;
103 const int32_t clamped_output =
104 std::min(params.quantized_activation_max,
105 std::max(params.quantized_activation_min, raw_output));
106 return static_cast<int8_t>(clamped_output);
107 }
108
109 // Element-wise add that can often be used for inner loop of broadcast add as
110 // well as the non-broadcast add.
AddElementwise(int size,const ArithmeticParams & params,const int8_t * input1_data,const int8_t * input2_data,int8_t * output_data)111 inline void AddElementwise(int size, const ArithmeticParams& params,
112 const int8_t* input1_data, const int8_t* input2_data,
113 int8_t* output_data) {
114 ElementWise(size, params, input1_data, input2_data, output_data,
115 CheckArithmeticParams, AddFunc);
116 }
117
Add(const ArithmeticParams & params,const RuntimeShape & input1_shape,const int8_t * input1_data,const RuntimeShape & input2_shape,const int8_t * input2_data,const RuntimeShape & output_shape,int8_t * output_data)118 inline void Add(const ArithmeticParams& params,
119 const RuntimeShape& input1_shape, const int8_t* input1_data,
120 const RuntimeShape& input2_shape, const int8_t* input2_data,
121 const RuntimeShape& output_shape, int8_t* output_data) {
122 CheckArithmeticParams(params);
123
124 const int flat_size =
125 MatchingElementsSize(input1_shape, input2_shape, output_shape);
126
127 AddElementwise(flat_size, params, input1_data, input2_data, output_data);
128 }
129
BroadcastAdd4DSlow(const ArithmeticParams & params,const RuntimeShape & input1_shape,const int8_t * input1_data,const RuntimeShape & input2_shape,const int8_t * input2_data,const RuntimeShape & output_shape,int8_t * output_data)130 inline void BroadcastAdd4DSlow(const ArithmeticParams& params,
131 const RuntimeShape& input1_shape,
132 const int8_t* input1_data,
133 const RuntimeShape& input2_shape,
134 const int8_t* input2_data,
135 const RuntimeShape& output_shape,
136 int8_t* output_data) {
137 BroadcastBinaryFunction4DSlow(params, input1_shape, input1_data, input2_shape,
138 input2_data, output_shape, output_data,
139 CheckArithmeticParams, AddFunc);
140 }
141
142 } // namespace reference_integer_ops
143 } // namespace tflite
144
145 #endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_ADD_H_
146